首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract The influence of various outer membrane proteins on peptide penetration through the outer membrane in Escherichia coli was assessed by determining peptide transport kinetics in wild type and outer membrane protein-deficient strains. Peptide uptake was measured in whole cells by using a fluorescamine-based assay to monitor continuously the removal of peptides from the medium. Transport data were collected and processed using a microcomputer to give overall K m and V max values for peptide transport in each strain. In the mutants, K m values were changed more markedly then V max values reflecting an alteration in diffusion through the envelope. This approach shows that porins are involved in facilitating peptide penetration and that the OmpF channel appears to be more important than either OmpC or PhoE proteins. The loss of OmpA protein also decreases outer membrane permeability towards peptides, although whether this protein forms pores itself or exists more to maintain the functional integrity of other proteins is not known.  相似文献   

2.
The initial rate of incorporation of methyl-labeled choline into the acid-soluble pool (phosphorylcholine) of Novikoff hepatoma cells growing in suspension culture was investigated as a function of the choline concentration in the medium. Below, but not above, 20 micro m, choline incorporation followed simple Michaelis-Menten kinetics at 24, 33, or 37 degrees C with an apparent K(m) of 4-7 micro m, and the V(max) values decreased with a Q(10) of about 2.3 with a decrease in temperature. Between 20 and 500 micro m, on the other hand, the rate of incorporation increased linearly with an increase in choline concentration in the medium, and the increase in incorporation rate with increase in choline concentration was about the same at all temperatures tested. The data suggest that at low concentrations choline is taken up mainly by a transport reaction, whereas at concentrations above 20 micro m, simple diffusion becomes the principal mode of uptake. The energy of activation for choline transport was estimated from an Arrhenius plot of the V(max) values as 67,000 J (16 kcal)/mole. At concentrations below 20 micro m, choline incorporation into membrane phosphatidylcholine also followed simple Michaelis-Menten kinetics, and the apparent K(m) was about the same as that for choline transport. The data support the conclusion that the transport of choline into the cell is the rate-limiting step in the conversion of choline to phosphorylcholine and its incorporation into phosphatidylcholine. At concentrations above 100 micro m, on the other hand, the ultimate rate of choline incorporation into phosphatidylcholine was independent of the choline concentration in the medium or the intracellular level of phosphorylcholine. Further, the rate of turnover of the choline moiety of phosphatidylcholine (half-life, 20-24 hr) either in whole cells or during incubation of isolated membrane fractions was unaffected by the presence of an excess of choline in the medium. The overall results indicate that a direct exchange between free choline and the choline moiety of phosphatidylcholine does not play a significant role in the incorporation of choline into phosphatidylcholine by Novikoff cells or in the turnover of the choline moiety of phosphatidylcholine, and that labeled choline therefore is a useful precursor in studying the synthesis and turnover of membrane phosphatidylcholine in these cells.  相似文献   

3.
The utilization of natural mica as a biocatalyst support in kinetic investigations is first described in this study. The formation of lactose caprate from lactose sugar and capric acid, using free lipase (free-CRL) and lipase immobilized on nanoporous mica (NER-CRL) as a biocatalyst, was evaluated through a kinetic study. The apparent kinetic parameters, K(m) and V(max), were determined by means of the Michaelis-Menten kinetic model. The Ping-Pong Bi-Bi mechanism with single substrate inhibition was adopted as it best explains the experimental findings. The kinetic results show lower K(m) values with NER-CRL than with free-CRL, indicating the higher affinity of NER-CRL towards both substrates at the maximum reaction velocity (V(max,app)>V(max)). The kinetic parameters deduced from this model were used to simulate reaction rate data which were in close agreement with the experimental values.  相似文献   

4.
The conjugative plasmid pRSD2 carries a raf operon that encodes a peripheral raffinose metabolic pathway in enterobacteria. In addition to the previously known raf genes, we identified another gene, rafY, which in Escherichia coli codes for an outer membrane protein (molecular mass, 53 kDa) similar in function to the known glycoporins LamB (maltoporin) and ScrY (sucrose porin). Sequence comparisons with LamB and ScrY revealed no significant similarities; however, both lamB and scrY mutants are functionally complemented by RafY. Expressed from the tac promoter, RafY significantly increases the uptake rates for maltose, sucrose, and raffinose at low substrate concentrations; in particular it shifts the apparent K(m) for raffinose transport from 2 mM to 130 microM. Moreover, RafY permits diffusion of the tetrasaccharide stachyose and of maltodextrins up to maltoheptaose through the outer membrane of E. coli. A comparison of all three glycoporins in regard to their substrate selectivity revealed that both ScrY and RafY have a broad substrate range which includes alpha-galactosides while LamB seems to be restricted to malto-oligosaccharides. It supports growth only on maltodextrins but not, like the others, on raffinose and stachyose.  相似文献   

