首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Left ventricular (LV) wave speed (LVWS) was studied experimentally and confirmed in theory. Combining the definition of elastance (E) with the equations for the conservation of mass and momentum shows that LVWS is proportional to the square root of ELA, where L is long-axis length and A is the cross-sectional area, and the density of the blood. (We defined ELA = gamma, where gamma is compressibility.) We studied nine open chest, anesthetized dogs, three of which were studied during caval constriction when LV end-diastolic pressure was < or =0 mmHg. The hearts were paced at approximately 90 beats/min, and LV cross-sectional area was measured by using two pairs of ultrasonic crystals; E was calculated from the LV pressure-area loop. A pulse generator was connected to the LV apex, and LVWS was measured by using two pressure transducers: one near the apex and the other near the base. Their distance was measured roentgenographically and compared with the diameter of a reference ball. LVWS ranged from approximately 1 m/s during diastole to approximately 10 m/s during systole. The slope of the log c (where c is wave speed) vs. log gamma was 0.546, which is in agreement with theory (0.5). When gamma < or = 0, LVWS was approximately 1.5 m/s.  相似文献   

3.
Many cell types rely on asymmetrically localized PAR proteins to become polarized. New evidence reveals that cortical flows powered by actomyosin contractions can mobilize PAR complexes to create distinct cortical domains.  相似文献   

4.
5.
Considering waves in the arteries as infinitesimal wave fronts rather than sinusoidal wavetrains, the change in pressure across the wave front, dP, is related to the change in velocity, dU, that it induces by the "water hammer" equation, dP=+/-rhocdU, where rho is the density of blood and c is the local wave speed. When only unidirectional waves are present, this relationship corresponds to a straight line when P is plotted against U with slope rhoc. When both forward and backward waves are present, the PU-loop is no longer linear. Measurements in latex tubes and systemic and pulmonary arteries exhibit a linear range during early systole and this provides a way of determining the local wave speed from the slope of the linear portion of the loop. Once the wave speed is known, it is also possible to separate the measured P and U into their forward and backward components. In cases where reflected waves are prominent, this separation of waves can help clarify the pattern of waves in the arteries throughout the cardiac cycle.  相似文献   

6.
Lighting up the cell surface with evanescent wave microscopy.   总被引:9,自引:0,他引:9  
Evanescent wave microscopy, also termed total internal reflection fluorescence microscopy (TIR-FM), has shed new light on important cellular processes taking place near the plasma membrane. For example, this technique can enable the direct observation of membrane fusion of synaptic vesicles and the movement of single molecules during signal transduction. There has been a recent surge in the popularity of this technique with the advent of green-fluorescent protein (GFP) as a fluorescent marker and new technical developments. These technical developments and some of the latest applications of TIR-FM are the subject of this review.  相似文献   

7.
8.
9.
10.
Surface acoustic wave sensors operating in liquid generally cause problems resulting from wire bonding. The authors present an approach for a biosensor where the need for bonding wires is eliminated by utilizing inductive coupling of the sensor device to the RF circuitry. Protection of the electrodes from the liquid is achieved by coating the device surface with a SiO2 layer, resulting in a simplified handling of the devices. The first measurements with a sensor operating at 420 MHz are presented, demonstrating the potential of this operating principle for biosensing.  相似文献   

11.
12.
13.
The alterations in pulsatile hemodynamics that occur during hypoxic pulmonary vasoconstriction have not been well characterized. Changes in oscillatory hemodynamics, however, may affect right ventricular-pulmonary vascular coupling and the dissipation of energy within the lung vasculature. To better define hypoxic pulsatile hemodynamics, we measured main pulmonary artery proximal and distal micromanometric pressures and ultrasonic flow in four open-chest calves during progressive hypoxia. Main pulmonary artery impedance and pressure transmission spectra were calculated using spectral analysis methods. Measured pressure and flow signals were separated in the time domain into forward and backward components. Hypoxia increased pulmonary blood pressure and resistance and produced multiple modifications in the impedance and pressure transmission spectra that indicated increased wave reflections and elasticity. The impedance and apparent phase velocity first-harmonic values were increased in amplitude, and the pressure transmission modulus plot showed an increased peak value. In addition, the impedance modulus plot demonstrated a rightward shift and increased oscillation in the mid- to high-frequency range. The time domain analysis also confirmed increased wave reflections and elasticity. Hypoxia produced large backward-traveling (reflected) pressure and flow waves. The initial portions of these waves arrived at the heart during systole, producing characteristic changes in the measured pressure and flow waveforms. With prolonged hypoxia, main pulmonary artery pulse wave velocity increased by 30%. Thus, hypoxia is associated with complex alterations in pulmonary artery elasticity and wave reflections that act to increase the oscillatory afterload of the right ventricle.  相似文献   

