首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Bactrocera latifrons (Hendel) (Diptera: Tephritidae) is the most recent of four tephritid fruit fly species accidentally introduced into Hawaii. Although parasitoids have been released against other tephritid fruit fly species and have shown partial success in Hawaii, no parasitoids were released until 2004 to suppress populations of B. latifrons. The present study was conducted to document the parasitoid complex that has naturally established against B. latifrons in Hawaii and to assess whether there is a need for improving the biological control of this species. Based on ripe turkeyberry (Solanum torvum Sw) fruit collections over three consecutive years B. latifrons was the dominant tephritid fruit fly infestating turkeyberry at all four sites surveyed, across three major islands in Hawaii. The overall percentage parasitism of B. latifrons ranged from a low of 0.8% (Hana, Maui) to a high of 8.8% (Kahaluu, Oahu). Five primary parasitoid species were recovered from individually held B. latifrons puparia: Fopius arisanus (Sonan), Psyttalia incisi (Silvestri), Diachasmimorpha longicaudata (Ashmead), D. tryoni (Cameron), and Tetrastichus giffardianus Silvestri. F. arisanus was the predominant parasitoid at three of the four sites. Low levels of parasitism suggest that there is a need to improve biological control of B. latifrons, to minimize chances of this species causing economic impacts on crop production in Hawaii. We discuss the possibility of improving biological control of B. latifrons through augmentative releases of F. arisanus or introduction and release of specific and efficient new parasitoid species.  相似文献   

2.
《Journal of Asia》2020,23(4):879-882
Certain tephritid fruit flies, such as the oriental fruit fly, Bactrocera dorsalis, the Chinese citrus fly, B. minax and the Japanese orange fly, B. tsuneonis (Diptera: Tephritidae: Dacinae), are destructive citrus pests in China. A two-year trapping study was conducted in pomelo, Citrus maxima, groves in Fujian Province of China. The objectives of this study were to investigate the species, the abundance of tephritid fruit flies in the orchards, as well as the efficacy of the selected lure traps to these flies. Four lure traps or devices, i.e. methyl eugenol + Steiner trap (ST), cuelure + ST, ammonium acetate + putrescine + ST, and sticky spheres, were deployed from June to November 2017 and April to October 2018. Six economically significant Dacini pests were trapped during the period. These flies are B. dorsalis, the melon fruit fly, Zeugodacus cucurbitae, the pumpkin fruit fly, Z. tau, the Malaysian fruit fly, B. latifrons, and other two species - B. rubigina and Z. scutellatus. B. dorsalis was the most abundant, accounting for more than 50% of the capture, followed by Z. cucurbitae. The remaining four species accounted for less than 2% of the total capture. B. minax and B. tsuneonis, two destructive citrus-damaging tephritid fruit flies in China, were not found during the trapping period. Methyl eugenol trapped the highest number of fruit flies, followed by cuelure.  相似文献   

3.
4.
5.
Changes in essential dietary components alter global gene expression patterns in animals. We reported on a proteomics study designed to identify molecular markers of deficiencies in culture media developed for the oriental fruit fly, Bactrocera dorsalis. In that study, we found significant changes in expression of 70 proteins in adults of larvae reared on media lacking wheat germ oil (WGO), compared to media supplemented with WGO. Of these, a gene encoding an insect chitin-binding protein was expressed at about 120-fold higher levels in adult males reared on media supplemented with WGO. We inferred it may be feasible to develop the gene as a molecular marker of dietary lipid deficiency. The work was focused, however, on analysis of 11 day old adults. We have no information on expression of the chitin-binding protein, nor on any other proteins at other adult ages. In this paper we address the idea that the whole animal proteome changes dynamically with age. We reared separate groups of fruit fly larvae on media with and without WGO supplementation and analyzed protein expression in adult males and females age 0, 4, 8 and 12 days old using 2D electrophoresis. Gel densitometry revealed significant increases (by >2-fold) and decreases (by >50%) in expression levels of 29 proteins in females and 10 in males. We identified these proteins by mass spectrometry on MALDI TOF/TOF and bioinformatic analyses of the protein sequences. Two proteins, peroxiredoxin (26-fold increase) and vitellogenin 1 (15-fold increase) increased in expression in day 8 females. The key finding is that most changes in protein expression occurred in day 8 females. We infer that the fruit fly proteome changes with adult age. The natural changes in proteome with adult age is a crucial aspect of developing these and other proteins into molecular markers of lipid deficiency in fruit flies and possibly other insect species.  相似文献   