5.
Multiple Transport Components for Putrescine in Escherichia coli   总被引:7,自引:6,他引:1       下载免费PDF全文
Putrescine uptake was studied in cultures of Escherichia coli K-12 grown in media of high or low osmolarity. When grown in high osmolarity medium, a transport system of low K(m) and low V(max) was found. For cultures grown in a medium of low osmolarity, the kinetics of putrescine uptake was more complex and consistent with the existence of an additional transport system of higher K(m) and V(max). This conclusion is supported by the isolation of mutants in which one or the other system appears to be defective and by the ability of chloramphenicol to block the expression of the second transport system. Both systems appear to prefer putrescine over other compounds, since several basic amino acids and other polyamines competed only weakly for transport. The action of both uptake systems was shown to cause significant displacement of intracellular putrescine. Both systems also are at least partially energy dependent.  相似文献   

6.
1. A logarithmic method is described for the calculation of the transport parameters, K(m) and V(max.)' of a biological system obeying Michaelis-Menten kinetics. 2. This logarithmic method leads to a way of estimating the transport parameters that has not apparently been used previously. It allows the separation of variance due to V(max.) from other variance, and so reduces the fiducial limits that can be placed on an estimation of K(m). 3. The results of studies on the transport of l-histidine and l-monoiodohistidine by rat intestinal sacs in vitro have been used to illustrate the application of the new method. Estimates of the transport parameters have also been made by two alternative procedures. The relative merits of the three methods are discussed.  相似文献   

7.
The purpose of this study was to test the applicability of n-in-one (cocktail) incubations in the determination of intrinsic clearance (Cl(int)) as the slope of the linear portion of the Michaelis-Menten curve (velocity V vs. substrate concentration [S]) where substrate concentrations were low. A rapid, sensitive, and selective liquid chromatography tandem mass spectrometry (LC/MS/MS) method was developed for the analysis of samples produced by single-substrate and n-in-one (seven substrates: entacapone, 17beta-estriol, umbelliferone, 4-methylumbelliferone, tolcapone, hydroxyquinoline, and paracetamol) incubations conducted in 96-well plates with different recombinant UDP-glucuronosyltransferases (UGTs). The Cl(int) values obtained with n-in-one incubations were compared with those obtained in single-compound incubations and with V(max)/K(m) values determined by estimating the enzyme kinetic parameters V(max) and K(m) from the Michaelis-Menten curve. When substrate concentrations were well below their K(m) values, Cl(int) values determined as the slope of the linear part of the Michaelis-Menten fitting correlated well with the values determined as V(max)/K(m) ratios from the Michaelis-Menten curve. The correlation between Cl(int) values determined in single-substrate and n-in-one incubations was high as well. Together, the n-in-one incubations, the determination of Cl(int) values as the slope of the linear part of the Michaelis-Menten fitting, and LC/MS/MS as an analytical method proved to be effective approaches for increasing throughput in the first-phase screening of metabolic properties.  相似文献   

