首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 547 毫秒
1.
The interaction between ghrelin and bombesin or amylin administered intraperitoneally on food intake and brain neuronal activity was assessed by Fos-like immunoreactivity (FLI) in nonfasted rats. Ghrelin (13 microg/kg ip) increased food intake compared with the vehicle group when measured at 30 min (g/kg: 3.66 +/- 0.80 vs. 1.68 +/- 0.42, P < 0.0087). Bombesin (8 microg/kg) injected intraperitoneally with ghrelin (13 microg/kg) blocked the orexigenic effect of ghrelin (1.18 +/- 0.41 g/kg, P < 0.0002). Bombesin alone (4 and 8 microg/kg ip) exerted a dose-related nonsignificant reduction of food intake (g/kg: 1.08 +/- 0.44, P > 0.45 and 0.55 +/- 0.34, P > 0.16, respectively). By contrast, ghrelin-induced stimulation of food intake (g/kg: 3.96 +/- 0.56 g/kg vs. vehicle 0.82 +/- 0.59, P < 0.004) was not altered by amylin (1 and 5 microg/kg ip) (g/kg: 4.37 +/- 1.12, P > 0.69, and 3.01 +/- 0.78, respectively, P > 0.37). Ghrelin increased the number of FLI-positive neurons/section in the arcuate nucleus (ARC) compared with vehicle (median: 42 vs. 19, P < 0.008). Bombesin alone (4 and 8 microg/kg ip) did not induce FLI neurons in the paraventricular nucleus of the hypothalamus (PVN) and coadministered with ghrelin did not alter ghrelin-induced FLI in the ARC. However, bombesin (8 microg/kg) with ghrelin significantly increased neuronal activity in the PVN approximately threefold compared with vehicle and approximately 1.5-fold compared with the ghrelin group. Bombesin (8 microg/kg) with ghrelin injected intraperitoneally induced Fos expression in 22.4 +/- 0.8% of CRF-immunoreactive neurons in the PVN. These results suggest that peripheral bombesin, unlike amylin, inhibits peripheral ghrelin induced food intake and enhances activation of CRF neurons in the PVN.  相似文献   

2.
Studies showed that the metabolic unlike the neuroendocrine effects of ghrelin could be abrogated by co-administered unacylated ghrelin. The aim was to investigate the interaction between ghrelin and desacyl ghrelin administered intraperitoneally on food intake and neuronal activity (c-Fos) in the arcuate nucleus in non-fasted rats. Ghrelin (13 μg/kg) significantly increased food intake within the first 30 min post-injection. Desacyl ghrelin at 64 and 127 μg/kg injected simultaneously with ghrelin abolished the stimulatory effect of ghrelin on food intake. Desacyl ghrelin alone at both doses did not alter food intake. Both doses of desacyl ghrelin injected separately in the light phase had no effects on food intake when rats were fasted for 12 h. Ghrelin and desacyl ghrelin (64 μg/kg) injected alone increased the number of Fos positive neurons in the arcuate nucleus compared to vehicle. The effect on neuronal activity induced by ghrelin was significantly reduced when injected simultaneously with desacyl ghrelin. Double labeling revealed that nesfatin-1 immunoreactive neurons in the arcuate nucleus are activated by simultaneous injection of ghrelin and desacyl ghrelin. These results suggest that desacyl ghrelin suppresses ghrelin-induced food intake by curbing ghrelin-induced increased neuronal activity in the arcuate nucleus and recruiting nesfatin-1 immunopositive neurons.  相似文献   

3.
Ghrelin, a circulating growth-hormone releasing peptide derived from stomach, stimulates food intake through neuropeptide Y (NPY) neurons of the arcuate nucleus in the hypothalamus (ARC). We examined the effect of ghrelin microinjected into the ARC and the influence of intracerebroventricular (i.c.v.) pretreatment with a GHRH or NPY receptor antagonist on ghrelin-induced food intake in free-feeding male rats. Ghrelin (0.1-1 microg) stimulated food intake in a dose-dependent manner, and this effect was reduced by 55-60% by the Y(5) NPY receptor antagonist (10 microg i.c.v.), but not by the GHRH receptor antagonist MZ-4-71 (10 microg i.c.v.). We also evaluated the effects of passive ghrelin immunoneutralization by the microinjection of anti-ghrelin immunoglobulins (IgGs) intracerebroventricularly or directly into the ARC on food intake in free-feeding and fasted male rats. i.c.v. administration of anti-ghrelin IgGs decreased cumulative food intake over 24 h, whereas microinfusion of anti-ghrelin IgGs into the ARC induced only a short-lived (2 and 6 h) effect. Collectively, these data would indicate that centrally derived ghrelin has a major role in the control of food intake in rats and, in this context, blood-born ghrelin would be effective only in relation to its ability to reach the ARC, which is devoid of blood-brain barrier.  相似文献   

