首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用细胞内微电极和双微电极电压箝制术观察缺血对绵羊心室浦肯野纤维跨膜电位和起搏离子流(If)的影响。结果:模拟缺血液灌流30min,浦肯野纤维最大舒张电位(MDP)、动作电位幅度(APA)明显减少;动作电位时程APD50,APD90明显缩短(n=15P<0.01);起搏离子流(If),幅度降低,激活曲线向超极化方向移位,最大激活时间及半最大激活时间延长(n=13P<0.001)。上述结果表明:心肌缺血时,心室浦肯野细胞跨膜电位及正常起搏活动不是增强,而是减弱。提示缺血性室性心律失常不是由于正常心室自律活动异常增强引起  相似文献   

2.
Two levels of resting potential in cardiac purkinje fibers   总被引:14,自引:8,他引:6       下载免费PDF全文
In an appropriate ionic environment, the resting potential of canine cardiac purkinje fibers may have either of two value. By changing the external K concentration, [K](0), in small steps, it was shown that, in the low (1 mM) Cl, Na-containing solutions used in this study, the two levels of resting potential could be obtained only within a narrow range of [K](0) values; that range was usually found between 1 and 4 mM. Within the critical [K](0) range the resting potential could be shifted from either level to the other by the application of small current pulses. It was shown that under these conditions the steady-state current- voltage relationship was “N-shaped,” and that a region of both negative slope, and negative chord conductance lay between the two stable zero-current potentials. The negative chord conductance was largely due to inward sodium current, only part of which was sensitive to tetrodotoxin (TTX). Under appropriate conditions, the negative chord conductance could be abolished by several experimental interventions and the membrane potential thereby shifted from the lower to the higher resting level: those interventions which were effective by presumably diminishing the steady-state inward current included reducing the external sodium concentration, adding TTX, or adding lidocaine; those which presumably increased the steady-state outward current included small increases in [K](0), brief depolarizations to around -20 mV, or the addition of acetylcholine chloride.  相似文献   

3.
“缺血”引起的绵羊浦肯野纤维跨膜电位与离子流变化   总被引:11,自引:2,他引:9  
张照 《生理学报》1992,44(5):487-495
以低氧、高钾、低pH、无能量供应的模拟缺血溶液灌流离体绵羊心脏浦肯野纤维,观察“缺血”对心肌跨膜电位和离子流的影响。实验共24例。跨膜电位的变化过程如下:模拟缺血液灌流后2-3min,首先出现最大舒张电位(MDP)轻度除极,4期舒张除极速率减慢,随后动作电位时程(APD)缩短(n=13)或先缩短、后延长、再缩短的变化(n=11),平台逐渐消失,最后MDP进一步除极,动作电位波幅(APA)减小,兴奋性逐渐降低,以致不能引出动作电位(AP)。其中6例即使MDP高于-60mV时AP已不能引出。以上变化过程历时长短不等,在不同标本为30-160min。跨膜离子流方面,当APD缩短时,在所有膜电位水平即时外向电流都明显增加。稳态电流-电压关系曲线由正常的S形变成直线,内向整流现象消失。慢内向离子流由“缺血”前的6.74±4.48nA减少到0.86±1.39nA,(M±SD,P<0.01,n=8),在多数测试电位水平都有显著减少,其电流-电压关系曲线向较负电位方向移位。以上结果提示:心肌“缺血”时浦肯野细胞起搏功能受抑制,细胞内大量K~+外流,Ca~(2+)内流减少,心肌细胞除极,以上多种变化可能为心肌缺血时心律失常发生的原因。  相似文献   

4.
Propagated action potentials can be obtained in canine cardiac Purkinje fibers exposed to Na-free solutions containing no inorganic cation other than Ca and K. Essentially similar action potentials are obtained if Na is replaced by tetraethylammonium (TEA), tetramethylammonium (TMA), or choline. In a solution containing 128 mM TEA and 16.2 mM Ca the characteristics of these electrical responses were: maximum diastolic potential, -59 ± 3.3 mV; overshoot, 20 ± 6.8 mV; maximum upstroke velocity, 3.7 ± 2.3 V/s; conduction velocity, 0.1 m/s; and action potential duration, 360 ± 45 ms. The magnitude of the overshoot varied with log Cao with a slope of about 30 mV/10-fold concentration change. The upstroke velocity was an approximately linear function of Cao. The active response was greatly diminished or abolished by Mn and D-600 but was unaffected by tetrodotoxin. These Ca-dependent responses appeared in a region of transmembrane potential (about -50 mV) at which the rapid Na-dependent upstroke is abolished even when Na is present.  相似文献   