6.
The host suitability of the oriental fruit fly, Bactrocera dorsalis (Hendel), for development of Biosteres arisanus (Sonan), a braconid parasitoid, was compared with three other fruit fly species, namely, Mediterranean fruit fly, Ceratitis capitata Weidemann, melon fly, Bactrocera cucurbitae Coquilett, and Malaysian fruit fly, Bactrocera latifrons (Hendel). In addition, effects of five different fruit species, namely, Carica papaya L. (solo papaya), Musa sapientum (L.) O. Ktze. (apple banana), Mangifera indica (L.) (Haden mango), Terminalia catappa (L.) (false kamani), and Citrus aurantiifolia (Christman) Swingle (common lime), on the parasitization rate of B. dorsalis and sex ratio of parasitoid progenies were evaluated. Effects of host egg to female B. arisanus ratios on parasitoid progeny yields were likewise determined. The host suitability of fruit flies for development of B. arisanus was ranked as: B. dorsalis>C. capitata=B. latifrons=B. cucurbitae. Based on percent parasitization of B. dorsalis, preference of B. arisanus females for host eggs varied with fruit species, however, preferential oviposition displayed by female parasitoids did not influence sex ratios of subsequent parasitoid progenies. Increases in host egg to female parasitoid ratios of 5:1, 10:1, 20:1, 25:1, and 30:1 corresponded with increases in parasitoid progeny yield reaching a plateau at 20:1.  相似文献   

7.
The fruit fly Drosophila melanogaster is an excellent model organism for studying insect reproductive biology. Although the gene expression profiles of both male and female reproductive organs have been studied in detail, their proteomic profiles and functional characteristics largely remained to be clarified. In this study, we conducted proteome mapping of the male internal reproductive organs using 2‐DE. We identified a total of 440 protein components from gels of the male reproductive organs (testis, seminal vesicle, accessory gland, ejaculatory duct, and ejaculatory bulb). A number of proteins associated with odorant/pheromone‐binding, lipid metabolism, proteolysis, and antioxidation were expressed tissue specifically in the male reproductive system. Based on our proteomic data set, we constructed reference proteome maps of the reproductive organs, which will provide valuable information toward a comprehensive understanding of Drosophila reproduction.  相似文献   

8.
9.
Bactrocera latifrons (Hendel) is a tephritid fruit fly of primarily Asian distribution that has invaded Hawaii and, more recently, the continent of Africa (Tanzania and Kenya). It primarily infests solanaceous fruits, so has the potential to impact production of crops such as peppers (Capsicum annuum L. and Capsicum frutescens L.), eggplant (Solanum melongena L.), African eggplant (Solanum aethiopicum L.) and tomatoes (Solanum lycopersicum L.). Because little work has been done to develop suppression techniques for this fruit fly species, field cage tests of the effectiveness of a commercially available bait spray, GF‐120NF Fruit Fly Bait, against wild B. latifrons were conducted. Sexually mature B. latifrons adults (75 male and 75 female) were introduced to both a control cage and a treatment cage, each of which held six fruiting Anaheim chili pepper (C. annuum L.) plants. Fruits were harvested, and assessed for infestation, both before and after the application of the bait spray in the treatment cage. There was no difference in infestation rate between control and treatment cages before the application of the bait spray, whereas there was a significantly lower infestation rate in treatment cages following the application of the bait spray. Post‐spray infestation rate in the treatment cages (in two separate, replicated bioassays) was always zero and no live flies were detected in the treatment cages at the end of the trials. The results of this study provide evidence that GF‐120NF Fruit Fly Bait should be effective in suppressing B. latifrons populations in the field.  相似文献   