4.
Animals living in temperate climates with predictable seasonal changes in food availability may use seasonal information to engage different metabolic strategies. Siberian hamsters decrease costs of thermoregulation during winter by reducing food intake and body mass in response to decreasing or short-day lengths (SD). These experiments examined whether SD reduction in food intake in hamsters is driven, at least in part, by altered behavioral responses to ghrelin, a gut-derived orexigenic peptide which induces food intake via NPY-dependent mechanisms. Relative to hamsters housed in long-day (LD) photoperiods, SD hamsters consumed less food in response to i.p. treatment with ghrelin across a range of doses from 0.03 to 3 mg/kg. To determine whether changes in photoperiod alter behavioral responses to ghrelin-induced activation of NPY neurons, c-Fos and NPY expression were quantified in the arcuate nucleus (ARC) via double-label fluorescent immunocytochemistry following i.p. treatment with 0.3 mg/kg ghrelin or saline. Ghrelin induced c-Fos immunoreactivity (-ir) in a greater proportion of NPY-ir neurons of LD relative to SD hamsters. In addition, following ghrelin treatment, a greater proportion of ARC c-Fos-ir neurons were identifiable as NPY-ir in LD relative to SD hamsters. Changes in day length markedly alter the behavioral response to ghrelin. The data also identify photoperiod-induced changes in the ability of ghrelin to activate ARC NPY neurons as a possible mechanism by which changes in day length alter food intake.  相似文献   

5.
Ghrelin is a stomach-derived hormone that regulates food intake and neuroendocrine function by acting on its receptor, GHSR (Growth Hormone Secretagogue Receptor). Recent evidence indicates that a key function of ghrelin is to signal stress to the brain. It has been suggested that one of the potential stress-related ghrelin targets is the CRF (Corticotropin-Releasing Factor)-producing neurons of the hypothalamic paraventricular nucleus, which secrete the CRF neuropeptide into the median eminence and activate the hypothalamic-pituitary-adrenal axis. However, the neural circuits that mediate the ghrelin-induced activation of this neuroendocrine axis are mostly uncharacterized. In the current study, we characterized in vivo the mechanism by which ghrelin activates the hypophysiotropic CRF neurons in mice. We found that peripheral or intra-cerebro-ventricular administration of ghrelin strongly activates c-fos--a marker of cellular activation--in CRF-producing neurons. Also, ghrelin activates CRF gene expression in the paraventricular nucleus of the hypothalamus and the hypothalamic-pituitary-adrenal axis at peripheral level. Ghrelin administration directly into the paraventricular nucleus of the hypothalamus also induces c-fos within the CRF-producing neurons and the hypothalamic-pituitary-adrenal axis, without any significant effect on the food intake. Interestingly, dual-label immunohistochemical analysis and ghrelin binding studies failed to show GHSR expression in CRF neurons. Thus, we conclude that ghrelin activates hypophysiotropic CRF neurons, albeit indirectly.  相似文献   

6.
Previous studies indicated that amylin contributes to the anorectic effects of cholecystokinin (CCK) and bombesin (BBS), possibly by enhancing the release of pancreatic amylin or by modulating their anorectic actions within the central nervous system (CNS). To elucidate the interaction between amylin and CCK or BBS, respectively, we investigated the influence of an IP injection of CCK or BBS on feeding in amylin-deficient mice (IAPP(-/-)). The anorectic effects of CCK and BBS were nearly abolished in IAPP(-/-) mice compared to wildtype (WT) mice (e.g. 20 microg/kg CCK, 1-h food intake: WT/NaCl 0.53 +/- 0.03 g; WT/CCK 0.16 +/- 0.03 g (P < 0.001); IAPP(-/-)/NaCl 0.49 +/- 0.05 g; IAPP(-/-)/CCK 0.39 +/- 0.04 g). Acute amylin replacement restored the anorectic effect of CCK in IAPP(-/-) mice.To find out whether CCK or BBS enhance the feeding-induced release of pancreatic amylin, we injected rats with CCK-8 (0.5-50 microg/kg) or BBS (5 microg/kg) and measured plasma amylin levels after injections. Neither CCK nor BBS increased the plasma amylin level in rats. We suggest that the mediation of the anorectic effects of CCK and BBS by amylin is not dependent on a CCK- or BBS-induced release of pancreatic amylin, but may rather be due to a modulation of their effects by amylin within the CNS.  相似文献   

