首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 127 毫秒
1.
The aim of this study was to develop a bioprocess for l- and d-lactic acid production from raw sweet potato through simultaneous saccharification and fermentation by Lactobacillus paracasei and Lactobacillus coryniformis, respectively. The effects of enzyme and nitrogen source concentrations as well as of the ratio of raw material to medium were investigated. At dried material concentrations of 136.36–219.51 g L−1, yields of 90.13–91.17% (w/w) and productivities of 3.41–3.83 g L−1 h−1 were obtained with lactic acid concentrations as high as 198.32 g L−1 for l-lactic acid production. In addition, d-lactic acid was produced with yields of 90.11–84.92% (w/w) and productivities of 2.55–3.11 g L−1 h−1 with a maximum concentration of 186.40 g L−1 at the same concentrations of dried material. The simple and efficient process described in this study will benefit the tuber and root-based lactic acid industries without requiring alterations in plant equipment.  相似文献   

2.
In this work, straw hydrolysates were used to produce succinic acid by Actinobacillus succinogenes CGMCC1593 for the first time. Results indicated that both glucose and xylose in the straw hydrolysates were utilized in succinic acid production, and the hydrolysates of corn straw was better than that of rice or wheat straw in anaerobic fermentation of succinic acid. However, cell growth and succinic acid production were inhibited when the initial concentration of sugar, which was from corn straw hydrolysate (CSH), was higher than 60 g l?1. In batch fermentation, 45.5 g l?1 succinic acid concentration and 80.7% yield were attained after 48 h incubation with 58 g l?1 of initial sugar from corn straw hydrolysate in a 5-l stirred bioreactor. While in fed-batch fermentation, concentration of succinic acid achieved 53.2 g l?1 at a rate of 1.21 g l?1 h?1 after 44 h of fermentation. Our work suggested that corn straw could be utilized for the economical production of succinic acid by A. succinogenes.  相似文献   

3.
Fermentation kinetics of growth and β-carotene production by Rhodotorula glutinis DM28 in batch and continuous cultures using fermented radish brine, a waste generated from fermented vegetable industry, as a cultivation medium were investigated. The suitable brine concentration for β-carotene production by R. glutinis DM28 was 30 g l?1. Its growth and β-carotene production obtained by batch culture in shake flasks were 2.2 g l?1 and 87 μg l?1, respectively, while, in a bioreactor were 2.6 g l?1 and 186 μg l?1, respectively. Furthermore, its maximum growth rate and β-carotene productivity in continuous culture obtained at the dilution rate of 0.24 h?1 were 0.3 g l?1 h?1 and 19 μg l?1 h?1, respectively, which were significantly higher than those in the batch. Therefore, improved growth rate and β-carotene productivity of R. glutinis in fermented radish brine could be accomplished by continuous cultivation.  相似文献   

4.
《Process Biochemistry》2014,49(8):1245-1250
This work describes the development of a novel integrated system for lactic acid production by Actinobacillus succinogenes. Fermentation and separation were integrated with the use of a microfiltration (MF) membrane, and lactic acid was recovered by resin adsorption following MF. The fermentation broth containing residual sugar and nutrients was then recycled back into the fermenter after lactic acid adsorption. This novel approach overcame the problem of product inhibition and extended the cell growth period from 41 h to 120 h. Production of lactic acid was improved by 23% to 183.4 g L−1. The overall yield and productivity for glucose were 0.97 g g−1 and 1.53 g L−1 h−1, respectively. These experimental results indicate that the integrated system could benefit continuous production of lactic acid at high levels.  相似文献   

5.
Maximal activity of the immobilized d-psicose 3-epimerase from Agrobacterium tumefaciens on Duolite A568 beads was achieved at pH 9.0 and 55 °C with borate, and at pH 8.5 and 50 °C without borate. The half-lives of the immobilized enzyme at 50 °C with and without borate were increased 4.2- and 128-fold compared to that of the free enzyme without borate, respectively. The immobilized enzyme with borate produced 441 g l?1 psicose from 700 g l?1 fructose at pH 9.0 and 55 °C, whereas 193 g l?1 psicose was produced without borate at pH 8.5 and 50 °C after 120 min in a batch reaction. The immobilized enzyme in a packed-bed bioreactor without borate was produced continuously 325 g l?1 psicose from 500 g l?1 fructose at a dilution rate of 1.62 h?1 over a 236 h period with productivity of 527 g l?1 h?1 while that without borate produced 146 g l?1 psicose at 4.15 h?1 over a 384-h period with productivity of 606 g l?1 h?1. The operational half-lives of the enzyme with and without borate in the bioreactor were 601 and 645 h, respectively. In the present study, psicose was produced stably with high productivity using the immobilized d-psicose 3-epimerase in the presence of borate.  相似文献   