10.
The oriental fruit moth, Grapholita molesta, occurs in Southern Brazil throughout the year, and migrates from peach to apple orchards. Because moths rely on volatile organic compounds (VOCs) during the host-location process, variations in the emission of these compounds during fruit maturation can influence the time of infestation and preference of the moths for a particular genotype. The aim of this work was to identify VOCs emitted by the apples “Eva” and “Gala” at different stages of development and to determine the behavioral and electrophysiological responses of G. molesta to these compounds. For this purpose, VOCs from immature, maturing, and mature fruits of both cultivars were collected and analyzed by gas chromatography and gas chromatography-mass spectroscopy. The response of the antennae of virgin males and females and mated females to volatiles released by the three fruit stages was registered by gas chromatography coupled to an electroantennography. A dual-choice behavioral test for the different combinations of insect groups and fruit stage was also performed. Amongst the volatiles released by mature fruits, twelve compounds elicited a response. The antennae of the oriental fruit moth did respond to isoamyl hexanoate and α-farnesene emitted by “Eva” maturing fruits. In general, virgin females did not respond to volatiles in olfactometer bioassays and mated females were attracted to volatiles released by mature fruits. Our results show that the variation in the emission during the maturation of fruits can influence the orientation of G. molesta.  相似文献   

11.
Four species of tephritid fruit flies, Ceratitis capitata, Bactrocera dorsalis, B. cucurbitae, and B. latifrons were evaluated for toxic, developmental, and physiological responses to the chemosterilant lufenuron. No significant mortality of laboratory strains of the first three species was observed after their exposure up to 50 μg/mL of lufenuron in agar adult diet, whereas B. latifrons adults fed with 50 μg/mL of lufenuron in the diet caused significant mortality compared to the control. Fertility of C. capitata adults fed on 50 μg/mL lufenuron-fortified diet between 7 and 12 days of age was approximately 46% of the no lufenuron control. Fertility of B. dorsalis and B. latifrons adults fed on 50 μg/mL lufenuron-incorporated diet was about 45% and 62% of the control, respectively. Lufenuron did not significantly affect fertility of B. cucurbitae adults. Lufenuron did not affect fecundity of C. capitata and B. dorsalis. Fecundity of B. cucurbitae and B. latifrons was not evaluated due to difficulty to count the eggs laid deep in the agar diet. Larvae fed on a liquid larval diet with ≤ 0.1 μg/mL of lufenuron were also evaluated. Pupal recovery, adult emergence, adult fliers, mating, egg hatch, and egg production of C. capitata were significantly decreased, while for B. dorsalis, pupal recovery, larval duration and adult emergence were affected. No effect of lufenuron on B. cucurbitae larvae was observed. B. latifrons was not performed because shortage of eggs at the time of this research. Lufenuron is a potential agent for management and control of C. capitata and B. dorsalis.  相似文献   

12.
Insect neuropeptides are the most diverse and important group of messenger molecules that regulate almost all physiological processes, including behavior. In this study, we performed a combination of matrix assisted laser desorption ionization time of flight (MALDI-TOF) and electrospray ionization quadrupole time of flight (ESI-Q-TOF) mass spectrometry to analyze the peptidome of the brain and the neurohemal organs of the Australian sheep blowfly Lucilia cuprina and compared the data with those of related flies such as the gray flesh fly Sarcophaga (=Neobellieria) bullata; the cabbage root fly Delia radicum, the fruit fly Drosophila melanogaster, and the yellow fever mosquito, Aedes aegypti. Without counting low intensity signals of truncated peptides, 45 neuropeptides arising from 12 neuropeptide genes (adipokinetic hormone, CAPA-peptides, corazonin, extended FMRFamides, SIFamide, insect kinin, short neuropeptide F, NPLP-1 peptides, HUGIN-pyrokinin, sulfakinins, allatostatins A, putative eclosion hormone precursor peptide) were identified; sequences of extended FMRFamides were reported in a separate publication. The remarkable similarity of the peptidome of cyclorraphan flies, which contain a large number of ecologically important species, does not support the development of a species-specific neuropeptide-based insect pest control strategy. However, mass spectrometric approaches as shown here do not cover the entire peptidome or differences at the receptor level and it is possible that group-specific peptide ligands or receptors exist that escaped the detection.  相似文献   

