首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 787 毫秒
1.
The goal of these studies was to determine how sorption by humic acids affected the bioavailability of polynuclear aromatic hydrocarbons (PAHs) to PAH-degrading microbes. Micellar solutions of humic acid were used as sorbents, and phenanthrene was used as a model PAH. Enrichments from PAH-contaminated soils established with nonsorbed phenanthrene yielded a total of 25 different isolates representing a diversity of bacterial phylotypes. In contrast, only three strains of Burkholderia spp. and one strain each of Delftia sp. and Sphingomonas sp. were isolated from enrichments with humic acid-sorbed phenanthrene (HASP). Using [14C]phenanthrene as a radiotracer, we verified that only HASP isolates were capable of mineralizing HASP, a phenotype hence termed "competence." Competence was an all-or-nothing phenotype: noncompetent strains showed no detectable phenanthrene mineralization in HASP cultures, but levels of phenanthrene mineralization effected by competent strains in HASP and NSP cultures were not significantly different. Levels and rates of phenanthrene mineralization exceeded those predicted to be supported solely by the metabolism of phenanthrene in the aqueous phase of HASP cultures. Thus, competent strains were able to directly access phenanthrene sorbed by the humic acids and did not rely on desorption for substrate uptake. To the best of our knowledge, this is the first report of (i) a selective interaction between aerobic bacteria and humic acid molecules and (ii) differential bioavailability to bacteria of PAHs sorbed to a natural biogeopolymer.  相似文献   

2.
Reduced bioavailability of nonpolar contaminants due to sorption to natural organic matter is an important factor controlling biodegradation of pollutants in the environment. We established enrichment cultures in which solid organic phases were used to reduce phenanthrene bioavailability to different degrees (R. J. Grosser, M. Friedrich, D. M. Ward, and W. P. Inskeep, Appl. Environ. Microbiol. 66:2695–2702, 2000). Bacteria enriched and isolated from contaminated soils under these conditions were analyzed by denaturing gradient gel electrophoresis (DGGE) and sequencing of PCR-amplified 16S ribosomal DNA segments. Compared to DGGE patterns obtained with enrichment cultures containing sand or no sorptive solid phase, different DGGE patterns were obtained with enrichment cultures containing phenanthrene sorbed to beads of Amberlite IRC-50 (AMB), a weak cation-exchange resin, and especially Biobead SM7 (SM7), a polyacrylic resin that sorbed phenanthrene more strongly. SM7 enrichments selected for mycobacterial phenanthrene mineralizers, whereas AMB enrichments selected for a Burkholderia sp. that degrades phenanthrene. Identical mycobacterial and Burkholderia 16S rRNA sequence segments were found in SM7 and AMB enrichment cultures inoculated with contaminated soil from two geographically distant sites. Other closely related Burkholderia sp. populations, some of which utilized phenanthrene, were detected in sand and control enrichment cultures. Our results are consistent with the hypothesis that different phenanthrene-utilizing bacteria inhabiting the same soils may be adapted to different phenanthrene bioavailabilities.  相似文献   

3.
Two different procedures were compared to isolate polycyclic aromatic hydrocarbon (PAH)-utilizing bacteria from PAH-contaminated soil and sludge samples, i.e., (i) shaken enrichment cultures in liquid mineral medium in which PAHs were supplied as crystals and (ii) a new method in which PAH degraders were enriched on and recovered from hydrophobic membranes containing sorbed PAHs. Both techniques were successful, but selected from the same source different bacterial strains able to grow on PAHs as the sole source of carbon and energy. The liquid enrichment mainly selected for Sphingomonas spp., whereas the membrane method exclusively led to the selection of Mycobacterium spp. Furthermore, in separate membrane enrichment set-ups with different membrane types, three repetitive extragenic palindromic PCR-related Mycobacterium strains were recovered. The new Mycobacterium isolates were strongly hydrophobic and displayed the capacity to adhere strongly to different surfaces. One strain, Mycobacterium sp. LB501T, displayed an unusual combination of high adhesion efficiency and an extremely high negative charge. This strain may represent a new bacterial species as suggested by 16S rRNA gene sequence analysis. These results indicate that the provision of hydrophobic sorbents containing sorbed PAHs in the enrichment procedure discriminated in favor of certain bacterial characteristics. The new isolation method is appropriate to select for adherent PAH-degrading bacteria, which might be useful to biodegrade sorbed PAHs in soils and sludge.  相似文献   

