首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 419 毫秒
1.
J Badía  J Ros    J Aguilar 《Journal of bacteriology》1985,161(1):435-437
An equimolar amount of 1,2-propanediol was detected in the medium when Salmonella typhimurium or Klebsiella pneumoniae fermented L-fucose or L-rhamnose. These metabolic conditions induced a propanediol oxidoreductase that converted the lactaldehyde formed in the dissimilation of either sugar into the diol. The enzyme was further identified by cross-reaction with antibodies against Escherichia coli propanediol oxidoreductase. This indicates that L-fucose and L-rhamnose fermentation takes place in these species by 1,2-propanediol production and excretion.  相似文献   

2.
Aerobic excretion of 1,2-propanediol by Salmonella typhimurium.   总被引:1,自引:1,他引:0       下载免费PDF全文
Salmonella typhimurium excreted the rhamnose fermentation product 1,2-propanediol not only under anaerobic conditions, but also under aerobic conditions. The absence of an aldehyde dehydrogenase enzymatic activity that oxidizes to lactate the lactaldehyde formed in the dissimilation of rhamnose raised the intracellular concentration of the aldehyde which was alternatively reduced to the excretable 1,2-propanediol by a residual propanediol oxidoreductase activity.  相似文献   

3.
Escherichia coli is capable of growing on L-fucose or L-rhamnose as a sole source of carbon and energy. When grown under anaerobic conditions on either sugar, a nicotinamide adenine dinucleotide-linked L-lactaldehyde:propanediol oxidoreductase activity is induced. The functioning of this enzyme results in the regeneration of oxidized nicotinamide adenine dinucleotide. Conditions of induction of the enzyme activity were studied and were found to display different characteristics on each sugar. In the rhamnose-grown cells, the increase in enzyme activity detected under inducing conditions was accompanied by the synthesis of propanediol oxidoreductase, as measured by the appearance in the extracts of a protein that reacts with propanediol oxidoreductase antibodies. In contrast, in fucose-grown cells, the level of propanediol oxidoreductase as measured by enzyme antibody-reacting material was high under noninducing and inducing conditions. Thus, the increase in enzyme activity detected in going from noninducing to inducing conditions in fucose-grown cells did not depend on the appearance of the specific protein but on the activation of the propanediol oxidoreductase already present in the cells in an inactive form. The propanediol oxidoreductase of both homologous systems should consequently be regulated by different control mechanisms.  相似文献   

4.
L-Lactaldehyde is a branching point in the metabolic pathway of L-fucose and L-rhamnose utilization. Under aerobic conditions, L-lactaldehyde is oxidized to L-lactate by the enzyme lactaldehyde dehydrogenase, while under anaerobic conditions, L-lactaldehyde is reduced to L-1,2-propanediol by the enzyme propanediol oxidoreductase. Aerobic growth on either of the methyl pentoses induces a lactaldehyde dehydrogenase enzyme which is inhibited by NADH and is very stable under anaerobic conditions. In the absence of oxygen, the cell shifts from the oxidation of L-lactaldehyde to its reduction, owing to both the induction of propanediol oxidoreductase activity and the decrease in the NAD/NADH ratio. The oxidation of L-lactaldehyde to L-lactate is again restored upon a change to aerobic conditions. In this case, only the NAD/NADH ratio may be invoked as a regulatory mechanism, since both enzymes remain active after this change. Experimental evidence in the presence of rhamnose with mutants unable to produce L-lactaldehyde and mutants capable of producing but not further metabolizing it points toward L-lactaldehyde as the effector molecule in the induction of lactaldehyde dehydrogenase. Analysis of a temperature-sensitive mutation affecting the synthesis of lactaldehyde dehydrogenase permitted us to locate an apparently single regulator gene linked to the ald locus at 31 min and probably acting as a positive control element on the expression of the structural gene.  相似文献   