5.
The effects of phlorizin on the membrane potential changes induced by cevadine were compared in the presence and absence of external chloride anions in frog skeletal muscle. The action of the drug on 24Na-efflux was also studied in chloride-free medium. In accordance with previous results, it was found that phlorizin reduced the frequency of the membrane potential oscillation (1 mmol/l) or fully inhibited the rhythmic activity (2 mmol/l) in the presence of chloride anions. Replacing the total chloride content of bathing fluid with non-penetrating anions (glutamate, isethionate or sulphate) the inhibitory action of phlorizin on the membrane potential oscillation failed to appear while it reappeared rapidly if the chloride ions were partially restored in the incubating medium. The membrane potential changes evoked by changing the chloride concentration of Ringer solution at constant [K]0 were more expressed in the presence of phlorizin. The action of phlorizin on 24Na-transport proved to be a chloride-independent phenomenon. This finding indicates that the inhibitory effect of phlorizin on Na-transport processes may not be the reason of its blocking action on membrane potential oscillation. Furthermore, it suggests that failure of the drug to inhibit the membrane potential oscillation in the absence of chloride anions may not be accounted for the lack of phlorizin-binding under those circumstances. It is therefore assumed that the increase in chloride conductance may play a causal role in the inhibitory effect of phlorizin on membrane potential oscillation.  相似文献   

6.
The structure of the spike train coding the nociceptive signal was investigated by a cross-correlation method. The action of nociceptive solutions of potassium chloride (125–1000 mM) on the saphenous nerve caused excitation of both myelinated and nonmyelinated fibers. The density of the spike train increased during the action of the stimulus up to a threshold sufficient for the appearance of nociceptive reflexes. The maximum of these reflexes coincided with the appearance of synchronous pulsations of discharges in the group of unmyelinated fibers. The nociceptive signal evoked by direct action of highly concentrated potassium chloride solutions on the nerve is thus coded by a high density of the spike train generated by the nerve fibers. Synchronous pulsations may be present in the spike train under these circumstances.Research Institute of Applied Mathematics and Cybernetics, N. I. Lobachevski Gor'kii State University. Translated from Neirofiziologiya, Vol. 9, No. 6, pp. 598–605, November–December, 1977.  相似文献   

7.
Summary Using the patch clamp technique we have identified a small conductance ion channel that typically occurs in clusters on the apical plasma membrane of pancreatic duct cells. The cell-attached current/voltage (I/V) relationship was linear and gave a single channel conductance of about 4 pS. Since the reversal potential was close to the resting membrane potential of the cell, and unaffected by changing from Na+-rich to K+-rich pipette solutions, the channel selects for anions over cations in cell-attached patches. The open state probability was not voltagedependent. Adding 25mm-bicarbonate to the bath solution caused a slight outward rectification of theI/V relationship, but otherwise, the characteristics of the channel were unaffected. In excised, inside-out, patches theI/V relationship was linear and gave a single channel conductance of about 4 pS. A threefold chloride concentration gradient across the patch (sulphate replacement) shifted the single channel current reversal potential by –26 mV, indicating that the channel is chloride selective. Stimulation of duct cells with secretin (10nm), dibutyryl cyclic AMP (1mm) and forskolin (1 m) increased channel open state probability and also increased the number of channels, and/or caused disaggregation of channel clusters, in the apical plasma membrane. Coupling of this channel to a chloride/bicarbonate exchanger would provide a mechanism for electrogenic bicarbonate secretion by pancreatic duct cells.  相似文献   

8.
An indirect photometric ion chromatographic method for the simultaneous determination of chloride, nitrate and sulfate ions was developed and applied to the determination of anions, mainly nitrate, in the alga Haematococcus pluvialis culture media. Using phthalic acid/sodium tetraborate aqueous solution as the mobile phase, anions can be detected indirectly by a UV detector. The calibration curves for these anions gave good linearity from 1 to 1000 g ml–1.  相似文献   

