首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In previous studies elevation of intracellular Ca2+ was shown to cause prolonged reduction of two voltage-dependent K+ currents (IA and ICa2+-K+) across the membrane of the isolated Hermissenda photoreceptor, the type B cell (Alkon et al., 1982b; Alkon and Sakakibara, 1985). Here we show that iontophoretic injection of inositol trisphosphate (IP3), but not inositol monophosphate, also caused prolonged reduction of IA and ICa2+-K+. IP3 injection also caused reduction of a light-induced K+ current (also ICa2+-K+) but did not affect the voltage-dependent Ca2+ current, ICa2+, or the light-induced inward current, INa+, of the type B cell. IP3 injection caused similar effects on the K+ currents of the other type of Hermissenda photoreceptor, the type A cell. INA+ of the type A cell, unlike that of the type B cell, was, however, markedly increased following IP3 injection. The differences of IP3 effects on the two types of photoreceptors may be related to differences in regulation of ionic currents by endogenous IP3 as reflected by clear differences (before injection) in the magnitude of IA, ICa2+-K+, and INa+ between the two cell types.  相似文献   

2.
Iontophoretic injection of Ca2+ causes reduction of I0A (an early rapidly activating and inactivating K+ current) and I0C (a late Ca2+-dependent K+ current) measured across the isolated type B soma membrane (Alkon et al., 1984, 1985; Alkon and Sakakibara, 1984, 1985). Similarly, voltage-clamp conditions which cause elevation of [Ca2+]i are followed by reduction of I0A and I0C lasting 1-3 min. Iontophoretic injection of highly purified Ca2+/CaM-dependent protein kinase II (CaM kinase II) isolated from brain tissue (Goldenring et al., 1983) enhanced and prolonged this Ca2+-mediated reduction of I0A and I0C. ICa2+, a voltage-dependent Ca2+ current, also showed some persistent reduction under these conditions. Iontophoretic injection of heat-inactivated enzyme had no effect. Agents that inhibit or block Ca2+/CaM-dependent phosphorylation produced increased I0A and I0C amplitudes and prevented the effects of CaM kinase II injection. The results reported here and in other studies implicate Ca2+-stimulated phosphorylation in the regulation of type B soma ionic currents.  相似文献   

3.
Pharmacologic activation of endogenous protein kinase C (PKC) together with elevation of the intracellular Ca2+ level was previously shown to cause reduction of two voltage-dependent K+ currents (IA and ICa2+-K+) across the soma membrane of the type B photoreceptor within the eye of the mollusc Hermissenda crassicornis. Similar effects were also found to persist for days after acquisition of a classically conditioned response. Also, the state of phosphorylation of a low-molecular-weight protein was changed only within the eyes of conditioned Hermissenda. To examine the role of PKC in causing K+ current changes as well as changes of phosphorylation during conditioning (and possibly other physiologic contexts), we studied here the effects of endogenous PKC activation and exogenous PKC injection on phosphorylation and K+ channel function. Several phosphoproteins (20, 25, 56, and 165 kilodaltons) showed differences in phosphorylation in response to PKC activators applied to intact nervous systems or to isolated eyes. Specific differences were observed for membrane and cytosolic fractions in response to both the phorbol ester 12-deoxyphorbol 13-isobutyrate 20-acetate (DPBA) or exogenous PKC in the presence of Ca2+ and phosphatidylserine/diacylglycerol. Type B cells pretreated with DPBA responded to PKC injection with a persistent reduction of K+ currents. In the absence of DPBA, PKC injection also caused K+ current reduction only following Ca2+ loading conditions. However, the direct effect of PKC injection in the absence of DPBA was only to increase ICa2+-K+. According to a proposed model, the amplitude of the K+ currents would depend on the steady-state balance of effects mediated by PKC within the cytoplasm and membrane-associated PKC. The model further specifies that the effects on K+ currents of cytoplasmic PKC require an intervening proteolytic step. Such a model predicts that increasing the concentration of cytoplasmic protease, e.g., with trypsin, will increase K+ currents, whereas blocking endogenous protease, e.g., with leupeptin, will decrease K+ currents. These effects should be opposed by preexposure of the cells to DPBA. Furthermore, prior injection of leupeptin should block or reverse the effects of subsequent injection of PKC into the type B cell. All of these predictions were confirmed by results reported here. Taken together, the results of this and previous studies suggest that PKC regulation of membrane excitability critically depends on its cellular locus. The implications of such function for long-term physiologic transformations are discussed.  相似文献   