6.
In wild-type Escherichia coli, 1 mol of CO2 was fixated in 1 mol of succinic acid generation anaerobically. The key reaction in this sequence, catalyzed by phosphoenolpyruvate carboxylase (PPC), is carboxylation of phosphoenolpyruvate to oxaloacetate. Although inactivation of pyruvate formate-lyase and lactate dehydrogenase is found to enhance the PPC pathway for succinic acid production, it results in excessive pyruvic acid accumulation and limits regeneration of NAD+ from NADH formed in glycolysis. In other organisms, oxaloacetate is synthesized by carboxylation of pyruvic acid by pyruvate carboxylase (PYC) during glucose metabolism, and in E. coli, nicotinic acid phosphoribosyltransferase (NAPRTase) is a rate-limiting enzyme of the NAD(H) synthesis system. To achieve the NADH/NAD+ ratio decrease as well as carbon flux redistribution, co-expression of NAPRTase and PYC in a pflB, ldhA, and ppc deletion strain resulted in a significant increase in cell mass and succinic acid production under anaerobic conditions. After 72 h, 14.5 g L−1 of glucose was consumed to generate 12.08 g L−1 of succinic acid. Furthermore, under optimized condition of CO2 supply, the succinic acid productivity and the CO2 fixation rate reached 223.88 mg L−1 h−1 and 83.48 mg L−1 h−1, respectively.  相似文献   

7.
A functional bacterial consortium that can effectively hydrolyze cellobiose and produce bio-hydrogen was isolated by a concentration-to-extinction approach. The sludge from a cattle feedlot manure composting plant was incubated with 2.5–20 g l?1 cellobiose at 35 °C and pH 6.0. The microbial diversity of serially concentrated suspensions significantly decreased following increasing cellobiose concentration, finally leaving only two viable strains, Clostridium butyricum strain W4 and Enterococcus saccharolyticus strain. This consortium has a maximum specific hydrogen production rate of 2.19 mol H2 mol hexose?1 at 5 g l?1 cellobiose. The metabolic pathways shifted from ethanol-type to acetate-butyrate type as cellobiose concentration increased from 2.5 to >7 g l?1. The concentration-to-extinction approach is effective for isolating functional consortium from natural microflora. In this case the functional strains of interest are more tolerant to the increased loadings of substrates than the non-functional strains.  相似文献   

8.
The INU1 gene encoding exo-inulinase cloned from Kluyveromyces marxianus CBS 6556 was ligated into the surface display plasmid and expressed in the cells of the marine-derived yeast Yarrowia lipolytica which can produce citric acid. The expressed inulinase was immobilized on the yeast cells. The activity of the immobilized inulinase with 6 × His tag was found to be 22.6 U mg?1 of cell dry weight after cell growth for 96 h. The optimal pH and temperature of the displayed inulinase were 4.5 and 50 °C, respectively and the inulinase was stable in the pH range of 3–8 and in the temperature range of 0–50 °C. During the inulin hydrolysis, the optimal inulin concentration was 12.0% and the optimal amount of added inulinase was 181.6 U g?1 of inulin. Under such conditions, over 77.9% of inulin was hydrolyzed within 10 h and the hydrolysate contained main monosaccharides and disaccharides, and minor trisaccharides. During the citric acid production in the flask level, the recombinant yeast could produce 77.9 g L?1 citric acid and 5.3 g L?1 iso-citric acid from inulin while 68.9 g L?1 of citric acid and 4.1 g L?1 iso-citric acid in the fermented medium were attained within 312 h of the 2-L fermentation, respectively.  相似文献   

