首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The decolorization potential of two bacterial consortia developed from a textile wastewater treatment plant showed that among the two mixed bacterial culture SKB-II was the most efficient in decolorizing individual as well as mixture of dyes. At 1.3 g L?1 starch supplementation in the basal medium by the end of 120 h decolorization of 80–96% of four out of the six individual azo dyes Congo red, Bordeaux, Ranocid Fast Blue and Blue BCC (10 mg L?1) was noted. The culture exhibited good potential ability in decolorizing 50–60% of all the dyes (Congo red, Bordeaux, Ranocid Fast Blue and Blue BCC) when present as a mixture at 10 mg L?1. The consortium SKB-II consisted of five different bacterial types identified by 16S rDNA sequence alignment as Bacillus vallismortis, Bacillus pumilus, Bacillus cereus, Bacillus subtilis and Bacillus megaterium which were further tested to decolorize dyes. The efficient ability of this developed consortium SKB-II to decolorize individual dyes and textile effluent using packed bed reactors is being carried out.  相似文献   

2.
Parasin I (PI) is a 19 amino acid peptide with potent antimicrobial activities against a broad spectrum of microorganisms and is a good candidate for development as a novel antimicrobial agent. The objective of this study was to express and characterize a codon optimized parasin I peptide fused with human lysozyme (hLY). A 513 bp cDNA fragment encoding the mature hLY protein and parasin I peptide was designed and synthesized according to the codon bias of Pichia pastoris. A 4 × Gly flexible amino acid linker with an enterokinase cleavage (DDDDK) was designed to link the PI to the C-terminal of hLY. The codon optimized recombinant hLY-PI was cloned into the pPICZαA vector and expressed in P. pastoris. The over-expressed extracellular rehLY-PI was purified using Ni sepharose affinity column and exhibited a molecular mass of approximately 18 kDa. After digested with enterokinase the rehLY-PI protein release its corresponding rehLY and rePI, with molecular mass of 16 kDa and 2 kDa, respectively, on Tricine-SDS-PAGE. The released rehLY exhibited similar lytical activity against Micrococcus lysodeikticus to its commercial hLY. The digested rehLY-PI product exhibited antimicrobial activities against Bacillus subtilis, Staphylococcus aureus and Escherichia coli, and synergism has been found between the released rePI and rehLY. In conclusion, we successfully optimized a rehLY-PI fusion protein encoding gene and over-expressed the rehLY-PI in P. pastoris. The recombination protein digested with enterokinase released functional hLY and antimicrobial parasin I, which demonstrates a potential for future use as an animal feed additive to partly replace antibiotic.  相似文献   

3.
A developed consortium-GR, consisting of Proteus vulgaris NCIM-2027 (PV) and Micrococcus glutamicus NCIM-2168 (MG), completely decolorized an azo dye Scarlet R under static anoxic condition with an average decolorization rate of 16,666 μg h?1; which is much faster than that of the pure cultures (PV, 3571 μg h?1; MG, 2500 μg h?1). Consortium-GR gave best decolorization performance with nearly complete mineralization of Scarlet R (over 90% TOC and COD reduction) within 3 h, much shorter relative to the individual strains. Induction in the riboflavin reductase and NADH–DCIP reductase was observed in the consortium, suggesting the involvement of these enzymes during the fast decolorization process. The FTIR and GC–MS analysis showed that 1,4-benzenediamine was formed during decolorization/degradation of Scarlet R by consortium-GR. Phytotoxicity studies revealed no toxicity of the biodegraded products of Scarlet R by consortium-GR. In addition, consortium-GR applied for mixture of industrial dyes showed 88% decolorization under static condition with significant reduction in TOC (62%) and COD (68%) within 72 h, suggesting potential application of this microbial consortium in bioremediation of dye-containing wastewater.  相似文献   