4.
The mineralization of phenanthrene in pure cultures of a Pseudomonas fluorescens strain, isolated from soil, was measured in the presence of soil humic fractions and montmorillonite. Humic acid and clay, either separately or in combination, shortened the acclimation phase. A higher mineralization rate was measured in treatments with humic acid at 100 μg/ml. Humic acid at 10 μg/ml stimulated the transformation only in the presence of 10 g of clay per liter. We suggest that sorption of phenanthrene to these soil components may result in a higher concentration of substrate in the vicinity of the bacterial cells and therefore may increase its bioavailability.  相似文献   

5.
The mineralization of 14C-phenanthrene, sorbed to porous synthetic amberlite sorbents, i.e., IRC50, XAD7-HP, and XAD2, by three phenanthrene-degrading Mycobacterium soil isolates, i.e., strains VM552, VM531, and VM451 and three phenanthrene-degrading Sphingomonas soil isolates, i.e., strains LH162, EPA505 and LH227, was compared. In P-buffer and in the presence of IRC50, for all strains the maximum rate of mineralization of 14C-phenanthrene was significantly higher (1.1–1.9 ng ml−1 h−1) than the initial abiotic desorption rate (0.2 ng ml−1 h−1), indicating that both Mycobacterium and Sphingomonas utilize sorbed phenanthrene with a higher rate than can be explained by abiotic desorption. Because all Mycobacterium and Sphingomonas strains belonged to different species, it can be suggested that this feature is intrinsic to those genera rather than a specific feature of a particular strain. The final mineralization extent in P-buffer in the presence of IRC50 was about a factor of two higher for the Mycobacterium strains compared to the Sphingomonas strains. Moreover, a significantly higher normalized phenanthrene mineralization ratio in the presence of IRC50 to the control (without IRC50) was found for the Mycobacterium strains compared to the normalized ratio found for the Sphingomonas strains. Addition of minimal nutrients had a more beneficial effect on phenanthrene mineralization by Sphingomonas compared to Mycobacterium, resulting into similar mineralization extents and rates for both types of strains in the presence of IRC50. Our results show that Mycobacterium is better adapted to utilization of sorbed phenanthrene compared to Sphingomonas, especially in nutrient-poor conditions.  相似文献   

6.
Assessment of Bioavailability of Soil-Sorbed Atrazine   总被引:4,自引:1,他引:3       下载免费PDF全文
Bioavailability of pesticides sorbed to soils is an important determinant of their environmental fate and impact. Mineralization of sorbed atrazine was studied in soil and clay slurries, and a desorption-biodegradation-mineralization (DBM) model was developed to quantitatively evaluate the bioavailability of sorbed atrazine. Three atrazine-degrading bacteria that utilized atrazine as a sole N source (Pseudomonas sp. strain ADP, Agrobacterium radiobacter strain J14a, and Ralstonia sp. strain M91-3) were used in the bioavailability assays. Assays involved establishing sorption equilibrium in sterile soil slurries, inoculating the system with organisms, and measuring the CO2 production over time. Sorption and desorption isotherm analyses were performed to evaluate distribution coefficients and desorption parameters, which consisted of three desorption site fractions and desorption rate coefficients. Atrazine sorption isotherms were linear for mineral and organic soils but displayed some nonlinearity for K-saturated montmorillonite. The desorption profiles were well described by the three-site desorption model. In many instances, the mineralization of atrazine was accurately predicted by the DBM model, which accounts for the extents and rates of sorption/desorption processes and assumes biodegradation of liquid-phase, but not sorbed, atrazine. However, for the Houghton muck soil, which manifested the highest sorbed atrazine concentrations, enhanced mineralization rates, i.e., greater than those expected on the basis of aqueous-phase atrazine concentration, were observed. Even the assumption of instantaneous desorption could not account for the elevated rates. A plausible explanation for enhanced bioavailability is that bacteria access the localized regions where atrazine is sorbed and that the concentrations found support higher mineralization rates than predicted on the basis of aqueous-phase concentrations. Characteristics of high sorbed-phase concentration, chemotaxis, and attachment of cells to soil particles seem to contribute to the bioavailability of soil-sorbed atrazine.  相似文献   