9.
This study aimed to improve rosmarinic acid (RA) production in the whole plant culture of Solenostemon scutellarioides through elicitation with phytopathogenic fungi. Amongst selected fungi, Aternaria alternata caused significant elevation (p < 0.05–0.01) in RA accumulation (∼1.3–1.6-fold) between 25 and 100 μg l−1. However, elicitation at the dose of 50 μg l−1 has been found to be most effective and intracellular RA content reached almost ∼1.6-fold (p < 0.01) higher in day 7. Therefore, A. alternata (50 μg l−1) was selected for mechanism evaluation. A significant elevation of intercellular jasmonic acid was observed up to day 6 after elicitation with A. alternata (50 μg l−1). A significant increase in tissue H2O2 and lipid peroxidation coupled with depletion of antioxidant enzymes superoxide dismutase and catalase indicated augmented oxidative stress associated with biotic interaction. Preceding the elicitor-induced RA accumulation, a notable alteration in the specific activities of biosynthetic enzymes namely PAL and TAT was recorded, while, no significant change in the activities of RAS was observed. HPPR activity was slightly improved in elicited plant. Therefore, it could be concluded that A. alternata elicited the biosynthesis of rosmarinic acid via signal transduction through jasmonic acid coupled with elicitor induced oxidative stress and associated mechanism.  相似文献   

10.
The effect of long-term (30 days) exposure to PCZ (0.2, 50, and 500 μg l?1) on intestine-related biochemical markers in rainbow trout was investigated. Multiple biomarkers were measured, including digestive enzymes (proteolytic enzymes and amylase), antioxidant responses (TBARS, CP, SOD, CAT, GR and GPx) and energy metabolic parameters (RNA/DNA ratio, Na+-K+-ATPase). Exposure to 500 μg l?1 PCZ led to significantly inhibited (p < 0.01) proteolytic enzyme and amylase activity. Activities of the antioxidant enzymes SOD, CAT, and GPx gradually increased at lower PCZ concentrations (0.2 and 50 μg l?1). At the highest concentration (500 μg l?1), oxidative stress was apparent as significant higher (p < 0.05) lipid peroxidation and protein carbonyls, associated with an inhibition of antioxidant enzymes activity. Moreover, energy metabolic parameters (RNA/DNA ratio, Na+-K+-ATPase) were significantly inhibited (p < 0.01) in the intestines of fish exposed to 500 μg l?1 PCZ, compared with controls. We suggest that long-term exposure to PCZ could result in several responses in intestine-related biochemical markers, which potentially could be used as indicators for monitoring residual PCZ present in the aquatic environment.  相似文献   

11.
N-acetylneuraminic acid (NeuAc) has recently drawn much attention owing to its wide applications in many aspects. Besides extraction from natural materials, production of NeuAc was recently focused on enzymatic synthesis and whole-cell biocatalysis. In this study, we designed an artificial NeuAc biosynthetic pathway through intermediate N-acetylglucosamine 6-phosphate in Escherichia coli. In this pathway, N-acetylglucosamine 2-epimerase (slr1975) and glucosamine-6-phosphate acetyltransferase (GNA1) were heterologously introduced into E. coli from Synechocystis sp. PCC6803 and Saccharomyces cerevisiae EBY100, respectively. By derepressing the feedback inhibition of glucosamine-6-phosphate synthase, increasing the accumulation of N-acetylglucosamine and pyruvate, and blocking the catabolism of NeuAc, we were able to produce 1.62 g l?1 NeuAc in recombinant E. coli directly from glucose. The NeuAc yield reached 7.85 g l?1 in fed-batch fermentation. This process offered an efficient fermentative method to produce NeuAc in microorganisms using glucose as carbon source and can be optimized for further improvement.  相似文献   

12.
The interest on use of lignocellulose for producing chemicals is increasing as these feedstocks are low cost, renewable and widespread sources of sugars. Corncob is an attractive raw material for xylitol production due to its high content of xylan. In this study, hemicellulose hydrolysate from corncobs without detoxification was used for xylitol production by Candida tropicalis CCTCC M2012462. Compared with prepared xylose medium, xylitol production with dilute acid hydrolysate medium does not seem to influence specific xylose reductase activity. The decrease in xylitol productivity with dilute acid hydrolysate medium is a result of a lower biomass concentration and lag-phase time. It appears that biomass growth rate is essential for xylitol production. In xylitol fermentation with a low initial inhibitors concentration and substrate feeding strategy, a maximal xylitol concentration of 38.8 g l−1 was obtained after 84 h of fermentation, giving a yield of 0.7 g g−1 xylose and a productivity of 0.46 g l−1 h−1.  相似文献   