7.
Apolipoprotein AIV (apo AIV) and cholecystokinin (CCK) are peptides that act both peripherally and centrally to reduce food intake by decreasing meal size. The present study examined the effects of intraperitoneally administered bolus doses of recombinant apo AIV, CCK-8, and a combination of subthreshold doses of apo AIV and CCK on 4-h food intake in rats that were fasted overnight. Apo AIV at 100 microg/kg reduced food intake significantly relative to the saline control for 1 h, as did doses of CCK-8 at or above 0.125 microg/kg. Doses of apo AIV (50 microg/kg) or CCK (0.06 microg/kg) alone had no effect on food intake. However, when these subthreshold doses of apo AIV and CCK were administered together, the combination produced a significant inhibition of food intake relative to saline controls (P < 0.001), and the duration of the effect was longer than that caused by the administration of either apo AIV or CCK alone. The satiation effect produced by CCK-8 + apo AIV was attenuated by lorglumide, a CCK1 receptor antagonist. We conclude that, whereas the intraperitoneal administration of doses of either recombinant apo AIV or CCK at or above threshold levels reduces food intake, the coadministration of subthreshold doses of the two peptides is highly satiating and works via CCK1 receptor.  相似文献   

8.

Background

Ghrelin and obestatin are two gut-derived peptides originating from the same ghrelin/obestatin prepropeptide gene (GHRL). While ghrelin stimulates growth hormone (GH) secretion and food intake and inhibits γ-aminobutyric-acid synaptic transmission onto GHRH (Growth Hormone Releasing Hormone) neurons, obestatin blocks these effects. In Humans, GHRL gene polymorphisms have been associated with pathologies linked to an unbalanced energy homeostasis. We hypothesized that one polymorphism located in the obestatin sequence (Q to L substitution in position 90 of the ghrelin/obestatin prepropeptide, rs4684677) may impact on the function of obestatin. In the present study, we tested the activity of native and Q90L obestatin to modulate ghrelin-induced food intake, GH secretion, cFos activity in GHRH and Neuropeptide Y (NPY) neurons and γ-aminobutyric-acid activity onto GHRH neurons.

Methodology/Principal findings

Food intake, GH secretion and electrophysiological recordings were assessed in C57BL/6 mice. cFos activity was measured in NPY-Renilla-GFP and GHRH-eGFP mice. Mice received saline, ghrelin or ghrelin combined to native or Q90L obestatin (30 nmol each) in the early light phase. Ghrelin stimulation of food intake and GH secretion varied considerably among individual mice with 59–77% eliciting a robust response. In these high-responders, ghrelin-induced food intake and GH secretion were reduced equally by native and Q90L obestatin. In contrast to in vivo observations, Q90L was slightly more efficient than native obestatin in inhibiting ghrelin-induced cFos activation within the hypothalamic arcuate nucleus and the nucleus tractus solitarius of the brainstem. After ghrelin injection, 26% of NPY neurons in the arcuate nucleus expressed cFos protein and this number was significantly reduced by co-administration of Q90L obestatin. Q90L was also more potent that native obestatin in reducing ghrelin-induced inhibition of γ-aminobutyric-acid synaptic transmission onto GHRH neurons.