9.
迷走神经对家兔在体心脏心室肌细胞跨膜电位的影响   总被引:4,自引:0,他引:4  
本研究观察了电刺激迷走神经对家兔在体心脏心室肌细胞跨膜电位的作用及钾通道阻滞剂氯化四乙基铵对这一作用的影响。结果表明,在自然心率条件下,迷走神经刺激可使静息电位(RP)、动作电位振幅(APA)和0相最大上升速率(dv/dt)_(max)增加,动作电位时程(APD)缩短。冠脉注射氯化四乙基铵使心室肌细胞复极过程明显延长,迷走神经刺激不再引起 RP、APA 增大,动作电位时程不再缩短,(dv/dt)_(max)反而减小。这些结果提示,迷走神经刺激对正常心室肌细胞跨膜电位的影响可能是通过外向 K~ 流增加引起的。  相似文献   

10.
We have studied the effects of the potassium-blocking agent 4-aminopyridine (4-AP) on the action potential and membrane currents of the sheep cardiac Purkinje fiber. 4-AP slowed the rate of phase 1 repolarization and shifted the plateau of the action potential to less negative potentials. In the presence of 4-AP, the substitution of sodium methylsulfate or methanesulfonate for the NaCl of Tyrode's solution further slowed the rate of phase 1 repolarization, even though chloride replacement has no effect on the untreated preparation. In voltage clamp experiments, 4-AP rapidly and reversibly reduced the early peak of outward current that is seen when the Purkinje fiber membrane is voltage-clamped to potentials positive to -20 mV. In addition, 4-AP reduced the steady outward current seen at the end of clamp steps positive to -40 mV. 4-AP did not appear to change the slow inward current observed over the range of -60 to -40 mV, nor did it greatly change the current tails that have been used as a measure of the slow inward conductance at more positive potentials. 4-AP did not block the inward rectifying potassium currents, IK1 and IK2. A phasic outward current component that was insensitive to 4-AP was reduced by chloride replacement. We conclude that the early outward current has two components: a chloride-sensitive component plus a 4-AP-sensitive component. Since a portion of the steady-state current was sensitive to 4-AP, the early outward current either does not fully inactivate or 4-AP blocks a component of time-independent background current.  相似文献   

11.
Intracellular measurements of the resting potential were made in fibers of the frog sartorius muscle in solutions of varying salt composition and concentration to determine the effects of low ionic strength extracellular solutions on the resting potential. Changes in the glass microelectrode tip potential in low ionic strength solutions were minimized by adding ThCl4 to the extracellular solution. These experimental conditions allowed measurement of the relationship of the resting potential to the concentration of the salt in the extracellular solution by replacing it with the nonionic substance, sucrose. Substitution of sucrose for the extracellular NaCl produced a stable depolarization which was logarithmically related to the NaCl concentration. Substitution of sucrose for choline Cl, instead of NaCl, produced the same degree of depolarization. When Na salts of anions less permeable than chloride (Br, I, NO3) were used, the resting potentials in 116 mM solutions were close to those with chloride (±3mv). The depolarizations produced in low ionic strength solutions of these salts were significantly less than those with chloride.  相似文献   

12.
The values of membrane action potentials and maximum depolarization rates of single muscle fibers in normal Tyrode solution and in low sodium solutions containing as little as 20 per cent of the sodium chloride were measured with intracellular microelectrodes. Under these conditions the membrane potential remains unchanged up to 36 per cent of [Na+]out concentration, whereas the overshoot of the action potential varies linearly with the logarithm of the external sodium concentration. The maximum depolarization rate is a linear function of the external sodium concentration. The results obtained support the ionic theory for sodium and the independence principle for sodium current related to the external sodium concentration.  相似文献   

13.
Summary Injection of depolarizing current into vegetative cells of the water moldBlastocladiella emersonii elicits a regenerative response that has the electrical characteristics of an action potential. Once they have been taken past a threshold of about –40 mV, cells abruptly depolarize to +20 mV or above; after an interval ranging from several hundred milliseconds to a few seconds, the cells spontaneously return to their resting potential near –100 mV. When the action potential was analyzed with voltage-clamp recording, it proved to be biphasic. The initial phase reflects an influx of calcium ions through voltage-sensitive channels that also carry Sr2+ ions. The delayed, and more extended, phase of inward current results from the efflux of chloride and other anions. The anion channels are broadly selective, passing chloride, nitrate, phosphate, acetate, succinate and even PIPES. The anion channels open in response to the entry of calcium ions, but do not recognize Sr2+. Calcium channels, anion channels and calcium-specific receptors that link the two channels appear to form an ensemble whose physiological function is not known. Action potentials rarely occur spontaneously but can be elicited by osmotic downshock, suggesting that the ion channels may be involved in the regulation of turgor.  相似文献   