13.
Cr(VI) removal by Scenedesmus incrassatulus was characterized in a continuous culture system using a split-cylinder internal-loop airlift photobioreactor fed continuously with a synthetic effluent containing 1.0 mg Cr(VI) l?1 at dilution rate (D) of 0.3 d?1. At steady state, there was a small increase (6%) on the dry biomass (DB) concentration of Cr(VI)-treated cultures compared with the control culture. 1.0 mg Cr(VI) l?1 reduced the photosynthetic pigments content and altered the cellular morphology, the gain in dry weight was not affected. At steady state, Cr(VI) removal efficiency was 43.5 ± 1.0% and Cr(VI) uptake was 1.7 ± 0.1 mg Cr(VI) g?1 DB. The system reached a specific metal removal rate of 458 μg Cr(VI) g?1 DB d?1, and a volumetric removal rate of 132 μg Cr(VI) l?1 d?1.  相似文献   

14.
The toxic effects of Aroclor 1254 (0.05, 0.5, 5 and 50 μg l?1) on scallop (Chlamys farreri) immune system in vivo were studied. The results showed that Aroclor 1254 had significant toxic effect on the parameters tested in this paper (P < 0.05). The total number of haemocytes, the proportion of granulocytes, phagocytosis in all groups as well as the lysosomal membrane stability (LMS) in 5, 50 μg l?1 and bacteriolytic activity 0.5, 5, 50 μg l?1 treatments decreased significantly, while the proportion of hyalinocytes and the production of O2- in all treatments remarkably increased during the sampling time and tended to be stable gradually after 6–15 d. The bacteriolytic activity in 0.05 μg l?1 treatments, LMS in 0.05, 0.5 μg l?1 groups and the DNA damage (comet ratios and arbitrary values) in all treatments increased at the beginning of exposure and reached their peaks on day 1, day 1, day 6 and day 3, following that they all decreased gradually and became stable after 9–15 d. When the indices reached stability, except for DNA damage was higher than controls, the others were all significantly lower than those of controls (P < 0.05). Thus, Aroclor 1254 has evident toxic effects on scallop immune system, which supports the view that a relationship exists between pollution and immunomodulation in aquatic organisms. Also it supports the speculation that the PCBs pollution is one of the important reasons of the mass mortality of the C. farreri.  相似文献   

15.
A metabolically engineered Escherichia coli has been constructed for the production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] from unrelated carbon sources. Genes involved in succinate degradation in Clostridium kluyveri and P(3HB) accumulation pathway of Ralstonia eutropha were co-expressed for the synthesis of the above copolyester. E. coli native succinate semialdehyde dehydrogenase genes sad and gabD were both deleted for eliminating succinate formation from succinate semialdehyde, which functioned to enhance the carbon flux to 4HB biosynthesis. The metabolically engineered E. coli produced 9.4 g l?1 cell dry weight containing 65.5% P(3HB-co-11.1 mol% 4HB) using glucose as carbon source in a 48 h shake flask growth. The presence of 1.5–2 g l?1 α-ketoglutarate or 1.0 g l?1 citrate enhanced the 4HB monomer content from 11.1% to more than 20%. In a 6 l fermentor study, a 23.5 g l?1 cell dry weight containing 62.7% P(3HB-co-12.5 mol% 4HB) was obtained after 29 h of cultivation. To the best of our knowledge, this study reports the highest 4HB monomer content in P(3HB-co-4HB) produced from unrelated carbon sources.  相似文献   