4.
This study aimed to produce inexpensive 5-aminolevulinic acid (ALA) in a non-sterile latex rubber sheet wastewater (RSW) by Rhodopseudomonas palustris TN114 and PP803 for the possibility to use in agricultural purposes by investigating the optimum conditions, and applying of wood vinegar (WV) as an economical source of levulinic acid to enhance ALA content. The Box–Behnken Design experiment was conducted under microaerobic-light conditions for 96 h with TN114, PP803 and their mixed culture (1:1) by varying initial pH, inoculum size (% v/v) and initial chemical oxygen demand (COD, mg/L). Results showed that the optimal condition (pH, % inoculum size, COD) of each set to produce extracellular ALA was found at 7.50, 6.00, 2000 for TN114; 7.50, 7.00, 3000 for PP803; and 7.50, 6.00, 4000 for a mixed culture; and each set achieved COD reduction as high as 63%, 71% and 75%, respectively. Addition of the optimal concentration of WV at mid log phase at 0.63% for TN114, and 1.25% for PP803 and the mixed culture significantly increased the ALA content by 3.7–4.2 times (128, 90 and 131 μM, respectively) compared to their controls. ALA production cost could be reduced approximately 31 times with WV on the basis of the amount of levulinic acid used. Effluent containing ALA for using in agriculture could be achieved by treating the RSW with the selected ALA producer R. palustris strains under the optimized condition with a little WV additive.  相似文献   

5.
The diversity and metal tolerance of endophytic fungi from six dominant plant species in a Pb–Zn mine wasteland in Yunnan, China were investigated. Four hundred and ninety-five endophytic fungi were isolated from 690 tissue segments. The endophytic fungal colonization extent and isolation extent ranged from 59 % to 75 %, and 0.42–0.93, respectively, and a positive correlation was detected between them. Stems harboured more endophytic fungi than leaves in each plant species, and the average colonization extent of stems was 82 %, being significantly higher than that of leaves (47 %) (P  0.001, chi-square test). The fungi were identified to 20 taxa in which Phoma, Alternaria and Peyronellaea were the dominant genera and the relative frequencies of them were 39.6 %, 19.0 % and 20.4 %, respectively. Metal tolerance test showed that 3.6 mM Pb2+ or 11.5 mM Zn2+ exhibited the greatest toxicity to some isolates and they did not grow on the metal-amended media. In contrast, some isolates were growth stimulated in the presence of tested metals. The isolates of Phoma were more sensitive to Zn2+ than the isolates of Alternaria and Peyronellaea. However, the sensitivity of isolates to Pb2+ was not significantly different among Phoma, Alternaria, Peyronellaea and other taxa (P > 0.05, chi-square test). Our results suggested that fungal endophyte colonization in Pb–Zn polluted plants is moderately abundant and some isolates have a marked adaptation to Pb2+ and Zn2+ metals, which has a potential application in phytoremediation in this area.  相似文献   

6.
To combine the advantage of the oleaginous yeast Yarrowia lipolytica with the high activity of some fungal lipases for oily wastewater treatment, an effective lipase-displaying arming yeast was constructed using the flocculation functional domain of Saccharomyces cerevisiae as the protein anchor. To estimate the effect of the whole-cell oily wastewater treatment, the lipase-displaying arming yeast was added into an open activated sludge bioreactor. Within 72 h of whole-cell treatment, 96.9% of oil and 97.6% of chemical oxygen demand (COD) were removed, while only 87.1% of oil and 91.8% of COD were removed in control A (Y. lipolytica Polg was added), 45.1% of oil and 67.5% of COD were removed in control B (no cell was added) in 72 h. The lipase-displaying arming yeast exhibited remarkable oil removal and COD degradation effect compared with the control samples, exemplifying its application potential.  相似文献   

7.
《Process Biochemistry》2010,45(2):230-238
The effectiveness of bioremediation technology in the removal of carbofuran from contaminated soil using a bioslurry phase sequencing batch reactor (SBR) was investigated. A 2-L laboratory glass bottle was used as a bioreactor with a working volume of 1.5 L at room temperature (27 ± 2 °C). One total cycle period of the SBR was comprised of 1 h of fill phase, 82 h of react phase, and 1 h of decant phase. The carbofuran concentration in the soil was 20 mg/kg soil. A carbofuran degrader isolated from carbofuran phytoremediated soil, namely Burkholderia cepacia PCL3 (PCL3) immobilized on corncob, was used as the inoculum. The results revealed that bioaugmentation treatment (addition of PCL3) gave the highest percentage of carbofuran removal (96.97%), followed by bioaugmentation together with biostimulation (addition of molasses) treatment (88.23%), suggesting that bioremediation was an effective technology for removing carbofuran in contaminated soil. Abiotic experiments, i.e. autoclaved soil slurry with corncob and no PCL3 treatment and autoclaved soil slurry with no PCL3 treatment, could adsorb 31.86% and 7.70% of carbofuran, respectively, which implied that soil and corncob could act as sorbents for the removal of carbofuran.  相似文献   