4.
Apart from their primary function as balance sensors, Hermissenda hair cells are presynaptic neurons involved in the Ca(2+)-dependent neuronal plasticity in postsynaptic B photoreceptors that accompanies classical conditioning. With a view to beginning to understand presynaptic mechanisms of plasticity in the vestibulo-visual system, a locus for conditioning-induced neuronal plasticity, outward currents that may govern the excitability of hair cells were recorded by means of a whole-cell patch-clamp technique. Three K+ currents were characterized: a 4-aminopyridine-sensitive transient outward K+ current (IA), a tetraethyl ammonium-sensitive delayed rectifier K+ current (IK,V), and a Ca(2+)-activated K+ current (IK,Ca). IA activates and decays rapidly; the steady-state activation and inactivation curves of the current reveal a window current close to the apparent resting voltage of the hair cells, suggesting that the current is partially activated at rest. By modulating firing frequency and perhaps damping membrane oscillations, IA may regulate synaptic release at baseline. In contrast, IK,V and IK,Ca have slow onset and exhibit little or no inactivation. These two K+ currents may determine the duration of the repolarization phase of hair-cell action potentials and hence synaptic release via Ca2+ influx through voltage-gated Ca2+ channels. In addition, IK,Ca may be responsible for the afterhyperpolarization of hair cell membrane voltage following prolonged stimulation.  相似文献   

5.
C-kinase activation prolongs Ca2+-dependent inactivation of K+ currents   总被引:3,自引:0,他引:3  
Voltage-dependent K+ currents, IA and ICa2+-K+, across the soma membrane of the Hermissenda Type B photoreceptor, have been shown to remain reduced during retention of classically conditioned behavior. IA and ICa2+-K+ undergo prolonged reduction due to [Ca2+]i elevation produced by a single pairing of a light step with a command depolarization or by iontophoretic injection of Ca2+. One pathway which could contribute to the conversion of transient Ca2+-mediated reduction of K+ currents to the persistent reduction observed with conditioning is that involving C-kinase. To examine the role of C-kinase in the long-term regulation of K+ currents, isolated Type B somata were exposed to at least 25-30 minutes' incubation in artificial sea water (ASW) containing the C-kinase activators 1-oleoyl-2-acetyl-glycerol (OAG) or 12-deoxyphorbol 13-isobutyrate 20-acetate (DPBA) or control substances [e.g., distearyolglycerol (DiSG)]. After exposure to activator (but not to control solutions) and voltage-clamp conditions which caused elevation of cytosolic Ca2+, reductions of IA and ICa2+-K+ were observed which did not reverse (up to 3 hr), even after the activator was removed. Without conditions which induced elevation of cytosolic calcium prolonged incubation with the C-kinase activators had no effect on the membrane currents. Similar exposure of homogenates of the Hermissenda nervous system to OAG and Ca2+ caused enhanced phosphorylation of specific proteins, indicating the presence of C-kinase in the Hermissenda nervous system.  相似文献   

6.
Paramecium generates a Ca2+ action potential and can be considered a one-cell animal. Rises in internal [Ca2+] open membrane channels that specifically pass K+, or Na+. Mutational and patch-clamp studies showed that these channels, like enzymes, are activated by Ca(2+)-calmodulin. Viable CaM mutants of Paramecium have altered transmembrane currents and easily recognizable eccentricities in their swimming behavior, i.e. in their responses to ionic, chemical, heat, or touch stimuli. Their CaMs have amino-acid substitutions in either C- or N-terminal lobes but not the central helix. Surprisingly, these mutations naturally fall into two classes: C-lobe mutants (S101F, I136T, M145V) have little or no Ca(2+)-dependent K+ currents and thus over-react to stimuli. N-lobe mutants (E54K, G40E+D50N, V35I+D50N) have little or no Ca(2+)-dependent Na+ current and thus under-react to certain stimuli. Each mutation also has pleiotropic effects on other ion currents. These results suggest a bipartite separation of CaM functions, a separation consistent with the recent studies of Ca(2+)-ATPase by Kosk-Kosicka et al. [41, 55]. It appears that a major function of Ca(2+)-calmodulin in vivo is to orchestrate enzymes and channels, at or near the plasma membrane. The orchestrated actions of these effectors are not for vegetative growth at steady state but for transient responses to stimuli epitomized by those of electrically excitable cells.  相似文献   