7.
Reduced bioavailability of nonpolar contaminants due to sorption to natural organic matter is an important factor controlling biodegradation of pollutants in the environment. We established enrichment cultures in which solid organic phases were used to reduce phenanthrene bioavailability to different degrees (R. J. Grosser, M. Friedrich, D. M. Ward, and W. P. Inskeep, Appl. Environ. Microbiol. 66:2695-2702, 2000). Bacteria enriched and isolated from contaminated soils under these conditions were analyzed by denaturing gradient gel electrophoresis (DGGE) and sequencing of PCR-amplified 16S ribosomal DNA segments. Compared to DGGE patterns obtained with enrichment cultures containing sand or no sorptive solid phase, different DGGE patterns were obtained with enrichment cultures containing phenanthrene sorbed to beads of Amberlite IRC-50 (AMB), a weak cation-exchange resin, and especially Biobead SM7 (SM7), a polyacrylic resin that sorbed phenanthrene more strongly. SM7 enrichments selected for mycobacterial phenanthrene mineralizers, whereas AMB enrichments selected for a Burkholderia sp. that degrades phenanthrene. Identical mycobacterial and Burkholderia 16S rRNA sequence segments were found in SM7 and AMB enrichment cultures inoculated with contaminated soil from two geographically distant sites. Other closely related Burkholderia sp. populations, some of which utilized phenanthrene, were detected in sand and control enrichment cultures. Our results are consistent with the hypothesis that different phenanthrene-utilizing bacteria inhabiting the same soils may be adapted to different phenanthrene bioavailabilities.  相似文献   

8.
In this study we evaluated the capacity of a defined microbial consortium (five bacteria: Mycobacterium fortuitum, Bacillus cereus, Microbacterium sp., Gordonia polyisoprenivorans, Microbacteriaceae bacterium, Naphthalene-utilizing bacterium; and a fungus identified as Fusarium oxysporum) isolated from a PAHs contaminated landfarm site to degrade and mineralize different concentrations (0, 250, 500 and 1000 mg kg(-1)) of anthracene, phenanthrene and pyrene in soil. PAHs degradation and mineralization was evaluated by gas chromatography and respirometry, respectively. The microbial consortium degraded on average, 99%, 99% and 96% of the different concentrations of anthracene, phenanthrene and pyrene in the soil, in 70 days, respectively. This consortium mineralized 78%, on average, of the different concentrations of the 3 PAHs in soil after 70 days. Contrarily, the autochthonous soil microbial population showed no substantial mineralization of the PAHs. Bacterial and fungal isolates from the consortium, when inoculated separately to the soil, were less effective in anthracene mineralization compared to the consortium. This signifies synergistic promotion of PAHs mineralization by mixtures of the monoculture isolates (the microbial consortium).  相似文献   

9.
A simple initial screening procedure for selecting strains of white-rot fungi with potential for use in bioremediation of contaminated sites is described. Besides the ability to degrade low molecular weight PAHs, isolates were screened for their growth rate on straw-based agar media, their potential to tolerate high concentrations of phenanthrene and their ability to out-grow the cellulolytic fungus Trichoderma harzianum on straw agar plates. Results from simple in vitro tests were correlated with the ability of the different strains to degrade PAHs in sand microcosms. It was found that fungal growth rate on straw-based agar media in the presence of phenanthrene correlated well with the ability of the different fungi to degrade PAHs in sand microcosms. Whereas growth rate on straw-based agar plates per se was indicative of the ability of white-rot fungi to establish in the presence of a competing fungus, it was a poor indicator of the fungus’ ability to degrade PAHs.  相似文献   

10.
We isolated three species of phenanthrene-degrading bacteria from oil-contaminated soils and marine sediment, and assessed the potential use of these bacteria for bioremediation of soils contaminated by polycyclic aromatic hydrocarbons (PAHs). Based on 16S rDNA sequences, these bacteria were Staphylococcus sp. KW-07 and Pseudomonas sp. CH-11 from soil, and Ochrobactrum sp. CH-19 from the marine sediment. By PCR amplification, catechol 2,3-dioxygenase genes (nahH genes) mediating PAH degradation in the chromosome of Staphylococcus sp. KW-07 and Ochrobactrum sp. CH-19, and in plasmid DNA of Pseudomonas sp. CH-11 were detected. All isolates had a similar optimal growth temperature (25 °C) and optimal growth pH (7.0) in a minimal salt medium (MSM) with 0.1% (w/v) phenanthrene as the sole source of carbon and energy. Pseudomonas sp. CH-11 and Staphylococcus sp. KW-07 degraded 90% of added phenanthrene in 3 days and Ochrobactrum sp. CH-19 degraded 90% of the phenanthrene in 7 days under laboratory batch culture conditions. However, Staphylococcus sp. KW-07 was the most effective among the three strains in degradation of phenanthrene in soil. After inoculation of 1 × 1011 cells of Staphylococcus sp. KW-07, over 90% degradation of 0.1% phenanthrene (0.1 g/100 g soil) was achieved after 1 month at 25 °C. The results collectively suggest that the Staphylococcus sp. KW-07 strain isolated may be useful in bioremediation of PAH-contaminated soils.  相似文献   