8.
《Fungal Ecology》2008,1(2-3):89-93
A total of 6125 fungal endophytes were isolated from 9000 leaf segments of 15 medicinal shrubs growing in Malnad region of Western Ghats, Southern India, during winter, monsoon, and summer seasons. These fungal isolates belonged to Ascomycota (8.6 %), Coelomycetes (26.0 %), Hyphomycetes (28.0 %), Mucoromycotina (0.3 %) and sterile forms (4.9 %). Alternaria, Chaetomium, Fusarium, Colletotrichum, Cladosporium, Penicillium, Phyllosticta and Xylaria were the most frequently isolated. Significantly more isolates were obtained during the winter season than monsoon and summer seasons.  相似文献   

9.
Two strains of the genus Acinetobacter, WCHAc060005T and WCHAc060007, were isolated from hospital sewage in China. The two strains showed different patterns of resistance to clinically important antibiotics and their taxonomic positions were investigated. Cells are Gram-negative, obligate aerobic, non-motile, catalase-positive and oxidase-negative coccobacilli. A preliminary analysis based on the 16S rRNA gene sequences indicated that the two strains had the highest similarity to Acinetobacter cumulans WCHAc060092T (99.02%). Whole-genome sequencing of the two strains and genus-wide phylogeny reconstruction based on a set of 107 Acinetobacter core genes indicated that they formed a separate and internally cohesive clade within the genus. The average nucleotide identity based on BLAST and in silico DNA–DNA hybridization values between the two new genomes were 99.77% and 98.7% respectively, whereas those between the two genomes and the known Acinetobacter species were <88.93% and <34.0%, respectively. A total of 7 different genes were found in the two genome sequences which encode resistance to five classes of antimicrobial agents, including clinically important carbapenems, oxyimino-cephalosporins, and quinolones. In addition, the combination of their ability to assimilate gentisate, but not l-glutamate and d,l-lactate could distinguish the two strains from all known Acinetobacter species. Based on these combined data, we concluded that the two strains represent a novel species of the genus Acinetobacter, for which the name Acinetobacter chengduensis sp. nov. is proposed. The type strain is WCHAc060005T (CCTCC AB 2019139 = GDMCC 1.1622 = JCM 33509).  相似文献   

10.
《Process Biochemistry》2007,42(3):449-453
An upflow anaerobic packed bed reactor was operated continuously with synthetic saline wastewater at different initial COD concentrations (COD0 = 1900–6300 mg/L), salt concentrations (0–5%, w/v) and hydraulic retention times (θH = 11–30 h) to investigate the effect of those operating parameters on COD removal from saline synthetic wastewater. Anaerobic salt tolerant bacteria, Halanaerobium lacusrosei, were used as dominant microbial culture in the process. The percent COD removal reached up to 94% at COD0 = 1900 mg/L, 19 h hydraulic retention time and 3% salt concentration. No substrate inhibition effect was observed at high feed CODs. Increasing hydraulic retention time from 11 h to 30 h resulted in a substantial improvement in the COD removal from 60% to 84% at around COD0 = 3400 mg/L and 3% salt concentration. Salt inhibition effect on COD utilization was observed at above 3% salt concentration. Modified Stover–Kincannon model was applied to the experimental data to determine the biokinetic coefficients. Saturation value constant, and maximum utilization rate constant of Stover–Kincannon model for COD were determined as KB = 5.3 g/L day, Umax = 7.05 g/L day, respectively.  相似文献   

11.
Contamination of plants and seeds with microorganisms is one of the main problems in the production and distribution of various agricultural products, as well as raw herbal material for the preparation of herbal remedies. In targeting microbial contamination, among other bacteria, Bacillus species showed a significant capacity for biocontrol. The antifungal activity of 14 isolates of Bacillus spp. against 15 fungal isolates from medicinal plants was examined utilizing a dual plate assay. The strongest and broadest antagonistic activity against all fungi tested was exhibited by isolates SS-12.6 and SS-13.1 (from a 43% to 74% reduction in fungal growth), while isolates SS-39.1 and SS-39.3 were effective against the fewest fungus species and also had the weakest antifungal activity. The effect of a crude lipopeptide extract (CLE) of Bacillus sp. SS-12.6 was similar to that achieved by a dual culture with isolate SS-12.6, confirming that the antagonism was the result of the antifungal activities of lipopeptides. In addition, essential oils of thyme (0.55 mg/mL) and savory (0.32 mg/mL) in various combinations with the CLE of SS-12.6 were tested for antifungal activity, and additive and synergistic effects for some of the fungi were obtained. When testing the effect of CLE, oils (0.40 mg/mL for thyme oil and 0.21 mg/mL for savory oil) and combinations in situ on marigold seeds, a reduction of total fungal infection without an adverse effect on germination was accomplished by 6-h treatments with CLE of SS-12.6 (85% reduction of fungal infection and 63% germination), supernatant from liquid culture of SS-12.6 (more than 90% reduction of fungal infection with 69% seed germination) and combinations of CLE and savory oil (77% reduction of fungal infection and 62% seed germination) and CLE with thyme and savory oils (about 75% reduction of fungal infection with 69% seed germination).  相似文献   