7.
Environmental stresses commonly encountered by plants lead to rapid transient elevations in cytosolic free calcium concentration ([Ca2+]cyt) (Bush, 1995; Knight et al., 1991). These cellular calcium (Ca2+) signals lead ultimately to the increased expression of stress-responsive genes, including those encoding proteins of protective function (Knight et al., 1996; Knight et al., 1997). The kinetics and magnitude of the Ca2+ signal, or 'calcium signature', differ between different stimuli and are thought to contribute to the specificity of the end response (Dolmetsch et al., 1997; McAinsh and Hetherington, 1998). We measured [Ca2+]cyt changes during treatment with mannitol (to mimic drought stress) in whole intact seedlings of Arabidopsis thaliana. The responses of plants which were previously exposed to osmotic and oxidative stresses were compared to those of control plants. We show here that osmotic stress-induced Ca2+ responses can be markedly altered by previous encounters with either osmotic or oxidative stress. The nature of the alterations in Ca2+ response depends on the identity and severity of the previous stress: oxidative stress pre-treatment reduced the mannitol-induced [Ca2+]cyt response whereas osmotic stress pretreatment increased the [Ca2+]cyt response. Therefore, our data show that different combinations of environmental stress can produce novel Ca2+ signal outputs. These alterations are accompanied by corresponding changes in the patterns of osmotic stress-induced gene expression and, in the case of osmotic stress pre-treatment, the acquisition of stress-tolerance. This suggests that altered Ca2+ responses encode a 'memory' of previous stress encounters and thus may perhaps be involved in acclimation to environmental stresses.  相似文献   

8.
We compared the pattern of K+ channels and the mitogenic sensitivity to K+ channel blocking agents in primary cultures of rabbit proximal tubule cells (PC.RC) (Ronco et al., 1990) and two derived SV-40-transformed cell lines exhibiting specific functions of proximal (RC.SV1) and more distal (RC.SV2) tubule cells (Vandewalle et al., 1989). First, K+ channel equipment surveyed by the patch-clamp technique was modified after SV-40 transformation in both cell lines; although a high conductance Ca(2+)-activated K+ channel [K+200 (Ca2+)] remained the most frequently recorded K+ channel, the transformed state was characterized by emergence of three Ca(2+)-insensitive K+ channels (150, 50, and 30 pS), virtually absent from primary culture, contrasting with reduced frequency of two Ca(2+)-sensitive K+ channels (80 and 40 pS). Second, quinine (Q), tetraethylammonium ion (TEA) and charybdotoxin (CTX), at concentrations not affecting cell viability, all decreased 3H-TdR incorporation and cell growth in PC.RC cultures, but only TEA had similar effects in transformed cells. The latter were further characterized by paradoxical effects of Q that induced a marked increase in thymidine incorporation. Q also exerted contrasting effects on channel activity: it inhibited the [K+200 (Ca2+)] when the channel was highly active, with a Ki (0.2 mM) similar to that measured for 3H-TdR incorporation in PC.RC cells (0.3 mM), but increased the mean current through poorly active channels. TEA blocked all K+ channels with conductance greater than or equal to 50 pS, including the [K+200 (Ca2+)], in a range of concentrations that substantially affected cell proliferation. The unique effect of TEA on SV-40-transformed cells might be related to broad inhibition of K+ channels.  相似文献   