14.
It is well known that cardiac action potentials are shortened by increasing the external calcium concentration (Cao). The shortening is puzzling since Ca ions are thought to carry inward current during the plateau. We therefore studied the effects of Cao on action potentials and membrane currents in short Purkinje fiber preparations. Two factors favor the earlier repolarization. First, calcium-rich solutions generally raise the plateau voltage; in turn, the higher plateau level accelerates time- and voltage-dependent current changes which trigger repolarization. Increases in plateau height imposed by depolarizing current consistently produced shortening of the action potential. The second factor in the action of Ca ions involves iK1, the background K current (inward rectifier). Raising Cao enhances iK1 and thus favors faster repolarization. The Ca-sensitive current change was identified as an increase in iK1 by virtue of its dependence on membrane potential and Ko. A possible third factor was considered and ruled out: unlike epinephrine, calcium-rich solutions do not enhance slow outward plateau current, ikappa. These results are surprising in showing that calcium ions and epinephrine act quite differently on repolarizing currents, even though they share similar effects on the height and duration of the action potential.  相似文献   

15.
The intracellular Na ion activity (aiNa) and the contractile tension (T) of sheep cardiac Purkinje fibers were simultaneously measured employing recessed-tip Na+-selective glass microelectrodes and a mechano-electric transducer. The aiNa of 6.4 +/- 1.6 mM (mean +/- SD, n = 56) was obtained in fibers perfused with normal Tyrode's solution. The changes in aiNa and T were measured during and after the exposure of fibers to a cardiac glycoside, dihydro-ouabain (DHO) in concentrations between 5 X 10(-8) M and 10(-5) M. The exposure time to DHO was 15 min. Both aiNa and T did not change in fibers exposed to 5 X 10(-8) M DHO, and the threshold concentration for the effect of DHO appeared to be around 10(-7) M. In DHO concentrations greater than the threshold, the increases in aiNa and T strongly correlated during the onset of DHO effects. The recoveries of aiNa and T were variable and slow, being dependent on the DHO concentration. In those fibers which recovered from the effects of DHO, the time-course of aiNa recovery was similar to that of T recovery. In fibers exposed to DHO of 5 X 10(-6) M or greater, the apparent toxic effects were observed in both action potential and contraction after an initial increase in T. The fibers manifesting the apparent toxic effects has a aiNa of approximately 30 mM or greater. The results of this study indicate that the increase in aiNa is associated with the positive inotropic action of the cardiac glycoside.  相似文献   

16.
Lidocaine block of cardiac sodium channels   总被引:27,自引:7,他引:20       下载免费PDF全文
Lidocaine block of cardiac sodium channels was studied in voltage-clamped rabbit purkinje fibers at drug concentrations ranging from 1 mM down to effective antiarrhythmic doses (5-20 μM). Dose-response curves indicated that lidocaine blocks the channel by binding one-to-one, with a voltage-dependent K(d). The half-blocking concentration varied from more than 300 μM, at a negative holding potential where inactivation was completely removed, to approximately 10 μM, at a depolarized holding potential where inactivation was nearly complete. Lidocaine block showed prominent use dependence with trains of depolarizing pulses from a negative holding potential. During the interval between pulses, repriming of I (Na) displayed two exponential components, a normally recovering component (τless than 0.2 s), and a lidocaine-induced, slowly recovering fraction (τ approximately 1-2 s at pH 7.0). Raising the lidocaine concentration magnified the slowly recovering fraction without changing its time course; after a long depolarization, this fraction was one-half at approximately 10 μM lidocaine, just as expected if it corresponded to drug-bound, inactivated channels. At less than or equal to 20 μM lidocaine, the slowly recovering fraction grew exponentially to a steady level as the preceding depolarization was prolonged; the time course was the same for strong or weak depolarizations, that is, with or without significant activation of I(Na). This argues that use dependence at therapeutic levels reflects block of inactivated channels, rather than block of open channels. Overall, these results provide direct evidence for the “modulated-receptor hypothesis” of Hille (1977) and Hondeghem and Katzung (1977). Unlike tetrodotoxin, lidocaine shows similar interactions with Na channels of heart, nerve, and skeletal muscle.  相似文献   