5.
Wild-type strains of Escherichia coli are unable to use L-1,2-propanediol as a carbon and energy source. Strain 3, a mutant selected for the ability to grow on this compound at progressively more rapid rates, synthesizes constitutively a nicotinamide adenine dinucleotide-linked propanediol oxidoreductase. This enzyme is normally synthesized during anaerobic growth on L-fucose when it functions as a lactaldehyde reductase. Propanediol, the end product of this fermentation process, escapes irretrievably into the medium. The propanediol-utilizing mutant can no longer grow on fucose in either the presence or absence of molecular oxygen. In the present study nine independent lines of propanediol-positive mutants were characterized. One mutant, strain 418, attained a propanediol growth rate close to that of strain 3 without loss of the ability to grow on fucose. In all cases examined, however, prolonged selection on propanediol did result in the emergence of fucose-negative mutants. All of these mutants had enzyme patterns similar to that of strain 3; namely, fucose permease, fucose isomerase, and fuculose kinase were noninducible, whereas fuculose 1-phosphate aldolase was constitutive. In strain 418 and in the fucose-positive predecessors of the other mutants, the first four enzymes in the pathway remained inducible, as in the wild-type strain. Improvements in the growth rate on propanediol appeared to reflect principally the increased activity level of the oxidoreductase during the early stages of evolution. According to transductional analysis, the mutations affecting the ability to grow on propanediol and those that affect the expression of the first enzymes in the fucose pathway were very closely linked. The loss of the ability to grow on fucose is thought to be a mechanistic consequence incidental to the remodeling of the regulatory system in favor of the utilization of the novel carbon source.  相似文献   

6.
7.
A model for the study of experimental evolution is provided by the novel metabolic system responsible for the progressive utilization of l-1,2-propanediol by mutants of Escherichia coli (strains 3 and 430). In these mutant strains, propanediol oxidoreductase, which serves as l-lactaldehyde reductase in fucose fermentation by wild-type cells, became a key enzyme for aerobic catabolism of propanediol. In the wild-type strain (strain 1), the enzyme is inducible only anaerobically; in strains 3 and 430, the enzyme is synthesized constitutively even in the presence of air. The propanediol oxidoreductase from all three strains was purified to homogeneity by the same procedure. The enzyme of strain 3 clearly differed from that of strain 1 in several respects: Km and V in both directions of the reaction, energy of activation, thermal stability, pH optimum and substrate specificity. However, no difference in any of the above characteristics was found between the enzymes of strains 3 and 430. All three enzymes presented the same electrophoretic mobility. According to immunological data, all three strains differed in their intracellular enzyme level.  相似文献   

8.
Regardless of the respiratory conditions of the culture, Escherichia coli synthesizes an active propanediol oxidoreductase. Under anaerobic conditions, the enzyme remained fully active and accomplished its physiological role, while under aerobic conditions, it was inactivated in a process that did not depend on protein synthesis or on the presence of a carbon source.  相似文献   

9.
Escherichia coli are capable of growing anaerobically on L-rhamnose as a sole source of carbon and energy and without any exogenous hydrogen acceptor. When grown under such condition, synthesis of a nicotinamide adenine dinucleotide-linked L-lactaldehydepropanediol oxidoreductase is induced. The functioning of this enzyme results in the regeneration of nicotinamide adenine dinucleotide. The enzyme was purified to electrophoretic homogeneity. It has a molecular weight of 76,000, with two subunits that are indistinguishable by electrophoretic mobility. The enzyme reduces L-lactaldehyde to L-1,2-propanediol with reduced nicotinamide adenine dinucleotide as a cofactor. The Km were 0.035 mM L-lactaldehyde and 1.25 mM L-1,2-propanediol, at pH 7.0 and 9.5, respectively. The enzyme acts only on the L-isomers. Strong substrate inhibition was observed with L-1,2-propanediol (above 25 mM) in the dehydrogenase reaction. The enzyme has a pH optimum of 6.5 for the reduction of L-lactaldehyde and of 9.5 for the dehydrogenation of L-1,2-propanediol. The enzyme is, according to the parameters presented in this report, indistinguishable from the propanediol oxidoreductase induced by anaerobic growth on fucose.  相似文献   

10.
Two isoleucine analogues and two leucine analogues were examined for their ability to replace the natural amino acid preventing the accumulation of threonine deaminase-forming potential. The procedure used to study repression by the analogues distinguishes between true repression and the formation of inactive enzyme by the analogue in question. The leucine analogue 4-azaleucine was found to replace leucine in multivalent repression of threonine deaminase-forming potential in Escherichia coli but not in Salmonella typhimurium. Another leucine analogue, trifluoroleucine, was only partially effective in causing repression in either organism. The isoleucine analogue 4-azaisoleucine was ineffective in replacing isoleucine in repression. In contrast, 4-thiaisoleucine effectively replaced isoleucine in the repression of threonine deaminase-forming potential in S. typhimurium and E. coli.  相似文献   