8.
Studies were conducted to determine the role that diffusion may play in the in vivo kinetics of the Escherichia coli periplasmic enzyme, alkaline phosphatase (AP, encoded by the gene pho A). Passive diffusion of solutes, from solution into the periplasm, is thought to occur mainly through porins in the outer membrane. The outer membrane therefore serves as a diffusion barrier separating a population of periplasmic enzymes from bulk substrate. E. coli strains containing a plasmid with the pho A gene linked to the lac promoter were used in this study in order to vary the amount of enzyme per cell. Alkaline phosphatase assays were conducted with intact cells, and the substrate concentration at half-maximum velocity (normally the Km for the enzyme) was determined as a function of enzyme concentration per cell. The results showed that diffusion of substrate to the enzyme caused as much as a 1000-fold change in this parameter, compared to that of purified enzyme. This suggested that diffusion was the rate-limiting step of the enzymatic reaction in these cells. In agreement with this type of reaction, Eadie-Hofstee and Lineweaver-Burk plots were not linear. At their extremes, these plots represented two types of kinetics. At high substrate concentration, equilibrium of substrate between bulk solution and the periplasm was achieved, and the kinetic properties conformed to Michaelis-Menten. At low substrate concentrations, there were a large number of free (unbound) enzymes, and each substrate molecule that entered the periplasm, through the diffusion barrier, resulted in product formation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Glycine betaine is accumulated in cells living in high salt concentrations to balance the osmotic pressure. Glycine sarcosine N-methyltransferase (GSMT) and sarcosine dimethylglycine N-methyltransferase (SDMT) of Ectothiorhodospira halochloris catalyze the threefold methylation of glycine to betaine, with S-adenosylmethionine acting as the methyl group donor. These methyltransferases were expressed in Escherichia coli and purified, and some of their enzymatic properties were characterized. Both enzymes had high substrate specificities and pH optima near the physiological pH. No evidence of cofactors was found. The enzymes showed Michaelis-Menten kinetics for their substrates. The apparent K(m) and V(max) values were determined for all substrates when the other substrate was present in saturating concentrations. Both enzymes were strongly inhibited by the reaction product S-adenosylhomocysteine. Betaine inhibited the methylation reactions only at high concentrations.  相似文献   

10.
V Koshkin  SN Krylov 《PloS one》2012,7(7):e41368
Multidrug resistance driven by ABC membrane transporters is one of the major reasons for treatment failure in human malignancy. Some limited evidence has previously been reported on the cell cycle dependence of ABC transporter expression. However, it has never been demonstrated that the functional activity of these transporters correlates with the cell cycle position. Here, we studied the rate of intrinsic ABC transport in different phases of the cell cycle in cultured MCF-7 breast cancer cells. The rate was characterized in terms of the efflux kinetics from cells loaded with an ABC transporter substrate. As averaging the kinetics over a cell population could lead to errors, we studied kinetics of ABC transport at the single-cell level. We found that the rate of ABC transport in MCF-7 cells could be described by Michaelis-Menten kinetics with two classical parameters, V(max) and K(M). Each of these parameters showed similar unimodal distributions with different positions of maxima for cell subpopulations in the 2c and 4c states. Compared to the 2c cells, the 4c cells exhibited greater V(max) values, indicating a higher activity of transport. They also exhibited a greater V(max)/K(M) ratio, indicating a higher efficiency of transport. Our findings suggest that cell cycle-related modulation of MDR may need to be taken into account when designing chemotherapy regimens which include cytostatic agents.  相似文献   

11.
Clearance by cutaneous metabolism can shield the body from penetration of environmental and therapeutic xenobiotics. Here we report on a physical model to relate Fickian diffusion and concurrent Michaelis-Menten metabolism of drugs in the viable epidermis of human skin. For this purpose, we numerically generated substrate concentration profiles within the metabolizing tissue and the resulting donor-to-receiver substrate fluxes through the tissue for various mass transport and metabolism parameters. To validate the model, permeation and concurrent metabolism of a peptidomimetic compound, L -Ala-4-methoxy-2-naphthylamide (Ala-MNA), across both stripped human skin and HaCaT cell culture sheets were compared to numerical simulations. Parameter estimates for those calculations were extracted from independent experiments. Experimental data and numerical predictions were in excellent agreement. Also, numerical fits and independently validated parameters correlated closely, indicating the principal validity of the physical model. Numerical simulations and theoretical derivations illustrate the kinetic impact of the factors involved, i.e. the diffusion coefficient D, substrate donor concentration C(S,D), substrate partition coefficient P, tissue thickness L and maximum metabolic rate V(max), on drug permeation, with L having the strongest effect. In the steady state, the coefficient 2 alpha, i.e. the dimensionless ratio of the residence time term (L(2)/D) of a substrate in the tissue to the metabolic half-life term (C(S,D)P/2 V(max)), allows to estimate concentration gradients within the tissue and the extent of metabolism. High 2 alpha values represent practically complete metabolic cleavage upon penetration. Epidermis ( approximately 40 microm thick) of stripped human skin and HaCaT sheets ( approximately 10 microm) had 2 alpha values of 43 and 2.7, respectively, indicating that intact Ala-MNA could only permeate HaCaT sheets, but not skin. Independent permeation experiments confirmed this outcome. This physical model may be applicable to other metabolizing tissues as well.  相似文献   