14.
A transient increase in intracellular free calcium is believed to be the signal responsible for the stimulation of the egg metabolism at fertilization and the resumption of the cell cycle. We have studied how the polyphosphoinositides (PPI) turn over at fertilization in sea urchin eggs, in order to determine the relationship between the metabolism of these lipids and the calcium signal. We compare the patterns of PPI turnover that occur during the first minute following fertilization in eggs in which PPI are labelled to steady state with [3H]inositol or [3H]arachidonate with that in which PPI are labelled for a shorter period with [3H]inositol. When eggs are labelled to apparent isotopic equilibrium with either [3H]inositol or [3H]arachidonate, no early increase in [3H]PtdInsP2 occurs while PtdIns decreases slightly. On the contrary, when not labelled to isotopic equilibrium, all [3H]PPI increase during the first 15 seconds following fertilization. We find that, within seconds, fertilization triggers a 600-fold increase in the turnover of PPI, producing an amount of InsP3 apparently sufficient to trigger calcium release. We suggest that phosphoinositidase C and PtdInsP kinase, responsible respectively for the hydrolysis and synthesis of PtdInsP2, are both stimulated to a comparable degree in the first 30 seconds following fertilization and that net changes in the amount of PtdInsP2 at fertilization are very sensitive to the relative levels of activation of the two enzymes. Activating the eggs with the calcium ionophore A23187 showed that both these enzymes are sensitive to calcium, suggesting that calcium-dependent InsP3 production might play a role in the initiation and/or the propagation of the fertilization calcium wave.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Changes in the slope of haemoglobin-oxygen dissociation curve and its position were studied before and after the influence of long wave u.v. irradiation. Haemoglobin showed a lower than normal affinity for oxygen when exposed to 5.45 x 10(-3) J/cm2 and to lesser extent to doses of 10.90 x 10(-3) J/cm2. The elevation in P50 (representing PO2 at which Hb is half saturated) at these doses is mainly due to the new acidic groups which, by unfolding of this globular protein, become exposed in its surface. The fall in P50 at relatively high doses was found as a result of methaemoglobin increase and the partial dissociation of Hb tetramer to dimer and monomer.  相似文献   

16.
Calcium waves are well-known hallmarks of egg activation that trigger resumption of the cell cycle and development of the embryo. These waves rapidly and efficiently assure that activation signals are transmitted to all regions of the egg. Although the mechanism by which the calcium wave propagates across an egg as large as that of Xenopus is not known, two models prevail. One model is a wave of calcium-induced calcium release (CICR) and the other is propagation by inositol-induced calcium release (IICR). IICR requires a wave of phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis, generating two second messengers, IP3, which then releases calcium and DAG, which activates protein kinase C (PKC). We show here that a wave of PKC-green fluorescent protein travels across the egg immediately following, and at the same velocity as, the calcium wave. This is the first example of a PKC wave in a vertebrate egg and supports the IICR model of wave propagation.  相似文献   

17.
A Palmer  J Xu  S C Kuo    D Wirtz 《Biophysical journal》1999,76(2):1063-1071
Filamentous actin (F-actin), one of the constituents of the cytoskeleton, is believed to be the most important participant in the motion and mechanical integrity of eukaryotic cells. Traditionally, the viscoelastic moduli of F-actin networks have been measured by imposing a small mechanical strain and quantifying the resulting stress. The magnitude of the viscoelastic moduli, their concentration dependence and strain dependence, as well as the viscoelastic nature (solid-like or liquid-like) of networks of uncross-linked F-actin, have been the subjects of debate. Although this paper helps to resolve the debate and establishes the extent of the linear regime of F-actin networks' rheology, we report novel measurements of the high-frequency behavior of networks of F-actin, using a noninvasive light-scattering based technique, diffusing wave spectroscopy (DWS). Because no external strain is applied, our optical assay generates measurements of the mechanical properties of F-actin networks that avoid many ambiguities inherent in mechanical measurements. We observe that the elastic modulus has a small magnitude, no strain dependence, and a weak concentration dependence. Therefore, F-actin alone is not sufficient to generate the elastic modulus necessary to sustain the structural rigidity of most cells or support new cellular protrusions. Unlike previous studies, our measurements show that the mechanical properties of F-actin are highly dependent on the frequency content of the deformation. We show that the loss modulus unexpectedly dominates the elastic modulus at high frequencies, which are key for fast transitions. Finally, the measured mean square displacement of the optical probes, which is also generated by DWS measurements, offers new insight into the local bending fluctuations of the individual actin filaments and shows how they generate enhanced dissipation at short time scales.  相似文献   

18.
19.
Stress wave velocities in bovine patellar tendon.   总被引:1,自引:0,他引:1  
The velocity of longitudinal stress waves in an elastic body is given by the square root of the ratio of its elastic modulus to its density. In tendinous and ligamentous tissue, the elastic modulus increases with strain and with strain rate. Therefore, it was postulated that stress wave velocity would also increase with increasing strain and strain rate. The purpose of this study was to determine the velocity of stress waves in tendinous tissue as a function of strain and to compare these values to those predicted using the elastic modulus derived from quasi-static testing. Five bovine patellar tendons were harvested and potted as bone-tendon-bone specimens. Quasi-static mechanical properties were determined in tension at a deformation rate of 100 mm/s. Impact loading was employed to determine wave velocity at various strain levels, achieved by preloading the tendon. Following impact, there was a measurable delay in force transmission across the specimen and this delay decreased with increasing tendon strain. The wave velocities at tendon strains of 0.0075, 0.015, and 0.0225 were determined to be 260 +/- 52 m/s, 360 +/- 71 m/s, and 461 +/- 94 m/s, respectively. These velocities were significantly (p < 0.01) faster than those predicted using elastic moduli derived from the quasi-static tests by 52, 45, and 41 percent, respectively. This study has documented that stress wave velocity in patellar tendon increases with increasing strain and is underestimated with a modulus estimated from quasi-static testing.  相似文献   

20.
This paper reports experimental developments in the construction and operation of a single-mode fibre-optic evanescent wave biosensor using an exposed core silica single-mode fibre embedded in a silica block. The device was able to monitor the concentration of a blue dye, Procion Blue MX-G, in overlayers of various refractive indices. The practicality of such a biosensor has been demonstrated with a colorimetric enzyme assay system. Penicillin G in the 0-0.4 mM concentration range was monitored at 633 nm by the decoloration of the starch-iodine reagent when Bacillus cereus penicillinase was immobilized over the exposed core of the monomode fibre.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号