11.
Two polycyclic aromatic hydrocarbon (PAH)-contaminated soils of pH 2 were successfully used as inoculum to enrich cultures growing on phenanthrene and pyrene at different pHs, including pH 3. Selected pyrene-utilizing cultures obtained at pH 3, pH 5, and pH 7 were further characterized. All showed rapid [14C]pyrene mineralization at pH 3 and pH 5 and grew on pyrene at pH values ranging from 2 to 6. Eubacterial and mycobacterial 16S rRNA gene denaturing gradient gel electrophoresis fingerprinting and sequencing indicated that the cultures were dominated by a single bacterium closely related to Mycobacterium montefiorense, belonging to the slow-growing Mycobacterium sp. In contrast, a culture enriched on pyrene at pH 7 from a slightly alkaline soil sampled at the same site was dominated by Pseudomonas putida and a fast-growing Mycobacterium sp. The M. montefiorense-related species dominating the pyrene-utilizing cultures enriched from the acidic soils was also the dominant Mycobacterium species in the acidic soils. Our data indicate that a slow-growing Mycobacterium species is involved in PAH degradation in that culture and show that bacteria able to degrade high-molecular-weight PAHs at low pH are present in acidic PAH-contaminated soil.  相似文献   

12.
The soil microbial population of a coke oven site was investigated in order to evaluate its potential for bioremediation. The study was carried out in soil samples with distinct polynuclear aromatic hydrocarbon (PAH) contamination levels, comparing the population profiles constituted by total heterotrophic and PAH-utilizing strains. Isolation of degrading strains was performed with phenanthrene or pyrene as sole carbon sources. The ability to degrade other PAHs, such as anthracene, fluorene and fluoranthene was also investigated. The results showed a reduction of 30% in species diversity and microbial density drops one order of magnitude in contaminated samples. Furthermore, the number of PAH-utilizing colonies was higher in the contaminated area and about 20% of the isolates were able to degrade phenanthrene and pyrene, while this value decreased to 0.15% in uncontaminated samples. Three PAH-degrader strains were identified as: CDC gr. IV C-2, Aeromonas sp. and Pseudomonas vesicularis. The ability of these strains to degrade other PAHs was also investigated.  相似文献   

13.
From the leaves of three urban trees (Tilia sp., Acer sp., and Fraxinus sp.), 180 strains degrading phenanthrene, naphthalene, and salicylate were isolated by direct plating and enrichment cultures. The leaves of each tree species were characterized by a specific profile of aromatic hydrocarbon-degrading microflora. Members of the type Actinobacteria were predominant in the case of direct plating on media with phenanthrene and naphthalene. Enrichment cultures with phenanthrene and salicylate were shown to yield microbial consortia, the composition of which changed with time. Members of the type Proteobacteria were predominant in these consortia. No plasmids of polycyclic aromatic hydrocarbon degradation of the P-7 and P-9 incompatibility groups were revealed in the studied strains.  相似文献   

14.
A polycyclic aromatic hydrocarbon (PAH)-degrading culture enriched from contaminated river sediments and a Mycobacterium sp. isolated from the enrichment were tested to investigate the possible synergistic and antagonistic interactions affecting the degradation of pyrene in the presence of low molecular weight PAHs. The Mycobacterium sp. was able to mineralize 63% of the added pyrene when it was present as a sole source of carbon and energy. When the enrichment culture and the isolated bacterium were exposed to phenanthrene, de novo protein synthesis was not required for the rapid mineralization of pyrene, which reached 52% in chloramphenicol-treated cultures and 44% in the absence of the protein inhibitor. In the presence of chloramphenicol, < 1% of the added pyrene was mineralized by the mixed culture after exposure to anthracene and naphthalene. These compounds did not inhibit pyrene utilization when present at the same time as pyrene. Concurrent mineralization of pyrene and phenanthrene after exposure to either compound was observed. Cross-acclimation between ring classes of PAHs may be a potentially important interaction influencing the biodegradation of aromatic compounds in contaminated environments.  相似文献   