12.
An investigation was carried out on enzyme production of an oxidant and SDS-stable alkaline protease secreted by Bacillus clausii I-52 using the submerged fermentation and its application as a detergent additive. Maximum enzyme activity was produced when cells were grown under the submerged fermentation conditions at 37 °C for 48 h with an aeration rate of 1.5 vvm and agitation rate of 700 rpm in a medium (pH 10.65) containing (w/v): soybean meal, 20; wheat flour, 10; liquid maltose, 25; K2HPO4, 4; Na2HPO4, 1; MgSO4·7H2O, 0.1; NaCl, 4; FeSO4·7H2O, 0.5; Na2CO3, 6. The alkaline protease produced was found to be highly compatible and stable against not only the commercial detergent components such as α-orephin sulfonate and zeolite but also the commercial detergent preparations. Wash performance analysis using EMPA test fabrics revealed that BCAP exhibited high efficiency for the removal of protein stains in the presence of commercial detergents as well as surfactants. These results suggest that the alkaline protease produced from B. clausii I-52 which showed high stability against detergents has significance for an industrial perspective, especially, detergent additive.  相似文献   

13.
Biodegradation rate and the high molecular weight hydrocarbons are among the important concerns for bioremediation of crude oil. Inoculation of a non-oil-degrading bacterium as supplementary bacteria increased oil biodegradation from 57.1% to 63.0% after 10 days of incubation. Both the oil-degrading bacteria and the non-oil-degrading bacteria were isolated from Malaysian marine environment. Based on the 16S rDNA sequences, the oil-degrading bacteria was identified as Pseudomonas pseudoalcaligenes (99% similarity) while the non-oil-degrading bacterium was Erythrobacter citreus (99% similarity). E. citreus does not grow on crude oil enriched medium under present experimental condition but it withstands 5000 mg kg?1 Tapis blended crude oil in sediment. Under optimal condition, the oil-degrading bacterium; P. pseudoalcaligenes, alone utilized 583.3 ± 3.8 mg kg?1 (57.1%) at the rate of 3.97 × 10?10 mg kg?1 cell?1 day?1 Tapis blended crude oil from 1000 mg kg?1 oil-contaminated sediment. Inoculation of E. citreus as the supplementary bacteria to P. pseudoalcaligenes enhanced biodegradation. The bacterial consortium degraded 675.8 ± 18.5 mg kg?1 (63.0%) Tapis blended crude oil from the 1000 mg kg?1 oil-contaminated sediment. Biodegradation rate of the bacterial consortium increased significantly to 4.59 × 10?10 mg kg?1 cell?1 day?1 (p = 0.02). Improvement of the oil degradation by the bacterial consortium was due to the synergetic reaction among the bacterial inoculants. There are two implications: (1) E. citreus may have a role in removing self-growth-inhibiting compounds of P. pseudoalcaligens. (2) P. pseudoalcaligenes degraded Tapis blended crude oil while E. citreus competes for the partially degraded hydrocarbons by P. pseudoalcaligenes. P. pseudoalcaligenes forced to breakdown more hydrocarbons to sustain its metabolic requirement. The bacterial consortium degraded 78.7% of (C12–C34) total aliphatic hydrocarbons (TAHs) and 74.1% of the 16 USEPA prioritized polycyclic aromatic hydrocarbons.  相似文献   