9.
1. The left upper quadrant neurons L2-L6 in the abdominal ganglion of Aplysia californica were voltage clamped in order to examine effects of acetylcholine on voltage-dependent Ca and Ca-dependent K currents. 2. "Puffed" application of 10-100 microM acetylcholine reduced both the early inward and late outward phases of the current elicited by depolarizing voltage steps. An identical effect of the peptide FMRFamide was previously found to result from a suppression of the Ca and Ca-dependent K currents. 3. This effect of acetylcholine was obscured by the simultaneous activation of a previously described K current resembling the "S" current. Extracellular tetraethylammonium (TEA) and 4-aminopyridine could not be used to eliminate this current, because both compounds also appeared to block the acetylcholine receptor mediating the putative suppression of Ca and Ca-dependent K currents. 4. The acetylcholine-induced "S"-like and other K currents could, however, be reduced or eliminated by injection of TEA+ or Cs+ into the cell, replacement of extracellular Ca2+ with Ba2+, and by shifting the K+ equilibrium potential so as to null K currents at the potential used to record Ca current, revealing in each case a partial (10-40%) suppression of the Ca (or Ba) current by acetylcholine. 5. The reduction of the outward phase of depolarization-activated current was confirmed to represent suppression of the Ca-dependent K current by acetylcholine. This effect was indirect, secondary to the suppression of Ca current, since acetylcholine had no effect on Ca-dependent K current elicited by direct injection of Ca2+ into the cell. 6. Activation of the "S"-like K current and suppression of the Ca current by FMRFamide are likely to be important in its proposed role as an agent of presynaptic inhibition in Aplysia. Since acetylcholine has identical effects, it too may have such a function.  相似文献   

10.
Influx of Ca2+ via Ca2+ channels is the major step triggering exocytosis of pituitary somatotropes to release growth hormone (GH). Voltage-gated Ca2+ and K+ channels, the primary determinants of the influx of Ca2+, are regulated by GH-releasing hormone (GHRH) through G-protein-coupled intracellular signalling systems. Using whole-cell patch-clamp techniques, the changes of the Ca2+ and K+ currents in primary cultured ovine and human somatotropes were recorded. Growth hormone-releasing hormone (10 nmol/L) increased both L- and T-type voltage-gated Ca2+ currents. Inhibition of the cAMP/protein kinase A (PKA) pathway by either Rp-cAMP or H89 blocked this increase in both L- and T-type Ca2+ currents. Growth hormone-releasing hormone also decreased voltage-gated transient (IA) and delayed rectified (IK) K+ currents. Protein kinase C (PKC) inhibitors, such as calphostin C, chelerythrine or downregulation of PKC, blocked the effect of GHRH on K+ currents, whereas an acute activation of PKC by phorbol 12, 13-dibutyrate (1 micromol/L) mimicked the effect of GHRH. Intracellular dialysis of a specific PKC inhibitor (PKC19-36) also prevented the reduction in K+ currents by GHRH. It is therefore concluded that GHRH increases voltage-gated Ca2+ currents via cAMP/PKA, but decreases voltage-gated K+ currents via the PKC signalling system. The GHRH-induced alteration of Ca2+ and K+ currents augments the influx of Ca2+, leading to an increase in [Ca2+]i and the GH secretion.  相似文献   

11.
Full grown starfish oocytes are arrested at meiotic prophase I in the ovary. The natural hormone 1-methyladenine triggers oocyte maturation which involves meiosis reinitiation along with a variety of morphological, biochemical, and electrical changes. In studying oocytes of two species, Henricia leviuscula and Asterina miniata, using the voltage-clamp technique, we found interesting differences and similarities in the electrophysiological changes which occurred during maturation. Oocytes of both species have three major voltage-dependent currents: an inward Ca2+ current, an inwardly rectifying K+ current, and a transient outward K+ current (A-current). The Ca2+ current and the A-current were similar in the two species but the inward rectifier in Henricia had activation kinetics that were more than 10-fold slower than in Asterina. Nonetheless, all three currents were affected similarly during maturation: the inward Ca2+ currents remained constant in both species, while the two K+ currents decreased in amplitude. In Henricia the membrane surface area decreased substantially during maturation, while in Asterina it remained constant. This may be explained by the more highly infolded state of the membrane in the immature Henricia oocyte. The selective loss of K+ current followed the time course of the area decrease in Henricia, but the same percentage decrease in current occurred in Asterina without a net membrane loss.  相似文献   

