共查询到10条相似文献,搜索用时 60 毫秒
1.
彩叶草叶片衰老相关新基因Cbcbs的分子特征和功能分析 总被引:1,自引:0,他引:1
叶片衰老是观叶植物观赏性降低的重要因素之一.为研究彩叶草叶片衰老变化的分子机理,在构建彩叶草衰老叶片cDNA文库及小型EST库的基础上,以1条新的具有胱硫醚 β 合酶(cystathionine beta synthase, CBS)结构域的EST序列为探针,通过RACE与文库结合的 方法,克隆了1个具有1对完整CBS结构域的全长cDNA,Cbcbs.Cbcbs cDNA 全长859 bp,包含1个609 bp的ORF框,编码202个氨基酸.其5′UTR区含有1个终止子TAA,3′UTR区含有推测的加尾信号AATAAA和ATTTA元件.CbCBS N端含有线粒体转运肽,具有2个保守的CBS结构域,4个酪蛋白激酶Ⅱ(casein kinase Ⅱ,CKⅡ)磷酸化位点,3个蛋白激酶C(protein kinase c,PKC)磷酸化位点和1个酪氨酸硫化(tyrosine sulfation,TS)位点.序列比较和进化分析表明,CbCBS是与衰老或应急相关的蛋白.二级结构和三级结构预测表明,CbCBS的功能主要由CBS结构域决定.RT-PCR分析表明,该基因在叶的各个时期均有表达,但随叶片衰老进程的加快而表达增加,是一个叶衰老相关基因(SAG),推测在线粒体中成熟的CbCBS可能作为细胞能量传感器,在叶衰老引起的能量应急中参与细胞能量水平的调节. 相似文献
2.
One of two tandem Arabidopsis genes homologous to monosaccharide transporters is senescence-associated 总被引:2,自引:0,他引:2
A gene designated SFP1, which is similar to major facilitator superfamily monosaccharide transporters, is induced during leaf senescence. Genomic sequence analysis identified a second highly similar and closely linked gene, SFP2, suggesting that SFP1 and SFP2 may have arisen through a recent duplication event. However, RNA gel-blot analyses and histochemical localization of a reporter gene activity in transgenic plants show that SFP1 and SFP2 are differentially regulated and that only SFP1 is induced during leaf senescence. The increase in SFP1 gene expression during leaf senescence is paralleled by an accumulation of monosaccharides. Possible roles for SFP1 in sugar transport during leaf senescence are discussed. 相似文献
3.
Leaf senescence is the final developmental stage of a leaf. The progression of barley primary leaf senescence was followed by measuring the senescence-specific decrease in chlorophyll content and photosystem II efficiency. In order to isolate novel factors involved in leaf senescence, a differential display approach with mRNA populations from young and senescing primary barley leaves was applied. In this approach, 90 senescence up-regulated cDNAs were identified. Nine of these clones were, after sequence analyses, further characterized. The senescence-associated expression was confirmed by Northern analyses or quantitative RealTime-PCR. In addition, involvement of the phytohormones ethylene and abscisic acid in regulation of these nine novel senescence-induced cDNA fragments was investigated. Two cDNA clones showed homologies to genes with a putative regulatory function. Two clones possessed high homologies to barley retroelements, and five clones may be involved in degradation or transport processes. One of these genes was further analysed. It encodes an ADP ribosylation factor 1-like protein (HvARF1) and includes sequence motifs representing a myristoylation site and four typical and well conserved ARF-like protein domains. The localization of the protein was investigated by confocal laser scanning microscopy of onion epidermal cells after particle bombardment with chimeric HvARF1-GFP constructs. Possible physiological roles of these nine novel SAGs during barley leaf senescence are discussed. 相似文献
4.
5.
H2O2诱发人成纤维细胞衰老样变化的基因表达谱 总被引:3,自引:0,他引:3
以 5 0 μmol/LH2 O2 作用体外培养的人胚肺二倍体成纤维细胞 4次 ,使之出现不可逆的衰老表型 .提取年轻细胞及H2 O2 处理早老细胞的mRNA ,以荧光物Cy3标记年轻细胞cDNA ,Cy5标记H2 O2 处理的细胞cDNA ,并与点有 40 96条人类基因的芯片杂交 ,利用计算机数据处理判断基因是否存在表达差异 .结果显示 :有 12 3种基因的表达变化较显著 ,这些基因参与细胞周期进程、细胞代谢及蛋白质修饰、细胞外基质及细胞骨架蛋白的形成和调节、炎症反应、调节受体酪氨酸蛋白激酶和G蛋白耦联受体信号转导 . 相似文献
6.