Conclusions/Significance

These data support the hypothesis that Q90L obestatin partially blocks ghrelin-induced food intake and GH secretion by acting through NPY and GHRH neurons.  相似文献   

9.
Many small mammals have the ability to enter torpor, characterized by a controlled drop in body temperature (Tb). We hypothesized that ghrelin would modulate torpor bouts, because torpor is induced by fasting in mice coincident with elevated circulating ghrelin. Female National Institutes of Health (NIH) Swiss mice were implanted with a Tb telemeter and housed at an ambient temperature (Ta) of 18 degrees C. On fasting, all mice entered a bout of torpor (minimum Tb: 23.8+/-2.0 degrees C). Peripheral ghrelin administration (100 microg) during fasting significantly deepened the bout of torpor (Tb minimum: 19.4+/-0.5 degrees C). When the arcuate nucleus (ARC) of the hypothalamus, a ghrelin receptor-rich region of the brain, was chemically ablated with monosodium glutamate (MSG), fasted mice failed to enter torpor (minimum Tb=31.6+/-0.6 degrees C). Furthermore, ghrelin administration had no effect on the Tb minimum of ARC-ablated mice (31.8+/-0.8 degrees C). Two major pathways that regulate food intake reside in the ARC, the anorexigenic alpha-melanocyte stimulating hormone (alpha-MSH) pathway and the orexigenic neuropeptide Y (NPY) signaling pathway. Both Ay mice, which have the alpha-MSH pathway blocked, and Npy-/-mice exhibited shallow, aborted torpor bouts in response to fasting (Tb minimum: 29.1+/-0.6 degrees C and 29.9+/-1.2 degrees C, respectively). Ghrelin deepened torpor in Ay mice (Tb minimum: 22.8+/-1.3 degrees C), but had no effect in Npy-/-mice (Tb minimum: 29.5+/-0.8 degrees C). Collectively, these data suggest that ghrelin's actions on torpor are mediated via NPY neurons within the ARC.  相似文献   

10.
Ghrelin, an orexigenic hormone, directly activates neuropeptide (NPY) neurons in the hypothalamic arcuate nucleus (ARC), and thereby stimulates food intake. The hypothalamic level of AMP-activated protein kinase (AMPK), an intracellular energy sensor, is activated by peripheral and central administration of ghrelin. We examined whether ghrelin regulates AMPK activity in NPY neurons of the ARC. Single neurons were isolated from the ARC and cytosolic Ca2+ concentration ([Ca2+]i) was measured by fura-2 microfluorometry, followed by immunocytochemical identification of NPY, phospho-AMPK, and phospho-acetyl-CoA carboxylase (ACC). Ghrelin and AICAR, an AMPK activator, increased [Ca2+]i in neurons isolated from the ARC. The ghrelin-responsive neurons highly overlapped with AICAR-responsive neurons. The neurons that responded to both ghrelin and AICAR were primarily NPY-immunoreactive neurons. Treatment with ghrelin increased phosphorylation of AMPK and ACC. An AMPK inhibitor, compound C, suppressed ghrelin-induced [Ca2+]i increases. These results demonstrate that ghrelin increases [Ca2+]i via AMPK-mediated signaling in the ARC NPY neurons.  相似文献   

11.
Ghrelin, a 28 amino acids polypeptide was recognized as an endogenous ligand for the growth hormone secretagogue receptor. It turned out that the entire sequence of ghrelin is not necessary for performing the above-mentioned functions. It was suggested that 5 residues (Gly-Ser-Ser(n-octanoyl)-Phe, pentaghrelin) constituted functionally active part of the full-length polypeptide. Ghrelin-28 was found to inhibit pancreatic enzyme output in rats, though the effect of pentaghrelin was not studied so far. The study aimed to determine the involvement of pentaghrelin in pancreatic juice secretion in anaesthetized rats. Male Wistar rats (220 +/- 20 g body weight, b. wt.) were anesthetized, the external jugular vein and common biliary-pancreatic duct were cannulated. Pentaghrelin boluses (i.v., 1.2, 12, and 50 nmol kg(-1) b. wt.) were injected every 30 min with or without CCK-8 infusion, duodenal mucosal CCK(1) receptor blockade with tarazepide, vagotomy and capsaicin pretreatment. Pentaghrelin boluses reduced the volume of pancreatic-biliary juice, protein and trypsin outputs both under basal and CCK-8-stimulated conditions in a dose-dependent manner. However, exogenous pentaghrelin failed to affect the pancreatic secretion in rats subjected to vagotomy, capsaicin deactivation of afferents or pretreatment with Tarazepide. In conclusion, pentaghrelin may control exocrine pancreas secretion by affecting duodenal neurohormonal mechanism(s) involving CCK and vagal nerves in rats.  相似文献   