12.
Huang MH  Wu SN  Chen CP  Shen AY 《Life sciences》2002,70(10):1185-1203
Quinones have been shown to possess antineoplastic activity; however, their effects on ionic currents remain unclear. The effects of 2-mercaptophenyl-1,4-naphthoquinone (2-MPNQ), menadione (MD) and 1,4-naphthoquinone (1,4 NQ) on cell proliferation and ionic currents in pituitary GH3 lactotrophs were investigated in this study. 2-MPNQ was more potent than menadione or 1,4-naphthoquinone in inhibiting the growth of GH3 cells. 2-MPNQ decreased cell proliferation in a concentration-dependent manner with an IC50 value of 3 microM. In whole-cell recording experiments, 2-MPNQ reversibly caused an inhibition of Ca2+-activated K+ current (I(K(Ca)) in a concentration-dependent manner. The IC50 value for 2-MPNQ-induced inhibition of I(K(Ca)) was 7 microM. In the inside-out configuration of single channel recording, 2-MPNQ (30 microM) applied intracellularly suppressed the activity of large-conductance Ca2+-activated K+ (BK(Ca)) channels but did not modify single channel conductance. Menadione (30 microM) had no effect on the channel activity, whereas 1,4-naphthoquinone (30 microM) suppressed it by about 26%. Both 2-MPNQ and thimerosal suppressed the dithiothreitol-stimulated channel activity. 2-MPNQ also blocked voltage-dependent K+ currents, but it produced a slight reduction of L-type Ca2+ inward current. However, unlike E-4031, 2-MPNQ (30 microM) did not suppress inwardly rectifying K+ current present in GH3 cells. Under the current clamp configuration, the presence of 2-MPNQ (30 microM) depolarized the cells, and increased the frequency and duration of spontaneous action potentials. The 2-MPNQ-mediated inhibition of K+ currents would affect hormone secretion and cell excitability. The blockade of these ionic channels by 2-MPNQ may partly explain its inhibitory effect on the proliferation of GH3 cells.  相似文献   

13.
Short-term stimulation of beta-receptors is known to affect cardiac ion channels; however, the impact of longer-term stimulation on intrinsic channel function is poorly understood. To evaluate this, cultured guinea pig ventricular myocytes were exposed to isoproterenol (10 nM), vehicle, or isoproterenol plus propranolol (1 microM) for 48 h. Sustained exposure to isoproterenol decreased the density of the inward rectifier (I(K1)), slow delayed rectifier (I(Ks)), and L-type Ca2+ (I(Ca L)) currents, effects that were fully prevented by propranolol. Changes in K+ currents were prevented by the beta1-selective antagonist CGP-20712A, unaffected by the beta2-antagonist ICI-118,551, and mimicked by the membrane-permeable cAMP analog 8-bromo-cAMP. Isoproterenol did not alter the current-voltage relationship of the K+ currents but increased the density of T-type Ca2+ current (I(Ca T)) and thereby increased the proportion of the total Ca2+ current at more negative potentials. We conclude that sustained exposure to isoproterenol reduces I(K1), I(Ks), and I(Ca L) density and increases the density of I(Ca T). The direct ionic current remodeling effects of sustained beta-adrenoceptor stimulation resemble changes reported with heart failure and may be important in arrhythmogenic ionic remodeling.  相似文献   

14.
By voltage-clamp recording, we show a novel inward current which oscillates after activation with bradykinin or serum in v-Ki-ras-transformed NIH/3T3 cells. The current oscillation was infrequently observed in control NIH/3T3 fibroblasts. The same stimulation evokes Ca2+ oscillations in the ras-transformed cells but not in parental cells (Fu et al., FEBS Lett. 281, 263-266, 1991). The results suggest that the oscillatory currents are generated by influxes of divalent cations to maintain Ca2+ oscillations in ras-transformed NIH/3T3 cells.  相似文献   