14.
We report in this work the preparation and in vitro antimicrobial evaluation of novel amphiphilic aromatic amino alcohols synthesized by reductive amination of 4-alkyloxybenzaldehyde with 2-amino-2-hydroxymethyl-propane-1,3-diol. The antibacterial activity was determined against four standard strains (Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Pseudomonas aeruginosa) and 21 clinical isolates of methicillin-resistant Staphylococcus aureus. The antifungal activity was evaluated against four yeast (Candida albicans, Candida tropicalis, Candida glabrata and Candida parapsilosis). The results obtained showed a strong positive correlation between the lipophilicity and the antibiotic activity of the tested compounds. The best activities were obtained against the Gram-positive bacteria (MIC = 2–16 μg ml?1) for the five compounds bearing longer alkyl chains (4cg; 8–14 carbons), which were also the most active against Candida (MIC = 2–64 μg ml?1). Compound 4e exhibited the highest levels of inhibitory activity (MIC = 2–16 μg ml?1) against clinical isolates of MRSA. A concentration of twice the MIC resulted in bactericidal activity of 4d against 19 of the 21 clinical isolates.  相似文献   

15.
The microbial characteristics of granular sludge during the rapid start of an enhanced external circulating anaerobic reactor were studied to improve algae-laden water treatment efficiency. Results showed that algae laden water was effectively removed after about 35 d, and the removal rates of chemical oxygen demand (COD) and algal toxin were around 85% and 92%, respectively. Simultaneously, the gas generation rate was around 380 mL/gCOD. The microbial community structure in the granular sludge of the reactor was complicated, and dominated by coccus and filamentous bacteria. Methanosphaera, Methanolinea, Thermogymnomonas, Methanoregula, Methanomethylovorans, and Methanosaeta were the major microorganisms in the granular sludge. The activities of protease and coenzyme F420 were high in the granular sludge. The intermittent stirring device and the reverse-flow system were further found to overcome the disadvantage of the floating and crusting of cyanobacteria inside the reactor. Meanwhile, the effect of mass transfer inside the reactor can be accelerated to help give the reactor a rapid start.  相似文献   

16.
Biological control of belowground stages of the black vine weevil Otiorhynchus sulcatus F. (Coleoptera: Curculionidae) in strawberries in cool temperate regions using entomopathogens is challenged by low temperatures during the periods when larvae are vulnerable to infections. In a laboratory study we tested six indigenous Norwegian isolates of entomopathogenic fungi (one Beauveria bassiana, three Beauveria pseudobassiana, and two Metarhizium brunneum; Ascomycota: Hypocreales) for their efficacy against O. sulcatus larvae at 6, 12, and 18 °C. At the lowest temperature only Beauveria spp. affected survival of O. sulcatus while all three fungal species reduced larval survival compared to the control treatment at 12 and 18 °C. Two of the Norwegian isolates, one B. pseudobassiana and one M. brunneum, were then evaluated for long-term persistence (>1 year) in the bulk soil and the rhizosphere soil of strawberries in a semi-field experiment. An exotic isolate of M. brunneum sharing origin with a widespread commercial biocontrol agent (F52/Met52 (Novozymes)) was included for comparison. All three isolates showed significantly higher abundances in the rhizosphere soil compared to bulk soil at 153, 366, and 471 days after inoculation, thus indicating rhizosphere competence for B. pseudobassiana. Notably, CFU levels for both Norwegian isolates were much higher than for the exotic M. brunneum isolate. Selection of locally adapted isolates may therefore be of importance when considering biocontrol strategies of belowground pests in strawberry production.  相似文献   

17.
A horizontal subsurface flow (HSSF) and a free water surface flow (FWSF) constructed wetlands (4 m2 of each) were set up on the campus of Harran University, Sanliurfa, Turkey. The main objective of the research was to compare the performance of two systems to decide the better one for future planning of wastewater treatment system on the campus. Both of the wetland systems were planted with Phragmites australis and Canna indica. During the observation period (10 months), environmental conditions such as pH, temperature and total chemical oxygen demand (COD), soluble COD, total biochemical oxygen demand (BOD), soluble BOD, total suspended solids (TSS), total phosphate (TP), total nitrogen (TN) removal efficiencies of the systems were determined. According to the results, average yearly removal efficiencies for the HSSF and the FWSF, respectively, were as follows: total COD (75.7% and 69.9%), soluble COD (85.4% and 84.3%), total BOD (79.6% and 87.6%), soluble BOD (87.7% and 95.3%), TN (33.2% and 39.4%), and TP (31.5% and 6.5%). Soluble COD and BOD removal efficiencies of both systems increased gradually since the start-up. After nine months of operation, above 90% removal of organic matters were observed. The treatment performances of the HSSF were better than that of the FWSF with regard to the removal of suspended solids and total COD at especially high temperatures. In FWSF systems, COD concentrations extremely exceeded the discharge limit values due to high concentrations of algae in spring months.The performance of the two systems was modelled using an artificial neural network-back-propagation algorithm. The ANN model was competent at providing reasonable match between the measured and the predicted concentrations of total COD (R = 0.90 for HSSF and R = 0.96 for FWSF), soluble COD (R = 0.90 for HSSF and R = 0.74 for FWSF) and total BOD (R = 0.94 for HSSF and R = 0.84 for FWSF) in the effluents of constructed wetlands.  相似文献   