12.
H Killmann  R Benz    V Braun 《The EMBO journal》1993,12(8):3007-3016
The FhuA receptor protein is involved in energy-coupled transport of Fe3+ via ferrichrome through the outer membrane of Escherichia coli. Since no energy source is known in the outer membrane it is assumed that energy is provided through the action of the TonB, ExbB and ExbD proteins, which are anchored to the cytoplasmic membrane. By deleting 34 amino acid residues of a putative cell surface exposed loop, FhuA was converted from a ligand specific transport protein into a TonB independent and nonspecific diffusion channel. The FhuA deletion derivative FhuA delta 322-355 formed stable channels in black lipid membranes, in contrast to wild-type FhuA which did not increase membrane conductance. The single-channel conductance of the FhuA mutant channels was at least three times larger than that of the general diffusion porins of E. coli outer membrane. It is proposed that the basic structure of FhuA in the outer membrane is a channel formed by beta-barrels. Since the loop extending from residue 316 to 356 is part of the active site of FhuA, it probably controls the permeability of the channel. The transport-active conformation of FhuA is mediated by a TonB-induced conformational change in response to the energized cytoplasmic membrane. The ferrichrome transport rate into cells expressing FhuA delta 322-355 increased linearly with increasing substrate concentration (from 0.5 to 20 microM), in contrast to FhuA wild-type cells, which displayed saturation at 5 microM. This implies that in wild-type cells ferrichrome transport through the outer membrane is the rate-limiting step and that TonB, ExbB and ExbD are only required for outer membrane transport.  相似文献   

13.
ZitB is a member of the cation diffusion facilitator (CDF) family that mediates efflux of zinc across the plasma membrane of Escherichia coli. We describe the first kinetic study of the purified and reconstituted ZitB by stopped-flow measurements of transmembrane fluxes of metal ions using a metal-sensitive fluorescent indicator encapsulated in proteoliposomes. Metal ion filling experiments showed that the initial rate of Zn2+ influx was a linear function of the molar ratio of ZitB to lipid and was related to the concentration of Zn2+ or Cd2+ by a hyperbola with a Michaelis-Menten constant (K(m)) of 104.9 +/- 5.4 microm and 90.1 +/- 3.7 microm, respectively. Depletion of proton stalled Cd2+ transport down its diffusion gradient, whereas tetraethylammonium ion substitution for K+ did not affect Cd2+ transport, indicating that Cd2+ transport is coupled to H+ rather than to K+. H+ transport was inferred by the H+ dependence of Cd2+ transport, showing a hyperbolic relationship with a Km of 19.9 nm for H+. Applying H+ diffusion gradients across the membrane caused Cd2+ fluxes both into and out of proteoliposomes against the imposed H(+) gradients. Likewise, applying outwardly oriented membrane electrical potential resulted in Cd2+ efflux, demonstrating the electrogenic effect of ZitB transport. Taken together, these results indicate that ZitB is an antiporter catalyzing the obligatory exchange of Zn2+ or Cd2+ for H+. The exchange stoichiometry of metal ion for proton is likely to be 1:1.  相似文献   