11.
Further evidence is presented in support of the proposal made previously (Greenwood, K.T. and Luke, R.K.J. (1976) Biochim. Biophys. Acta 454, 285-297) that components of the Escherichia coli enterochelin synthetase system physicaloly associate to form enzyme complexes. Evidence for the existence of three enzyme complexes, designated in order of increasing stability G-D < F-D < F-D-G, has been obtained following gel filtration and chromatography on DEAE-Sephadex. Persistence of the F-D and G-D complexes during chromatography appears to depend on the flow rate of the column. On the basis of complementation with appropriate ent mutants of E. coli, activities corresponding to those of the D, E, F and G components of enterochelin synthetase in E. coli have been detected in cell-extracts of both Salmonella typhimurium and Klebsiella pneumoniae (formerly Aerobacter aerogenes) strains. These are designated D', E', F' and G' activities. Components E' and G' are eluted from Sephadex G-100 in similar fashion to their E. coli counterparts. Peaks of F' and D' activities however, are eluted together at a position corresponding to that of the E. coli F component. We suggest that in S. typhimurium and K. pneumoniae, either a single polypeptide combines the functions of the E. coli F and D components, or that separate F' and D' components form a stable complex and that activity of uncomplexed D' and component was not detected under the conditions used during chromatography and assay.  相似文献   

12.
The dha regulon of Klebsiella pneumoniae specifying fermentative dissimilation of glycerol was mobilized by the broad-host-range plasmid RP4:mini Mu and introduced conjugatively into Escherichia coli. The recipient E. coli was enabled to grow anaerobically on glycerol without added hydrogen acceptors, although its cell yield was less than that of K. pneumoniae. The reduced cell yield was probably due to the lack of the coenzyme-B12-dependent glycerol dehydratase of the dha system. This enzyme initiates the first step in an auxiliary pathway for disposal of the extra reducing equivalents from glycerol. The lack of this enzyme would also account for the absence of 1,3-propanediol (a hallmark fermentation product of glycerol) in the spent culture medium. In a control experiment, a large quantity of this compound was detected in a similar culture medium following the growth of K. pneumoniae. The other three known enzymes of the dha system, glycerol dehydrogenase, dihydroxyacetone kinase and 1,3-propanediol oxidoreductase, however, were synthesized at levels comparable to those found in K. pneumoniae. Regulation of the dha system in E. coli appeared to follow the same pattern as in K. pneumoniae: the three acquired enzymes were induced by glycerol, catabolite repressed by glucose, and glycerol dehydrogenase was post-translationally inactivated during the shift from anaerobic to aerobic growth. The means by which the E. coli recipient can achieve redox balance without formation of 1,3-propanediol during anaerobic growth on glycerol remains to be discovered.  相似文献   

13.
14.
The chromosomal DNA replication origins (oriC) from two members of the family Enterobacteriaceae, Enterobacter aerogenes and Klebsiella pneumoniae, have been isolated as functional replication origins in Escherichia coli. The origins in the SalI restriction fragments of 17.5 and 10.2 kilobase pairs, cloned from E. aerogenes and K. pneumoniae, respectively, were found to be between the asnA and uncB genes, as are the origins of the E. coli and Salmonella typhimurium chromosomes. Plasmids containing oriC from E aerogenes, K. pneumoniae, and S. typhimurium replicate in the E. coli cell-free enzyme system (Fuller, et al., Proc. Natl. Acad. Sci. U.S.A. 78:7370--7374, 1981), and this replication is dependent on dnaA protein activity. These SalI fragments from E. aerogenes and K. pneumoniae carry a region which is lethal to E. coli when many copies are present. We show that this region is also carried on the E. coli 9.0-kilobase-pair EcoRI restriction fragment containing oriC. The F0 genes of the atp or unc operon, when linked to the unc operon promoter, are apparently responsible for the lethality.  相似文献   