15.
The diversity of indigenous bacteria in sediments from several sites in the Elizabeth River (Virginia) able to degrade multiple polycyclic aromatic hydrocarbons (PAHs) was investigated by the use of classical selective enrichment and molecular analyses. Enrichment cultures containing naphthalene, phenanthrene, fluoranthene, or pyrene as a sole carbon and energy source were monitored by denaturing gradient gel electrophoresis (DGGE) to detect changes in the bacterial-community profile during enrichment and to determine whether the representative strains present were successfully cultured. The DGGE profiles of the final enrichments grown solely on naphthalene and pyrene showed no clear relationship with the site from which the inoculum was obtained. The enrichments grown solely on pyrene for two sample sites had >80% similarity, which suggests that common pyrene-degrading strains may be present in these sediments. The final enrichments grown on fluoranthene and phenanthrene remained diverse by site, suggesting that these strains may be influenced by environmental conditions. One hundred and one isolates were obtained, comprising representatives of the actinomycetes and alpha-, beta-, and gammaproteobacteria, including seven novel isolates with 16S rRNA gene sequences less than 98% similar to known strains. The ability to degrade multiple PAHs was demonstrated by mineralization of 14C-labeled substrate and growth in pure culture. This supports our hypothesis that a high diversity of bacterial strains with the ability to degrade multiple PAHs can be confirmed by the combined use of classical selective enrichment and molecular analyses. This large collection of diverse PAH-degrading strains provides a valuable resource for studies on mechanisms of PAH degradation and bioremediation.  相似文献   

16.
The effect of extractable humic substances (EHS) on the bioremediation of phenanthrene in a slurry phase was investigated using adapted microorganisms with polycyclic aromatic hydrocarbons (PAHs). Two concentrations of EHS were used: 150 and 30 mg/kg soil. The phenanthrene concentration was 500 mg/kg soil. The results showed that the trend of biodegradation was increased after four weeks retardation. These tests showed that humic compounds could overcome the bond between the soil and phenanthrene in the presence of the bacterial consortium. The bacterial density in the medium with EHS was about six-fold greater in magnitude than in the medium without the humic compounds. The chemical relationship between phenanthrene and the humic substances in the form of a phenanthrene-humic-soil complex or phenanthrene-humic is loosely associated and reversible. Therefore, after the initial inhibition by humic substances, the bioavailability of phenanthrene increases.  相似文献   

17.
Two mixed bacterial cultures (CB-BT and CI-AT) degraded phenanthrene when it was: (i) in the presence of either hexadecane as a non aqueous phase liquid or a montmorillonite–Al(OH)x-humic acid complex as a model organo-mineral matrix; (ii) sorbed to the complex, either alone or in the presence of hexadecane. The cultures had different kinetic behaviours towards phenanthrene with or without hexadecane. The degradation of Phe alone as well as that of Phe in hexadecane ended in 8 and 15 days with CB-BT and CI-AT cultures, respectively. Hexadecane increased Phe bioavailability for CI-AT bacteria which degraded Phe according to first-order kinetics. The same effect was observed for CB-BT bacteria, but with an initial 2 days lag phase and in accordance with zero-order kinetics. The presence of hexadecane did not affect the degradation of phenanthrene sorbed and aged on the complex by CI-AT culture. This capability was exhibited also after experimental aging of 30 days. The dynamics of the bacterial community composition was investigated through PCR-DGGE (denaturing gradient gel electrophoresis) of 16S rRNA gene fragments. Individual bands changed their intensity during the incubation time, implying that particular microbe’s relative abundance changed according to the culture conditions. Isolation of phenanthrene and/or hexadecane degraders was in accord with cultivation-independent data. Growth-dependent changes in the cell surface hydrophobicity of the two cultures and of the isolates suggested that modulation of cell surface hydrophobicity probably played an important role for an efficient phenanthrene assimilation/uptake.  相似文献   