17.
Isolated auricles or ventricles from the frog continue to contract, either spontaneously or when stimulated, for from 2 to 4 hours after they are placed in isotonic sucrose solution. After the muscles stop contracting in sucrose solution, contractility is partially restored when the muscles are placed in chloride Ringer's. However, contractility is usually not restored if the muscles are placed in sulfate Ringer's. Ventricles soaked in sucrose solution at 4–7°C continue to contract for 12 to 24 hours and during the first few hours in sucrose solution the contractions often are enhanced. Several types of experiment indicate that the sucrose solution does replace the Ringer's in the extracellular space. Auricles and ventricles also continue to conduct action potentials, with an overshoot, for from 30 to 360 minutes after being placed in sucrose solution. Muscles soaked in sucrose until they are inexcitable rapidly recover in chloride Ringer's but often fail to recover in sulfate Ringer's. The results are discussed in relation to theories about the generation of the action potential in cardiac muscle, and the role of the extracellular fluid in contraction.  相似文献   

18.
An Arizona watershed converted from chaparral to grass, released high concentrations of nitrate to stream water. The nitrate originated from the rooting zone of the decomposing shrubs. High nitrate concentrations (44–373 ppm) were found in soil solutions from 1.5-, 3.0-, and 4.6-m depths on the converted watershed as compared with low nitrate concentrations (0.2–6.2 ppm) found in an adjacent undisturbed area. Soil solution nitrate concentrations at the 0.3-m depth were generally low, especially in the untreated area. High nitrate concentrations were balanced mainly by relative decreases in bicarbonate anions in the soil solutions and in the stream water. Multiple stepwise regression analyses showed improvement in the regression of bicarbonate on nitrate when chloride and sulfate anions were entered as variables.  相似文献   

19.
The aim of this study was to characterize the electropharmacological effects of prostacyclin (PGI2) in human atrial fibers and cardiomyocytes. Atrial tissues obtained from the hearts of 28 patients undergoing corrective cardiac surgery were used. Transmembrane action potentials were recorded using a conventional microelectrode technique, and twitch force by a transducer. Effects of PGI2 (1 nM–10 µM) on action potential characteristics and contraction of atrial fibers were evaluated in normal [K]o (4 mM) and high [K]o (27 mM) in the absence and presence of cardiotonic agents. In addition, atrial and ventricular myocytes were isolated enzymatically from atrial tissues and hearts of 4 patients undergoing cardiac transplant. The effects of PGI2 on Na- and Ca-dependent inward currents (INa and ICa) of cardiomyocytes were tested. In 9 human atrial fibers showing fast-response action potentials (mean dV/dtmax = 101 ± 15 Vs–1) in 4 mM [K]o, PGI2 did not influence dV/dtmax of phase 0 depolarization even at 1 µM. However, at a concentration as low as 10 nM, PGI2 depressed spontaneous rhythms or slow-response action potentials in high-K-depolarized fibers. PGI2 also depressed delayed afterdepolarizations and aftercontractions induced by cardiotonic agents. In isolated cardiomyocytes, PGI2 reduced ICa but not INa. The present findings show that, in human atrial fibers and cardiomyocytes, PGI2 induces greater depressant effects on the slow-response action potential, ICa and triggered activity than on the fast-response action potential. It is suggested that PGI2 may act through a selective reduction of transmembrane Ca influx.  相似文献   

20.
The effects of a chloride-poor medium (methanesulfonate substituted) and a chloride transport inhibitor (SITS) on the outward delayed current and the tonic tension were studied on frog atrial trabeculae under voltage-clamp conditions. The outward delayed current decreased in low-chloride medium (10.5 mmol/l) or in the presence of SITS (2 mmol/l). The tonic tension increased in chloride-poor solution and decreased following SITS. The replacement of chloride by methanesulfonate enhanced the transient increase of tonic tension induced by low external sodium concentration while SITS reduced it. In the same conditions, the effect of the chloride-poor medium was abolished in the presence of SITS. The results showing an increase in Na-Ca exchange in low-chloride medium and a decrease by SITS are discussed assuming that changes in the inner negative charge density influenced the Na-Ca exchange mechanism; the influence of pHi variation are also considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号