15.
D-ala2-D-leu5-enkephalin (100 to 1000 nM) reduces HVA Ca2+ currents of approximately 60% in 92% of the adult rat sensory neurons tested. In 80% of the cells sensitive to enkephalin, the reduction in Ca2+ current amplitude was associated with a prolongation of the current activation that was relieved by means of conditioning pulses in a potential range only about 10 mV positive to the current activation range in control conditions. The time course of the current activation was fitted to a single exponential in control, (tau = 2.23 msec +/- 0.14 n = 38) and double exponential with enkephalin, (tau 1 = 2.18 msec +/- 0.25 and tau 2 = 9.6 msec +/- 1, test pulse to -10 mV, 22 degrees C). A strong conditioning depolarizing prepulse speeded up the activation time course, completely eliminating the slow, voltage-sensitive exponential component, but it was only partial effective in restoring the current amplitude to control values. The voltage-independent inhibitory component that was not relieved could be recovered only by washing out enkephalin. In the remaining 20% of the cells affected, enkephalin decreased Ca2+ current amplitude without prolongation of Ca2+ channel activation. In these cases the conditioning voltage pulse was not effective in relieving the inhibition that persisted also at strong positive test potentials, on the outward currents. The voltage-dependent inhibition occurred slowly after enkephalin superfusion (tau congruent to 12 sec), whereas the voltage-independent one developed about ten times more rapidly. Dopamine (100 microM) could also induce both voltage-dependent and independent modulations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Dear Editor,Mitochondrial Ca2+homeostasis regulates energy production,cell division,and cell death.The basic properties of mitochondrial Ca2+uptake have been firmly established.The Ca2+influx is mediated by MCU,driven by membrane potential and using a uniporter mechanism(Vasington and Murphy,1962).Patch-clamp analysis of MCU currents demonstrated that MCU is a channel with exceptionally high Ca2+selectivity(Kirichok et al.,2004).  相似文献   

17.
Action potentials (APs) of the epicardial border zone (EBZ) cells from the day 5 infarcted heart continue to be altered by day 14 postocclusion, namely, they shortened. However, by 2 mo, EBZ APs appear "normal," yet conduction of wave fronts remains abnormal. We hypothesize that the changes in transmembrane APs are due to a change in the distribution of ion channels in either density or function. Thus we focused on the changes in Ca2+ and K+ currents in cells isolated from the 14-day (IZ14d) and 2-mo (IZ2m) EBZ and compared them with those occurring in cells from the same hearts but remote (Rem) from the EBZ. Whole cell voltage-clamp techniques were used to measure and compare Ca2+ and K+ currents in cells from the different groups. Ca2+ current densities remain reduced in cells of the 14-day and 2-mo infarcted heart and the kinetic changes previously identified in the 5-day heart begin to, but do not recover to, cells from noninfarcted epicardium (NZ) values. Importantly, I(Ca,L) in both the EBZ and Rem regions still show a slowed recovery from inactivation. Furthermore, during the remodeling process, there is an increased expression of T-type Ca2+ currents, but only regionally, and only within a specific time window postmyocardial infarction (MI). Regional heterogeneity in beta-adrenergic responsiveness of I(Ca,L) exists between EBZ and remote cells of the 14-day hearts, but this regional heterogeneity is gone in the healed infarcted heart. In IZ14d, the transient outward K+ current (Ito) begins to reemerge and is accompanied by an upregulated tetraethylammonium-sensitive outward current. By 2-mo postocclusion, Ito and sustained outward K+ current have completed the reverse remodeling process. During the healing process post-MI, canine epicardial cells downregulate the fast Ito but compensate by upregulating a K+ current that in normal cells is minimally functional. For recovering I(Ca,L) of the 14-day and 2-mo EBZ cells, voltage-dependent processes appear to be reset, such that I(Ca,L) "window" current occurs at hyperpolarized potentials. Thus dynamic changes in both Ca2+ and K+ currents contribute to the altered AP observed in 14-day fibers and may account for return of APs of 2 mo EBZ fibers.  相似文献   