14.
15.
Analysis of the genome sequence of Caulobacter crescentus predicts 67 TonB-dependent outer membrane proteins. To demonstrate that among them are proteins that transport nutrients other than chelated Fe(3+) and vitamin B(12)-the substrates hitherto known to be transported by TonB-dependent transporters-the outer membrane protein profile of cells grown on different substrates was determined by two-dimensional electrophoresis. Maltose induced the synthesis of a hitherto unknown 99.5-kDa protein, designated here as MalA, encoded by the cc2287 genomic locus. MalA mediated growth on maltodextrins and transported [(14)C]maltodextrins from [(14)C]maltose to [(14)C]maltopentaose. [(14)C]maltose transport showed biphasic kinetics, with a fast initial rate and a slower second rate. The initial transport had a K(d) of 0.2 microM, while the second transport had a K(d) of 5 microM. It is proposed that the fast rate reflects binding to MalA and the second rate reflects transport into the cells. Energy depletion of cells by 100 microM carbonyl cyanide 3-chlorophenylhydrazone abolished maltose binding and transport. Deletion of the malA gene diminished maltose transport to 1% of the wild-type malA strain and impaired transport of the larger maltodextrins. The malA mutant was unable to grow on maltodextrins larger than maltotetraose. Deletion of two C. crescentus genes homologous to the exbB exbD genes of Escherichia coli abolished [(14)C]maltodextrin binding and transport and growth on maltodextrins larger than maltotetraose. These mutants also showed impaired growth on Fe(3+)-rhodotorulate as the sole iron source, which provided evidence of energy-coupled transport. Unexpectedly, a deletion mutant of a tonB homolog transported maltose at the wild-type rate and grew on all maltodextrins tested. Since Fe(3+)-rhodotorulate served as an iron source for the tonB mutant, an additional gene encoding a protein with a TonB function is postulated. Permeation of maltose and maltotriose through the outer membrane of the C. crescentus malA mutant was slower than permeation through the outer membrane of an E. coli lamB mutant, which suggests a low porin activity in C. crescentus. The pores of the C. crescentus porins are slightly larger than those of E. coli K-12, since maltotetraose supported growth of the C. crescentus malA mutant but failed to support growth of the E. coli lamB mutant. The data are consistent with the proposal that binding of maltodextrins to MalA requires energy and MalA actively transports maltodextrins with K(d) values 1,000-fold smaller than those for the LamB porin and 100-fold larger than those for the vitamin B(12) and ferric siderophore outer membrane transporters. MalA is the first example of an outer membrane protein for which an ExbB/ExbD-dependent transport of a nutrient other than iron and vitamin B(12) has been demonstrated.  相似文献   

16.
(1)H NMR spectroscopy was used to follow the cleavage of sucrose by invertase. The parameters of the enzyme's kinetics, K(m) and V(max), were directly determined from progress curves at only one concentration of the substrate. For comparison with the classical Michaelis-Menten analysis, the reaction progress was also monitored at various initial concentrations of 3.5 to 41.8mM. Using the Lambert W function the parameters K(m) and V(max) were fitted to obtain the experimental progress curve and resulted in K(m)=28mM and V(max)=13μM/s. The result is almost identical to an initial rate analysis that, however, costs much more time and experimental effort. The effect of product inhibition was also investigated. Furthermore, we analyzed a much more complex reaction, the conversion of farnesyl diphosphate into (+)-germacrene D by the enzyme germacrene D synthase, yielding K(m)=379μM and k(cat)=0.04s(-1). The reaction involves an amphiphilic substrate forming micelles and a water insoluble product; using proper controls, the conversion can well be analyzed by the progress curve approach using the Lambert W function.  相似文献   

17.
Active transport of thiamin (vitamin B(1)) into Escherichia coli occurs through a member of the superfamily of transporters known as ATP-binding cassette (ABC) transporters. Although it was demonstrated that the sulfhydryl-specific modifier N-ethylmaleimide (NEM) inhibited thiamin transport, the exact mechanism of this inhibition is unknown. Therefore, we have carried out a kinetic analysis of thiamin transport to determine the mechanism of inhibition by NEM. Thiamin transport in vivo exhibits Michaelis-Menten kinetics with K(M)=15 nM and V(max)=46 U mg(-1). Treatment of intact E. coli KG33 with saturating NEM exhibited apparent noncompetitive inhibition, decreasing V(max) by approximately 50% without effecting K(M) or the apparent first-order rate constant (k(obsd)). Apparent noncompetitive inhibition is consistent with an irreversible covalent modification of a cysteine(s) that is critical for the transport process. A primary amino acid analysis of the subunits of the thiamin permease combined with our kinetic analysis suggests that inhibition of thiamin transport by NEM is different from other ABC transporters and occurs at the level of protein-protein interactions between the membrane-bound carrier protein and the ATPase subunit.  相似文献   