13.
The fruit fly Bactrocera latifrons (Hendel) is an important pest of commercially significant plants such as chili, tomato and eggplant. The species is native to South and Southeast Asia, but has now invaded Japan, Hawaii and Africa. In this study, mitochondrial DNA sequences were used to infer genetic structure and demographic history of B. latifrons. The efficiency of DNA barcodes for identification of B. latifrons was also tested. Ninety‐three specimens infesting four host‐plant species were obtained from 11 sampling locations in Thailand. The mitochondrial haplotype network revealed no major divergent lineage, which was consistent with a phylogenetic analysis that found strong support for the monophyly of B. latifrons. Population pairwise FST revealed that most (65%) comparisons were not significantly different, suggesting a high rate of gene flow. Analysis of molecular variance (amova ) found no significant genetic differentiation among populations from different host‐plant species. Sharing of several haplotypes among flies from different host‐plants indicates that the flies were moved freely across the plant species. Demographic history analysis revealed that the population has undergone recent expansion dating back to the end of the last glaciation. Thus, the results indicate that both ongoing and historical factors have played important roles in determining the genetic structure and diversity of B. latifrons. DNA barcoding analysis revealed that B. latifrons specimens were clearly differentiated from other species with 100% correct identification. Therefore, cytochrome oxidase I (COI) barcoding sequences could be effectively used to identify this important pest species, which could encourage monitoring and control efforts for this species.  相似文献   

14.
Fopius caudatus (Szépligeti) is an endophagous koinobiont egg-larval parasitoid native to Africa. It has recently been noted as a candidate for augmentative biological control of several Dacinae fruit fly pests (Diptera: Tephritidae), due to its ability to parasitize the egg stage. Previous attempts to establish this parasitoid in Hawaii, Guatemala, and Costa Rica were unsuccessful due to inability to maintain parasitoid colonies under laboratory conditions. A cohort of F. caudatus collected from Kenyan fruit flies infesting Coffea arabica was successfully colonized in Hawaii at 28 °C and 60–80% RH, resulting in the development of a laboratory-adapted colony amenable for mass production. The parasitoid was successfully developed from eggs of Ceratitis capitata and Bactrocera latifrons as a factitious host. The wasps were propagated for 15 weeks until the rearing stabilized, at which point >10,500 adults were produced with an overall sex ratio of 0.52 females and a mean host parasitism rate of 17.3%. It could parasitize Medfly eggs in fruits other than coffee, including papaya, mango, pear, squash, and sweet pepper. Female F. caudatus oviposited mainly in 24–48 h old Medfly eggs, although occasionally a few individuals eclosed when first instar fly larvae were exposed. Mean developmental time from egg to adult was 19.8 d for males and 21.5 d for females. Mean longevity was 5.2 d for males and 14.2 d for host-deprived females. This study enabled us to maintain a colony of F. caudatus for research and redistribution to other countries for biocontrol programs against Medfly.  相似文献   

15.
The susceptibility of 20 widely distributed mill and table olive varieties to Bactrocera oleae (Rossi) as affected by irrigation, and fruit diameter and oil content was evaluated in a 3‐year trial in Southern Spain. Bactrocera oleae was bivoltine life cycle in the experimental site, with significant differences among population size throughout the study. Even though the olive fruit fly damaged all varieties, significant differences in susceptibility were detected. Among the mill olive varieties “Nevadillo Blanco de Jaén” was the most susceptible, with average infestation levels ranging between 6.7% and 52.2% and between 10.3% and 69.2% under rainfed and irrigated conditions, respectively, and “Arbequina” was the least susceptible, with average infestation levels ranging between 0.6% and 12.7% and between 2.3% and 18.5% under rainfed and irrigated conditions, respectively. Among the table olive varieties, “Gordal Sevillana,” “Ascolana Tenera” and “Ocal” were the most susceptible (with average infestation levels reaching 39.7%, 36.5% and 33.3%, respectively), while “Callosina” was the least susceptible (with infestation levels of only 8.4%). Irrigation tended to promote both B. oleae infestation and its earlier occurrence compared to the rainfed condition. Even though the diameter and oil content were positively correlated with B. oleae fruit infestation (correlation coefficients ranged between 0.5 and 0.95), the present work reveals that other yet‐unknown factors may influence B. oleae oviposition preferences. The results of this study can be useful for breeding programmes to develop olive varieties resistant to B. oleae and provide key information for wide‐area olive fly pest management decisions.  相似文献   

16.
Fruit ripening in Prunus persica involves a number of physiological changes, being one of the most significant the mesocarp softening in melting varieties. In order to get a better understanding of the molecular processes involved in this phenomenon, the protein accumulation patterns in firm and soft fruit of three peach and two nectarine melting flesh varieties were assessed using 2D gel analysis. A General Linear Model (GLM) two-way analysis of variance determined that 164 of the 621 protein spots analyzed displayed a differential accumulation associated with the softening process. Among them, only 14 proteins changed their accumulation in all the varieties assessed, including proteins mostly involved in carbohydrates and cell wall metabolism as well as fruit senescence. The analysis among varieties showed that 195 and 189 spots changed within the firm and soft fruit conditions, respectively. Despite the changes in relative abundance in the spot proteins, the proteome is conserved among varieties and during the transition from firm to soft fruit. Only two spots proteins exhibited a qualitative change in all the conditions assessed. These results are in agreement with the notion that Prunus persica commercial varieties have a narrow genetic background.  相似文献   