18.
Development of ionic channels during mouse neuronal differentiation   总被引:1,自引:0,他引:1  
Using a mouse embryonal teratocarcinoma (E.C.) cell line, it was possible to follow the sequence of development of ionic channels during neuronal differentiation, with patch-clamp techniques. 1003 E.C. cells were induced to differentiate into neurons by culturing them in defined medium without foetal calf serum (DARMON et al., 1981). Non-differentiated cells were not excitable and presented mainly 2 types of K+ channels: a Ca2+ activated K+ channel (220 pS in symmetrical K+) and a delayed rectifier (30 pS in symmetrical K+). When the cells start to grow neurites, a low threshold calcium current can be recorded, only if the cell is held at hyperpolarized potentials (-70 to -80 mV). Fully differentiated cells with long neurites presented a complete repertoire of ionic channels: voltage dependent Na+ and Ca2+ channels, Ca2+ activated K+ channel and K+ delayed rectifier.  相似文献   

19.
The effects of quinidine on the fast, the delayed, and the Ca2+- activated K+ outward currents, as well as on Na+ and Ca2+ inward currents, were studied at the soma membrane from neurons of the marine mollusk Aplysia californica. External quinidine blocks these current components but to different degrees. Its main effect is on the voltage- dependent, delayed K+ current, and it resembles the block produced by quaternary ammonium ions (Armstrong, C. M., 1975, Membranes, Lipid Bilayers and Biological Membranes: Dynamic Properties, 3:325-358). The apparent dissociation constant is 28 microM at V = +20 mV. The blocking action is voltage and time dependent and increases during maintained depolarization. The data are consistent with the block occurring approximately 70-80% through the membrane electric field. Internal injection of quinidine has an effect similar to that obtained after external application, but its time course of action is faster. External quinidine may therefore have to pass into or through the membrane to reach a blocking site. The Ca2+-activated K+ current is blocked by external quinidine at concentrations 20-50-fold higher compared with the delayed outward K+ current. In addition, it prolongs the time course of decay of the Ca2+-activated K+ current. Na+ and Ca2+ inward currents are also blocked by external quinidine, but again at higher concentrations. The effects of quinidine on membrane currents can be seen from its effect on action potentials and the conversion of repetitive "beating" discharge activity to "bursting" pacemaker activity.  相似文献   

20.
Two-microelectrode voltage clamp studies were performed on the somata of Hermissenda Type B photoreceptors that had been isolated by axotomy from all synaptic interaction as well as any impulse-generating (i.e., active) membrane. In the presence of 2-10 mM 4-aminopyridine (4-AP) and 100 mM tetraethylammonium ion (TEA), which eliminated two previously described voltage-dependent potassium currents (IA and the delayed rectifier), a voltage-dependent outward current was apparent in the steady state responses to command voltage steps more positive than -40 mV (absolute). This current increased with increasing external Ca++. The magnitude of the outward current decreased and an inward current became apparent following EGTA injection. Substitution of external Ba++ for Ca++ also made the inward current more apparent. This inward current, which was almost eliminated after being exposed for approximately 5 min to a solution in which external Ca++ was replaced with Cd++, was maximally activated at approximately 0 mV. Elevation of external potassium allowed the calcium (ICa++) and calcium-dependent K+ (IC) currents to be substantially separated. Command pulses to 0 mV elicited maximal ICa++ but no IC because no K+ currents flowed at their new reversal potential (0 mV) in 300 mM K+. At a holding potential of -60 mV, which was now more negative than the potassium equilibrium potential, EK+, in 300 mM K+, IC appeared as an inward tail current after positive command steps. The voltage dependence of ICa++ was demonstrated with positive steps in 100 mM Ba++, 4-AP, and TEA. Other data indicated that in 10 mM Ca++, IC underwent pronounced and prolonged inactivation whereas ICa++ did not. When the photoreceptor was stimulated with a light step (with the membrane potential held at -60 mV), there was also a prolonged inactivation of IC. In elevated external Ca++, ICa++ also showed similar inactivation. These data suggest that IC may undergo prolonged inactivation due to a direct effect of elevated intracellular Ca++, as was previously shown for a voltage-dependent potassium current, IA. These results are discussed in relation to the production of training-induced changes of membrane currents on retention days of associative learning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号