16.
Five actinomycete strains isolated from pesticide-contaminated sediments were able to grow in the presence of 10 μg l−1 lindane, an organochlorine pesticide. The strain growing best in the presence of lindane as the only carbon source was identified as Streptomyces sp. M7. After 96 h of incubation in synthetic medium containing lindane and glucose, both substrates were simultaneously consumed; glucose 6.0 g l−1 improved lindane degradation and obtained biomass. When Streptomyces sp. M7 was cultured in presence of lindane plus glucose, the disappearance of the pesticide from the medium and the lindane degradation was observed after 72 h of incubation. This is the first report of lindane degradation without intracellular accumulation or biotransformation products of lindane using Streptomyces sp. under aerobic conditions.Relevance to industryThis is the first report of lindane removal without intracellular accumulation or biotransformation products of lindane using Streptomyces sp. strain M7, an actinomycete isolated from pesticide-contaminated sediments from Tucuman, Argentina.  相似文献   

17.
The combined effects of initial sucrose and initial Remazol Turquoise Blue-G (RTBG) reactive dye concentrations on the specific growth rate and dye bioaccumulation efficiency of Candida utilis was investigated and optimized using response surface methodology (RSM) in this study. A 22 full factorial central composite design was successfully used for experimental design and analyses of the results. Two numerical correlations fitted to a second-order quadratic equation were obtained to estimate the responses of specific growth rate and dye uptake yield. The statistical analysis indicated that both the microbial growth and removal yield of dye enhanced with raising sucrose concentration up to 15 g l?1 and diminished with the increase in initial RTBG dye concentration up to approximately 500 mg l?1 due to inhibition caused by high concentrations of RTBG dye. The optimum combination predicted via RSM confirmed that C. utilis was capable of bioaccumulating RTBG with the maximum uptake yield of 82.0% in 15 g l?1 sucrose and 50 mg l?1 dye containing growth medium.  相似文献   

18.
This paper describes the kinetic characterization of a recombinant whole-cell biocatalyst for the stereoselective Baeyer–Villiger type oxidation of bicyclo[3.2.0]hept-2-en-6-one to its corresponding regio-isomeric lactones (−)-(1S,5R)-2-oxabicyclo[3.3.0]oct-6-en-3-one and (−)-(1R,5S)-3-oxabicyclo[3.3.0]oct-6-en-2-one. Escherichia coli TOP10 [pQR239], expressing cyclohexanone monooxygenase (CHMO) from Acinetobacter calcoaceticus (NCIMB 9871), was shown to be suitable for this biotransformation since it expressed CHMO at a high level, was simple to produce, contained no contaminating lactone hydrolase activity and allowed the intracellular recycle of NAD(P)H necessary for the biotransformation. A small-scale biotransformation reactor (20 ml) was developed to allow rapid collection of intrinsic kinetic data. In this system, the optimized whole-cell biocatalyst exhibited a significantly lower specific lactone production activity (55–60 μmol min−1 g−1 dry weight) than that of sonicated cells (500 μmol min−1 g−1 dry weight). It was shown that this shortfall was comprised of a difference in the pH optima of the two biocatalyst forms and mass transfer limitations of the reactant and/or product across the cell barrier. Both reactant and product inhibition were evident. The optimum ketone concentration was between 0.2 and 0.4 g l−1 and at product concentrations above 4.5–5 g l−1 the specific activity of the whole cells was zero. These results suggest that a reactant feeding strategy and in situ product removal should be considered in subsequent process design.  相似文献   

19.
There are currently few successful examples of using straw hemicellulose as a carbon source in the fermentation industry. In this paper, hemicellulose hydrolysates were recovered from steam-exploded wheat straw (SEWS) and used to produce microbial oil. The effects of the steam explosion treatment conditions, the elution temperature and the ratio of elution water to SEWS on sugar recovery were examined. A broth with 3.8 g l?1 of reducing sugar and 22.3 g l?1 of total soluble sugars was obtained with a 10-fold excess (w/w) of water at 40 °C to wash the SEWS treated under steam explosion conditions at 200 °C for 5 min. This broth was used to produce microbial oil by the oleaginous fungus Microsphaeropsis sp., which was able to secrete xylanase to degrade oligosaccharides from straw hemicellulose and accumulate microbial oil. Under optimized conditions, the oil concentration was 2.6 g l?1. The yield of oil from sugar consumed was 0.14 g g?1. The microbial oil produced by this research could be used as feedstock for biodiesel production because the microbial oil was primarily composed of neutral lipids. This research establishes a novel protocol for microbial oil production from straw hemicellulose.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号