17.
18.
Proteomic biomarker discovery has been called into question. Diamandis hypothesized that seemingly trivial factors, such as eating a hamburger, may cause sufficient proteomic change as to confound proteomic differences. This has been termed the hamburger effect. Little is known about the variability of complex proteomes in response to the environment. Two methods—two-dimensional gel electrophoresis (2DGE) and capillary liquid chromatography–electrospray ionization time-of-flight mass spectrometry (LCMS)—were used to study the hamburger effect in two cross-sections of the soluble fruit fly proteome. 2DGE measured abundant proteins, whereas LCMS measured small proteins and peptides. Proteomic differences between males and females were first evaluated to assess the discriminatory capability of the methods. Likewise, wild-type and white-eyed flies were analyzed as a further demonstration that genetically based proteomic differences could be observed above the background analytical variation. Then dietary interventions were imposed. Ethanol was added to the diet of some populations without significant proteomic effect. However, after a 24-h fast, proteomic differences were found using LCMS but not 2DGE. Even so, only three of ~1000 molecular species were altered significantly, suggesting that the influence of even an extreme diet change produced only modest proteomic variability, and that much of the fruit fly proteome remains relatively constant in response to diet. These experiments suggest that proteomics can be a viable approach to biomarker discovery.  相似文献   

19.
The oriental fruit fly, Bactrocera dorsalis, is a pest of fruit in the Asia–Pacific region and also, due to quarantine restrictions, a threat to California fruit production. Area-wide suppression of B. dorsalis integrated several approaches including the sterile insect technique (SIT). SIT involves exposing juveniles to gamma radiation and releasing sterile males in substantial numbers, where they successfully compete for wild females. The resulting infertile eggs lead to reduction of the pest populations. Although these protocols are well documented, arising issues about the international transport and distribution of radioactive products is creating difficulties in use of radioactive sources for sterilizing radiation. This led to a shift toward use of X-ray irradiation, which also sterilizes male and female insects. However, use of X-ray technologies is in its infancy and there is virtually no information on the effects of irradiation, other than sterilization, at the physiological and molecular levels of fruit fly biology. We posed the hypothesis that sterilizing male oriental fruit flies via radiation treatment also influences protein expression in the flies. We found that exposing pupae to X-ray irradiation impacted expression of 26 proteins in adult females and 31 proteins in adult males. Seven proteins (glyceraldehyde-3-phosphate dehydrogenase, fructose-bisphosphate aldolase, larval cuticle protein 2, sarcoplasmic calcium-binding protein alpha-B and A chains, general odorant-binding protein 99b, polyubiquitin, and protein disulfide-isomerase) were impacted in both sexes. Some of the proteins act in central energy-generating and in pheromone-signal processing pathways; we infer that males sterilized by X-ray irradiation may be enfeebled in their ability to compete with wild males for females in nature.  相似文献   

20.
The cuticle proteins of Drosophila melanogaster: stage specificity   总被引:2,自引:0,他引:2  
Five stage-specific cuticles are produced during the development of Drosophila. Urea-soluble proteins were extracted from each developmental stage and compared by gel electrophoresis. Proteins from first and second instar cuticle are identical except for minor differences in two proteins. Each subsequent stage, third instar, pupa, and adult, has a unique set of cuticle proteins. Qualitative changes within stages are seen in proteins from third instar and adult cuticle. Third instar cuticle proteins can be divided into “early” [proteins 2a, 3, 4, 5, 7, and 8] and “late” [proteins 2 and 1] groups. Adult cuticle proteins change in relative amounts during pharate adult development and change mobility at eclosion. The lower abdominal pupal cuticle lacks a protein found in the pupal cuticle covering the head and thorax. Cuticle proteins from each stage are immunologically related. Nonetheless, electrophoretic variants of three larval proteins do not affect any major changes in the electrophoretic mobility of proteins from other stages. We propose that each stage (except first and second instar) has proteins encoded by discrete genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号