15.
The survival of Salmonella typhimurium LT2 and Escherichia coli was studied in situ in a tropical rain forest watershed using membrane diffusion chambers. Numbers were determined by acridine orange staining and a Coulter counter. Population activity was determined by microautoradiography, cell respiration, frequency of dividing cells, and by nucleic acid composition. Numbers of Salm, typhimurium and E. coli decreased less than 1 log unit after 105 h as measured by direct count methods. Activity as measured by respiration, acridine orange activity, frequency of dividing cells, and microautoradiography indicated that both bacteria remained moderately active during the entire study. After 24 h, E. coli was more active than Salm. typhimurium, as measured by nucleic acid composition, and frequency of dividing cells. Both E. coli and Salm. typhimurium survived and remained active in this tropical rain forest watershed for more than 5 d, suggesting that Salm. typhimurium may be of prolonged public health significance once it is introduced into tropical surface waters. As E. coli was active and survived for a long time in this natural environment, it would seem to be unsuitable as an indicator of recent faecal contamination in tropical waters.  相似文献   

16.
The survival of Salmonella typhimurium LT2 and Escherichia coli was studied in situ in a tropical rain forest watershed using membrane diffusion chambers. Numbers were determined by acridine orange staining and a Coulter counter. Population activity was determined by microautoradiography, cell respiration, frequency of dividing cells, and by nucleic acid composition. Numbers of Salm. typhimurium and E. coli decreased less than 1 log unit after 105 h as measured by direct count methods. Activity as measured by respiration, acridine orange activity, frequency of dividing cells, and microautoradiography indicated that both bacteria remained moderately active during the entire study. After 24 h, E. coli was more active than Salm. typhimurium , as measured by nucleic acid composition, and frequency of dividing cells. Both E. coli and Salm. typhimurium survived and remained active in this tropical rain forest watershed for more than 5 d, suggesting that Salm. typhimurium may be of prolonged public health significance once it is introduced into tropical surface waters. As E. coli was active and survived for a long time in this natural environment, it would seem to be unsuitable as an indicator of recent faecal contamination in tropical waters.  相似文献   

17.
Monospecific antibodies were raised against the two terminal oxidase complexes of the aerobic respiratory chain of Escherichia coli. These are the cytochrome d and cytochrome o complexes. The antibodies were used to check for the occurrence of cross-reactive antigens in membrane preparations from a variety of gram-negative bacteria by rocket immunoelectrophoresis and immunoblotting techniques. With these criteria, proteins closely related to the cytochrome d complex of E. coli appeared to be widely distributed. Among the strains containing cytochrome d-related material were Serratia marcescens, Photobacterium phosphoreum, Salmonella typhimurium, Klebsiella pneumoniae, and Azotobacter vinelandii. The data suggest that the d-type terminal oxidase in many of these strains is associated in a complex with b-type and a1-type cytochromes, as has been found to be the case in E. coli. K. pneumoniae and S. typhimurium were also shown to have material cross-reactive to the E. coli cytochrome o complex.  相似文献   

18.
L.Z. JIN, Y.W. HO, N. ABDULLAH, M.A. ALI AND S. JALALUDIN. 1996. Twelve Lactobacillus strains isolated from chicken intestine, which demonstrated a strong and moderate capacity to adhere to the ileal epithelial cells in vitro , were used to investigate their inhibitory ability against five strains of salmonella, i.e. Salmonella enteritidis 935/79, Salm. pullorum, Salm. typhimurium, Salm. blockley and Salm. enteritidis 94/448, and three serotypes of Escherichia coli , viz. E. coli O1 : K1, O2 : K1 and O78 : K80. The results showed that all the 12 Lactobacillus isolates were able to inhibit the growth of the five strains of salmonella, and the three strains of E. coli in varying degrees. Generally, they were more effective in inhibiting the growth of salmonella than E. coli . Inhibition of the pathogenic bacteria was probably due to the production of organic acids by the Lactobacillus isolates.  相似文献   

19.
20.
A hybrid ColE1 plasmid containing DNA from Escherichia coli K12 were identified which was capable of correcting the defect in UDP-galactose:lipopolysaccharide alpha1,3-galactosyltransferase in an rfaH mutant of Salmonella typhimurium. Expression of the gene for this enzyme was also demonstrated in several strains of E. coli by direct assay. The E. coli and S. typhimurium enzymes are similar in catalytic properties and immunologic specificity. The finding of the galactosyltransferase activity in E. coli extracts is surprising since the alpha1,3-galactosylglucose disaccharide which is the product of the enzyme-catalyzed reaction does not appear to be present in the E. coli lipopolysaccharide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号