12.
Systemic injection of MK-801, a noncompetitive antagonist of N-methyl-D-aspartate (NMDA) receptor ion channels, increases meal size and delays satiation. We examined whether MK-801 increases food intake by directly interfering with actions of cholecystokinin (CCK). Prior administration of MK-801 (100 microg/kg ip) reversed the inhibitory effects of CCK-8 (2 and 4 microg/kg ip) on real feeding of both liquid and solid foods. MK-801 alone did not alter 30-min sham intake of 15% sucrose compared with intake after saline. Furthermore, while CCK-8 (2 or 4 microg/kg ip) reduced sham intake, this reduction was not attenuated by MK-801 pretreatment. To ascertain whether MK-801 attenuation of CCK-induced reduction of real feeding was associated with attenuated inhibition of gastric emptying, we tested the effect of MK-801 pretreatment on CCK-induced inhibition of gastric emptying of 5-ml saline loads. Ten-minute gastric emptying was accelerated after MK-801 (3.9 +/- 0.2 ml) compared with saline vehicle (2.72 +/- 0.2 ml). CCK-8 (0.5 microg/kg ip) reduced 10-min emptying to 1.36 +/- 0.3 ml. Pretreatment with MK-801 did not significantly attenuate CCK-8-induced reduction of gastric emptying (0.9 +/- 0.4 ml). This series of experiments demonstrates that blockade of NMDA ion channels reverses inhibition of real feeding by CCK. However, neither inhibition of sham feeding nor inhibition of gastric emptying by CCK is attenuated by MK-801. Therefore, increased food intake after NMDA receptor blockade is not caused by a direct interference with CCK-induced satiation. Rather, increased real feeding, either in the presence or absence of CCK, depends on blockade of NMDA receptor participation in other post-oral feedback signals such as gastric sensation or gastric tone.  相似文献   

13.
We investigated the role of histamine H1 receptors in mediating the anorectic effect of intraperitoneally injected amylin (5 and 20 microg/kg), the amylin agonist salmon calcitonin (sCT; 10 microg/kg), leptin (1.3 mg/kg), and cholecystokinin (CCK; 20 microg/kg). The experiments were performed with mice lacking functional H1 receptors (H1Rko) and wild-type (WT) controls. The mice were also injected with the H3 antagonist thioperamide (20 mg/kg), which reduces feeding by enhancing the release of endogenous histamine through presynaptic H3 receptors. The feeding-suppressive effect of thioperamide was abolished in H1Rko mice. The anorectic effects of amylin and sCT were significantly reduced in 12-h food-deprived H1Rko mice compared with WT mice [1-h food intake: WT-NaCl 0.51 +/- 0.05 g vs. WT-amylin (5 microg/kg) 0.30 +/- 0.06 g (P < 0.01); H1Rko-NaCl 0.45 +/- 0.05 g vs. H1Rko-amylin 0.40 +/- 0.04 g; WT-NaCl 0.40 +/- 0.09 g vs. WT-sCT (10 microg/kg) 0.14 +/- 0.10 g (P < 0.05); H1Rko-NaCl 0.44 +/- 0.08 g vs. H1Rko-sCT 0.50 +/- 0.06 g]. The anorectic effect of leptin was absent in ad libitum-fed H1Rko mice, whereas CCK equally reduced feeding in WT and H1Rko animals. This suggests that the histaminergic system is involved in mediating the anorectic effects of peripheral amylin and sCT via histamine H1 receptors. The same applies to leptin but not to CCK. H1Rko mice showed significantly increased body weight gain compared with WT mice, supporting the role of endogenous histamine in the regulation of feeding and body weight.  相似文献   

14.
Controls of the independent ingestion of food in the preweanling rat emerge in the second postnatal week. We investigated the effects of CCK-8 (0, 1, 5, or 10 microg/kg IP) on intake and c-Fos-like immunoreactive (CFLI) cells in hindbrain and forebrain on postnatal days 10 and 11. Five micrograms per kilogram decreased intake and increased the number of CFLI cells in four subnuclei of the nucleus tractus solitarius (NTS), in arcuate nucleus (ARC), and in central nucleus of the amygdala (CeA). Ten micrograms per kilogram decreased intake and increased CFLI in three NTS subnuclei as much as 5 microg/kg did, but was more potent than 5 microg/kg in the medial NTS subnucleus. Ten micrograms per kilogram increased CFLI in paraventricular (PVN) and supraoptic (SON) nuclei, but 5 microg/kg did not. Thus, reduction of intake by CCK-8 on days 10 and 11 is associated with increased hindbrain and forebrain CFLI.  相似文献   