以50 μmol/L H2O2作用体外培养的人胚肺二倍体成纤维细胞4次,使之出现不可逆的衰老表型.提取年轻细胞及H2O2处理早老细胞的mRNA,以荧光物Cy3标记年轻细胞cDNA,Cy5标记H2O2处理的细胞cDNA,并与点有4 096条人类基因的芯片杂交,利用计算机数据处理判断基因是否存在表达差异.结果显示:有123种基因的表达变化较显著,这些基因参与细胞周期进程、细胞代谢及蛋白质修饰、细胞外基质及细胞骨架蛋白的形成和调节、炎症反应、调节受体酪氨酸蛋白激酶和G蛋白耦联受体信号转导. 相似文献
7.
Griffiths Catherine M. Hosken Sally E. Oliver Duncan Chojecki Jan Thomas Howard 《Plant molecular biology》1997,34(5):815-821
Sequence analysis of a 1.4 kb clone from a cDNA library of senescing Zea mays leaves reveals an open reading frame for a 360 amino acid protein. Both the DNA and deduced amino acid sequences are highly homologous to the cysteine proteinases oryzain and aleurain. Northern analysis demonstrates that the corresponding RNA level increases during natural leaf senescence, seedling germination and in chilling of tolerant maize lines, but decreases in a sensitive line. The mRNA level also decreases in regreening leaves, in dark-induced senescence and in nutrient or water stress. Southern and RFLP analysis provide evidence that the gene has two copies, on chromosomes 2 and 7. 相似文献
8.
Gepstein S Sabehi G Carp MJ Hajouj T Nesher MF Yariv I Dor C Bassani M 《The Plant journal : for cell and molecular biology》2003,36(5):629-642
Leaf senescence is a form of programmed cell death, and is believed to involve preferential expression of a specific set of \"senescence-associated genes\" (SAGs). To decipher the molecular mechanisms and the predicted complex network of regulatory pathways involved in the senescence program, we have carried out a large-scale gene identification study in a reference plant, Arabidopsis thaliana. Using suppression subtractive hybridization, we isolated approximately 800 cDNA clones representing SAGs expressed in senescing leaves. Differential expression was confirmed by Northern blot analysis for 130 non-redundant genes. Over 70 of the identified genes have not previously been shown to participate in the senescence process. SAG-encoded proteins are likely to participate in macromolecule degradation, detoxification of oxidative metabolites, induction of defense mechanisms, and signaling and regulatory events. Temporal expression profiles of selected genes displayed several distinct patterns, from expression at a very early stage, to the terminal phase of the senescence syndrome. Expression of some of the novel SAGs, in response to age, leaf detachment, darkness, and ethylene and cytokinin treatment was compared. The large repertoire of SAGs identified here provides global insights about regulatory, biochemical and cellular events occurring during leaf senescence. 相似文献
9.
10.
Jing HC Sturre MJ Hille J Dijkwel PP 《The Plant journal : for cell and molecular biology》2002,32(1):51-63
The onset of leaf senescence is controlled by leaf age and ethylene can promote leaf senescence within a specific age window. We exploited the interaction between leaf age and ethylene and isolated mutants with altered leaf senescence that are named as onset of leaf death (old) mutants. Early leaf senescence mutants representing three genetic loci were selected and their senescence syndromes were characterised using phenotypical, physiological and molecular markers. old1 is represented by three recessive alleles and displayed earlier senescence both in air and upon ethylene exposure. The etiolated old1 seedlings exhibited a hypersensitive triple response. old2 is a dominant trait and the mutant plants were indistinguishable from the wild-type when grown in air but showed an earlier senescence syndrome upon ethylene treatment. old3 is a semi-dominant trait and its earlier onset of senescence is independent of ethylene treatment. Analyses of the chlorophyll degradation, ion leakage and SAG expression showed that leaf senescence was advanced in ethylene-treated old2 plants and in both air-grown and ethylene-treated old1 and old3 plants. Epistatic analysis indicated that OLD1 might act downstream of OLD2 and upstream of OLD3 and mediate the interaction between leaf age and ethylene. A genetic model was proposed that links the three OLD genes and ethylene into a regulatory pathway controlling the onset of leaf senescence. 相似文献