18.
Two new species of Gram-positive cocci were isolated from the uropygial glands of wild woodpeckers (Dendrocopos major) originating from different locations in Germany. A polyphasic approach confirmed the affiliation of the isolates to the genus Kocuria. Phylogenetic analysis based on the 16S rRNA gene showed high degree of similarity to Kocuria koreensis DSM 23367T (99.0% for both isolates). However, low ANIb values of <80% unequivocally separated the new species from K. koreensis. This finding was further corroborated by DNA fingerprinting and analysis of polar lipid profiles. Furthermore, growth characteristics, biochemical tests, MALDI-TOF MS analysis, and G + C contents clearly differentiated the isolates from their known relatives. Besides, the woodpecker isolates significantly differed from each other in their whole-cell protein profiles, DNA fingerprints, and ANIb values. In conclusion, the isolated microorganisms constitute members of two new species, for which the names Kocuria uropygioeca sp. nov. and Kocuria uropygialis sp. nov. are proposed. The type strains are 36T (DSM 101740T = LMG 29265T) and 257T (=DSM 101741T = LMG 29266T) for K. uropygialis sp. nov. and K. uropygioeca sp. nov., respectively.  相似文献   

19.
This study investigated biocoagulation of dairy process wastewater with a new system of the micro-aerobic sequencing batch reactor (micro-aerobic SBR) at a batch bench scale. Lactobacillus casei TISTR 1500 was inoculated to produce acid coagulants under non-sterile acid conditions. Colloidal proteins were removed by employing a solid–liquid separation step as a pre-treatment. The micro-aerobic SBR process had the efficiencies of organic reduction with 73.6 ± 5.9%, 90.1 ± 1.3%, and 85.7 ± 0.6% of chemical oxygen demand (COD), proteins, and sugars without adding external coagulant, and flocculant, respectively. Sustained acid fermentation was achieved for at least 150 cycles by applying an indigenous fill-react-settle-draw-idle sequence in the micro-aerobic SBR process and the use of different solid retention times at 3, 6, 9, 12 and 15 d, consecutively. The micro-aerobic SBR system was able to support lactic acid bacteria (LAB) growth with long SRT (12 and 15 d), due to at least 3 factors: the large inoculum size employed, relatively high concentration of lactic acid produced, and the change in pH during the restoring stage. Current process offered a possible alternative to the more costly chemical and other biological pre-treatments.  相似文献   

20.
BackgroundCandidiasis is one of the most important among recurrent invasive yeast infections in patients, thus antifungal treatment becomes a challenge.AimsThe aim of this study was to evaluate the in vitro activity of clinical Candida albicans isolates from blood cultures to fluconazole, amphotericin B and anidulafungin, in a hospital from Rio Grande do Sul, Brazil.MethodsThe susceptibility of 153 isolates to the 3 drugs mentioned was tested according to Clinical and Laboratory Standars Institute. Minimal inhibitory and fungicidal concentrations (MIC, MFC, respectively) of each drug were determined, as well as the epidemiological cutoff value (ECV).ResultsAll of the isolates were susceptible to anidulafungin, MIC and MFC  1 μg/ml; however, when compared with ECV, 3% of the isolates exhibited higher values against fluconazole, 96% were susceptible, 3% susceptible dose-dependent, and 1% resistant. Also, it was observed that 21% of the isolates exhibited higher values than ECV. One isolate was resistant to amphotericin B; the other ones, susceptible, based on the MFC; furthermore, 1.5% of the isolates exhibited higher values.ConclusionsC. albicans isolates exhibited more susceptibility to anidulafungin, and 90% of them (MIC90) exhibited the lowest values against amphotericin B. Based on ECV and Pfaller classification, isolates could be resistant to fluconazole, demonstrating the importance of the combination of these parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号