15.
Ghrelin acts in the central nervous system to stimulate gastric acid secretion   总被引:37,自引:0,他引:37  
Ghrelin is a novel acylated peptide that functions in the regulation of growth hormone release and energy metabolism. It was isolated from rat stomach as an endogenous ligand for growth hormone secretagogue receptor. Ghrelin is also localized in the arcuate nucleus of rat hypothalamus. Intracerebroventricular (ICV) administration increases food intake and body weight. We examined the effect of ghrelin on gastric acid secretion in urethane-anesthetized rats and found that ICV administration of ghrelin increased gastric acid output in a dose-dependent manner. Vagotomy and administration of atropine abolished the gastric acid secretion induced by ghrelin. ICV administration of ghrelin also induced c-fos expression in the neurons of the nucleus of the solitary tract and the dorsomotor nucleus of the vagus, which are key sites in the central nervous system for regulation of gastric acid secretion. Our results suggest that ghrelin participates in the central regulation of gastric acid secretion by activating the vagus system.  相似文献   

16.
Ghrelin stimulates food intake in part by activating hypothalamic neuropeptide Y (NPY) neurons/agouti related peptide (AGRP) neurons. We investigated the role of AGRP/melanocortin signaling in ghrelin-induced food intake by studying melanocortin 3 and 4 receptor knockout (MC3R KO and MC4R KO) mice. We also determined whether reduced ghrelin levels and/or an altered sensitivity to the GH-stimulating effects of ghrelin accompany the obesity syndromes of MC3R KO and MC4R KO mice. Compared to wild-type (WT) mice, the effects of ghrelin on food intake were reduced in MC3R KO and MC4R KO mice and circulating ghrelin levels were reduced in female MC4R KO mice. Female MC3R KO and MC4R KO mice exhibited a diminished responsiveness to the GH-releasing effects of ghrelin. Thus, deletion of the MC3R or MC4R results in a decreased sensitivity to ghrelin and verifies the involvement in the melanocortin system in ghrelin-induced food intake.  相似文献   

17.
É Szentirmai 《PloS one》2012,7(7):e41172
Ghrelin is a brain-gut peptide hormone widely known for its orexigenic and growth hormone-releasing activities. Findings from our and other laboratories indicate a role of ghrelin in sleep regulation. The effects of exogenous ghrelin on sleep-wake activity in mice are, however, unknown. The aim of the present study was to determine the sleep-modulating effects of ghrelin after central and systemic administrations in mice. Sleep-wake activity after intracerebroventricular (i.c.v.) administration of 0.2, 1 and 5 μg ghrelin and intraperitoneal injections of 40, 100, and 400 μg/kg ghrelin prior to light onset were determined in C57BL/6 mice. In addition, body temperature, motor activity and 1-hour food intake was measured after the systemic injections. Sleep effects of systemic ghrelin (40 and 400 μg/kg) injected before dark onset were also determined. I.c.v. injection of ghrelin increased wakefulness and suppressed non-rapid-eye-movement sleep and electroencephalographic slow-wave activity in the first hour after injections. Rapid-eye-movement sleep was decreased for 2-4 hours after each dose of ghrelin. Sytemic administration of ghrelin did not induce changes in sleep-wake activity in mice at dark or light onset. Motor activity and body temperature remained unaltered and food intake was significantly increased after systemic injections of ghrelin given prior the light period. These findings indicate that the activation of central, but not peripheral, ghrelin-sensitive mechanisms elicits arousal in mice. The results are consistent with the hypothesis that the activation of the hypothalamic neuronal circuit formed by ghrelin, orexin, and neuropeptide Y neurons triggers behavioral sequence characterized by increased wakefulness, motor activity and feeding in nocturnal rodents.  相似文献   