18.
Two different procedures were compared to isolate polycyclic aromatic hydrocarbon (PAH)-utilizing bacteria from PAH-contaminated soil and sludge samples, i.e., (i) shaken enrichment cultures in liquid mineral medium in which PAHs were supplied as crystals and (ii) a new method in which PAH degraders were enriched on and recovered from hydrophobic membranes containing sorbed PAHs. Both techniques were successful, but selected from the same source different bacterial strains able to grow on PAHs as the sole source of carbon and energy. The liquid enrichment mainly selected for Sphingomonas spp., whereas the membrane method exclusively led to the selection of Mycobacterium spp. Furthermore, in separate membrane enrichment set-ups with different membrane types, three repetitive extragenic palindromic PCR-related Mycobacterium strains were recovered. The new Mycobacterium isolates were strongly hydrophobic and displayed the capacity to adhere strongly to different surfaces. One strain, Mycobacterium sp. LB501T, displayed an unusual combination of high adhesion efficiency and an extremely high negative charge. This strain may represent a new bacterial species as suggested by 16S rRNA gene sequence analysis. These results indicate that the provision of hydrophobic sorbents containing sorbed PAHs in the enrichment procedure discriminated in favor of certain bacterial characteristics. The new isolation method is appropriate to select for adherent PAH-degrading bacteria, which might be useful to biodegrade sorbed PAHs in soils and sludge.  相似文献   

19.
Microorganisms responsible for the degradation of phenanthrene in a clean forest soil sample were identified by DNA-based stable isotope probing (SIP). The soil was artificially amended with either 12C- or 13C-labeled phenanthrene, and soil DNA was extracted on days 3, 6 and 9. Terminal restriction fragment length polymorphism (TRFLP) results revealed that the fragments of 219- and 241-bp in HaeIII digests were distributed throughout the gradient profile at three different sampling time points, and both fragments were more dominant in the heavy fractions of the samples exposed to the 13C-labeled contaminant. 16S rRNA sequencing of the 13C-enriched fraction suggested that Acidobacterium spp. within the class Acidobacteria, and Collimonas spp. within the class Betaproteobacteria, were directly involved in the uptake and degradation of phenanthrene at different times. To our knowledge, this is the first report that the genus Collimonas has the ability to degrade PAHs. Two PAH-RHDα genes were identified in 13C-labeled DNA. However, isolation of pure cultures indicated that strains of Staphylococcus sp. PHE-3, Pseudomonas sp. PHE-1, and Pseudomonas sp. PHE-2 in the soil had high phenanthrene-degrading ability. This emphasizes the role of a culture-independent method in the functional understanding of microbial communities in situ.  相似文献   

20.
Polycyclic aromatic hydrocarbon (PAH)-degrading bacteria were isolated from contaminated estuarine sediment and salt marsh rhizosphere by enrichment using either naphthalene, phenanthrene, or biphenyl as the sole source of carbon and energy. Pasteurization of samples prior to enrichment resulted in isolation of gram-positive, spore-forming bacteria. The isolates were characterized using a variety of phenotypic, morphologic, and molecular properties. Identification of the isolates based on their fatty acid profiles and partial 16S rRNA gene sequences assigned them to three main bacterial groups: gram-negative pseudomonads; gram-positive, non-spore-forming nocardioforms; and the gram-positive, spore-forming group, Paenibacillus. Genomic digest patterns of all isolates were used to determine unique isolates, and representatives from each bacterial group were chosen for further investigation. Southern hybridization was performed using genes for PAH degradation from Pseudomonas putida NCIB 9816-4, Comamonas testosteroni GZ42, Sphingomonas yanoikuyae B1, and Mycobacterium sp. strain PY01. None of the isolates from the three groups showed homology to the B1 genes, only two nocardioform isolates showed homology to the PY01 genes, and only members of the pseudomonad group showed homology to the NCIB 9816-4 or GZ42 probes. The Paenibacillus isolates showed no homology to any of the tested gene probes, indicating the possibility of novel genes for PAH degradation. Pure culture substrate utilization experiments using several selected isolates from each of the three groups showed that the phenanthrene-enriched isolates are able to utilize a greater number of PAHs than are the naphthalene-enriched isolates. Inoculating two of the gram-positive isolates to a marine sediment slurry spiked with a mixture of PAHs (naphthalene, fluorene, phenanthrene, and pyrene) and biphenyl resulted in rapid transformation of pyrene, in addition to the two- and three-ringed PAHs and biphenyl. This study indicates that the rhizosphere of salt marsh plants contains a diverse population of PAH-degrading bacteria, and the use of plant-associated microorganisms has the potential for bioremediation of contaminated sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号