18.
LamB, an outer membrane protein of Escherichia coli, is a component of the maltose-maltooligosaccharide transport system. We used p-nitrophenyl-alpha-D-maltohexaoside, a chromogenic analog of maltohexaose, and a periplasmic amylase that hydrolyzes this compound to study the LamB-mediated diffusion of p-nitrophenyl-alpha-D-maltohexaoside into the periplasm. Using this approach, we were able to characterize LamB in vivo as a saturable channel for maltooligosaccharides. Permeation through LamB follows Michaelis-Menten kinetics, with a Km of 0.13 mM and a Vmax of 3.3 nmol/min/10(9) cells. Previous studies suggested that maltose-binding protein increases the rate of maltooligosaccharide diffusion through LamB. We show here that, at least in strains that are unable to transport maltooligosaccharides into the cytoplasm, maltose-binding protein does not influence the rate of substrate diffusion. The periplasmic amylase had been previously described as being of the alpha-type. We have now purified this protein and analyzed its mode of action using chromogenic maltooligosaccharides of varying length. Analysis of the hydrolytic products revealed that the enzyme recognizes its substrate from the nonreducing that the enzyme recognizes its substrate from the nonreducing end and preferentially liberates maltohexaose, in contrast to the behavior of classical alpha-amylases that are endohydrolases. Using p-nitrophenyl-alpha-D-maltohexaoside as a substrate, we determined a Km of 3 microM and a Vmax of 0.14 mumol/min/mg of protein.  相似文献   

19.
The transport pathways for dibasic amino acids were investigated in brush border membrane vesicles (BBMV) from the anterior-middle (AM) and posterior (P) regions of Bombyx mori midgut. In the absence of K(+), a low-affinity saturable transport of arginine in both AM- and P-BBMV (K(m) 1.01 mM, V(max) 4.07 nmol/7s/mg protein and K(m) 1.38 mM, V(max) 2.26 nmol/7s/mg protein, respectively) was detected. Arginine influx was dependent on the membrane electrical potential (Deltapsi) and increased raising the alkalinity of the external medium from pH 7.2 to 10.6. Competition experiments indicated the following order of substrate affinity: arginine, homoarginine, N(G)-monomethylarginine, N(G)-nitroarginine>lysine>ornithine>cysteine>methionine. Leucine, valine and BCH (2-amino-2-norbornanecarboxylic acid) did not inhibit arginine influx. In the presence of external K(+), the influx of arginine as a function of arginine concentration fitted to a complex saturation kinetics compatible with both a low-affinity and a high-affinity component. The latter (K(m) 0.035 mM, V(max) 2.54 nmol/7s/mg protein) was fully characterized. The influx rate had an optimum at pH 8.8, was strongly affected by Deltapsi and was homogeneous along the midgut. The substrate affinity rank was: homoarginine>arginine, N(G)-monomethylarginine>cysteine, lysine>N(G)-nitroarginine>ornithine>methionine. Leucine and amino acids with a hydrophobic side chain were not accepted. This system is also operative in the absence of potassium, with the same order of specificity but a very low activity. Lysine influx is mediated by two more transport systems, the leucine uniport and the K(+)/leucine symport specific for amino acids with a hydrophobic side chain that recognizes lysine at extravesicular pH values (pH(out)) exceeding 9. Both the uniport and the symport differ from the cationic transport systems so far identified in mammals because they are unaffected by N-ethylmaleimide, have no significant affinity for neutral amino acids in the presence of the cation and show a striking difference in their optimum pH.  相似文献   

20.
We have recently demonstrated that a cell-surface dicarboxylate-binding protein (DBP) is involved in the outer membrane dicarboxylate transport system in Escherichia coli K12. The present report deals with our findings relating to the mode of action of this protein, and the identity and properties of the outer membrane integral protein which is involved in the translocation of dicarboxylic acids across the hydrophobic regions of the outer membrane. By the use of a nonpenetrating succinate analogue, aspartate-dextran, and through reconstitution studies with purified DBP, the cell-surface DBP is found to play an important role in succinate influx but not efflux. Transport studies with major outer membrane protein mutants indicate that the matrix protein (also referred to as protein I or porin) is the only outer membrane integral protein actively involved in the outer membrane dicarboxylate transport system. In the absence of a functional DBP, porin translocates succinate in a relatively less efficient and nonspecific manner. A tentative working model is proposed for this transport system. In this model, the cell-surface DBP is depicted as the substrate recognition component of the otherwise nonspecific porin channel. Together, this "DBP-porin channel complex" forms an efficient, specific transport channel for dicarboxylic acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号