18.
Apolipoprotein AIV (apo AIV) and cholecystokinin (CCK) are satiation factors secreted by the small intestine in response to lipid meals. Apo AIV and CCK-8 has an additive effect to suppress food intake relative to apo AIV or CCK-8 alone. In this study, we determined whether CCK-8 (1, 3, or 5 μg/kg ip) reduces food intake in fasted apo AIV knockout (KO) mice as effectively as in fasted wild-type (WT) mice. Food intake was monitored by the DietMax food system. Apo AIV KO mice had significantly reduced 30-min food intake following all doses of CCK-8, whereas WT mice had reduced food intake only at doses of 3 μg/kg and above. Post hoc analysis revealed that the reduction of 10-min and 30-min food intake elicited by each dose of CCK-8 was significantly larger in the apo AIV KO mice than in the WT mice. Peripheral CCK 1 receptor (CCK1R) gene expression (mRNA) in the duodenum and gallbladder of the fasted apo AIV KO mice was comparable to that in WT mice. In contrast, CCK1R mRNA in nodose ganglia of the apo AIV KO mice was upregulated relative to WT animals. Similarly, upregulated CCK1R gene expression was found in the brain stem of apo AIV KO mice by in situ hybridization. Although it is possible that the increased satiating potency of CCK in apo AIV KO mice is mediated by upregulation of CCK 1R in the nodose ganglia and nucleus tractus solitarius, additional experiments are required to confirm such a mechanism.  相似文献   

19.
目的:探究Ghrelin对大鼠摄食的影响及orexins信号通路的调控作用。方法:采用免疫组织化学染色的方法观察Ghrelin免疫阳性神经元轴突末梢与orexin神经元的突触联系以及下丘脑外侧区(LHA)内c-fos的表达。侧脑室注射抗-orexin-A IgG和抗-orexin-B IgG混合液、抗-黑色素浓集激素(MCH)IgG、NPY-1受体拮抗剂后测量大鼠摄食量,观察其对ghrelin诱导摄食的影响。结果:Ghrelin免疫阳性神经元轴突末梢与orexin神经元的突触相接触。侧脑室注射ghrelin可诱导orexin神经元内c-fos表达,但是没有引起MCH神经元内c-fos的表达。预先注射抗-NPY IgG抗体,ghrelin仍然可诱导orexin神经元内c-fos表达。侧脑室预先注射抗-orexin-A IgG和抗-orexin-B IgG抗体可减弱ghrelin促摄食作用,但是预先注射抗-MCH IgG抗体对ghrelin诱导的摄食作用没有明显影响。注射NPY受体拮抗剂可进一步加强抗-orexin-A IgG抗体和抗-orexin-B IgG抗体对ghrelin诱导摄食的抑制效应。结论:ghrelin可能与orexin系统相互作用共同参与摄食和能量平衡的调控。  相似文献   

20.
The serin/threonin-kinase, mammalian target of rapamycin (mTOR) was detected in the arcuate nucleus (ARC) and paraventricular nucleus of the hypothalamus (PVN) and suggested to play a role in the integration of satiety signals. Since cholecystokinin (CCK) plays a role in the short-term inhibition of food intake and induces c-Fos in PVN neurons, the aim was to determine whether intraperitoneally injected CCK-8S affects the neuronal activity in cells immunoreactive for phospho-mTOR in the PVN. Ad libitum fed male Sprague-Dawley rats received 6 or 10 μg/kg CCK-8S or 0.15 M NaCl ip (n = 4/group). The number of c-Fos-immunoreactive (ir) neurons was assessed in the PVN, ARC and in the nucleus of the solitary tract (NTS). CCK-8S increased the number of c-Fos-ir neurons in the PVN (6 μg: 103 ± 13 vs. 10 μg: 165 ± 14 neurons/section; p < 0.05) compared to vehicle treated rats (4 ± 1, p < 0.05), but not in the ARC. CCK-8S also dose-dependently increased the number of c-Fos neurons in the NTS. Staining for phospho-mTOR and c-Fos in the PVN showed a dose-dependent increase of activated phospho-mTOR neurons (17 ± 3 vs. 38 ± 2 neurons/section; p < 0.05), while no activated phospho-mTOR neurons were observed in the vehicle group. Triple staining in the PVN showed activation of phospho-mTOR neurons co-localized with oxytocin, corresponding to 9.8 ± 3.6% and 19.5 ± 3.3% of oxytocin neurons respectively. Our observations indicate that peripheral CCK-8S activates phospho-mTOR neurons in the PVN and suggest that phospho-mTOR plays a role in the mediation of CCK-8S's anorexigenic effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号