首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 281 毫秒
1.
缺磷胁迫下的小麦根系形态特征研究   总被引:52,自引:10,他引:42  
研究了缺磷条件下不同基因型小麦(Triticum aestivum L.)苗期根系形态学适应特征,以明确环境因子对根系不同组分(根轴和侧根)生长发育调控作用的强度和根系形态与磷营养效率关系。在缺P环境中,小麦根轴数量和侧根长度明显减小,同化物向根部的分配比例增加,根轴长度、侧根数量和根系长度等均有显著提高。供试基因型小麦的根轴数量及其长度的差异在每个供磷水平及不同供磷水平之间均呈显著,说明这两种性状的差异是由基因型和环境因素共同决定的;而侧根特征的差异只在不同供磷水平间显著,表明侧根性状主要受环境因素的控制。对6种基因型小麦的研究表明,根轴数量、根轴长度、根生长角度和根系长度根角之间存在着显著的基因型差异。相关分析表明,小麦的相对产量与缺磷条件下的小麦苗期根系形态指标的交互作用之间具有显著的线性关系。这种关系说明根系形态性状可作为早期有效地筛选磷高效小麦品种的指标。  相似文献   

2.
缺磷胁迫对小麦根细胞周期蛋白基因cyc1At表达的影响   总被引:1,自引:0,他引:1  
用液培方法研究了缺磷胁迫对小麦(TriticumaestivumL.)根系生长的影响。结果表明,随着介质磷水平的提高,小麦根轴长度和植株生长素浓度均降低。在低磷条件下用生长素极性运输抑制剂三碘苯甲酸(TIBA)处理后,小麦的根轴长度明显降低,表明生长素参与了缺磷小麦根轴生长的调控。缺磷小麦根部生长素浓度的提高诱导了细胞周期蛋白基因cyclAt的表达,促进了根分生组织细胞的分裂并驱动了根的生长。  相似文献   

3.
核桃-小麦复合系统中细根生长动态及竞争策略   总被引:3,自引:0,他引:3  
以核桃(Juglans regia)-小麦(Triticum aestivum)间作复合系统为研究对象,用微根窗和根钻相结合的方法采样,研究复合系统中核桃和小麦细根年内年际的生长动态和竞争适应策略,为农林复合系统的经营管理和竞争模型的建立提供理论依据和技术支持。结果表明,间作核桃和小麦根系均在上半年有一个大的生长高峰(5月和4月),在下半年有一个小的生长高峰(9月和11月),二者的竞争主要发生在上半年的大生长高峰期。在各年份各土层,间作核桃的根长密度均低于单作核桃,且在从第7年开始存在显著差异。在0—20 cm土层间作小麦根长密度在第3—7年间获得迅速提高,从第7年开始显著高于单作小麦,但在20 cm以下土层则相反。间作使核桃和小麦细根生态位实现了分离,11年的观察期内间作核桃比单作核桃细根的垂直分布中心下移了6.59 cm,间作小麦比单作小麦的上移了8.59 cm。在根系竞争策略方面,小麦根系是通过短期内的快速生长,迅速占据土壤空间获得竞争优势;而核桃根系是通过根系的逐年积累,逐步占据土壤空间从而获得竞争优势。可以干扰核桃根系积累过程的"竞争-干扰-再平衡"农林复合经营管理策略可以让复合系统中核桃和小麦保持各自竞争优势的情况下实现共存。在根系形态方面,自身细根直径较小者小麦在剧烈竞争区域以增加细根直径减小比根长来适应竞争,而自身细根直径较大者核桃则相反。  相似文献   

4.
小麦根系与土壤水分胁迫关系的研究进展   总被引:42,自引:3,他引:39  
几十年来,大量科学工作者为拓宽小麦根系对土壤水分的吸收能力和调控根系对干旱的适应能力,挖掘干旱地区的生产潜力,实现高产做了大量细致的研究工作,取得了许多重要研究成果,综述了土壤水分胁迫对小麦根系形态、构型建成和生理指标影响的影响。过去进行的研究表明,干旱胁迫条件下,不仅表达小麦根系形态和构型建成指标的根系数量、根系比表面积、根冠比、根生长势、根水势,导管直径等发生显著变化,而且表达根系生理指标的伤流流、根呼吸速率、根系质膜透性、膜脂过氧化水平、保护酶及其同工酶等也发生相应改变,虽然不同的研究者所获得的研究结果不同,有的甚至相互矛盾,但从总体看,各种变要是对干旱胁迫的一种适应性反应,有利于提高小麦的抗旱能力,对干旱条件下产量的形成具有重要作用。  相似文献   

5.
缺磷胁迫对小麦根细胞周期蛋白基因cyc1At表达的影响   总被引:5,自引:0,他引:5  
用液培方法研究了缺磷胁迫对小麦(Triticum aestivum L.)根系生长的影响。结果表明,随着介质磷水平的提高,小麦根轴长度和植株生长素深度均降低。在低磷条件下用生长素极性运输抑制剂三碘苯甲酸(TIBA)处理后,小麦的根轴长度明显降低,表明生长素参与了缺磷小麦根轴生长的调控。缺磷小麦根部生长素浓度的提高诱导了细胞周期蛋白基因cyc1At的素达,促进了根分生组织细胞的分裂并驱动了根的生长。  相似文献   

6.
采用水培方法,研究了不同磷水平下小麦-蚕豆间作体系根系形态变化及其与内源激素的相关关系。结果表明: 与单作小麦相比,在低磷(1/2P)水平下,小麦-蚕豆间作能显著增加小麦的根长,显著减少小麦根系的平均直径,显著增加根系的表面积;在常规磷(P)水平下,间作能显著降低小麦根系的平均直径,有增加小麦根长和根表面积的趋势;与单作蚕豆相比,间作能明显促进蚕豆根系的增长,同时增加蚕豆根表面积。在1/2P水平下,间作能显著提高小麦和蚕豆根系中的生长素(IAA)、脱落酸(ABA)、水杨酸(SA)和茉莉酸(JA)含量;在P水平下,间作能显著提高小麦根系中的IAA、ABA和JA含量,单、间作小麦根系中的SA含量没有显著差异,间作显著增加了蚕豆根系中ABA和SA含量,单、间作蚕豆根系中的IAA和JA含量无显著差异。单作条件下,小麦和蚕豆根系中的内源激素(IAA、ABA、SA和JA)含量与其根系形态(根长、根平均直径和根表面积)无显著相关性;间作条件下,小麦和蚕豆根系中的IAA含量与根长和根表面积之间存在明显的正相关关系。由此可见,小麦-蚕豆间作能够诱导小麦和蚕豆根系IAA的增加。这种变化可能是驱动间作系统根系形态变化的重要因子。  相似文献   

7.
小麦根系生长对缺磷胁迫的反应   总被引:26,自引:0,他引:26  
研究了缺磷诱导小麦(Triticum aestivumL.)根系生长的反应,小麦根轴的生长与植株内外的磷浓度均呈显著的负线性关系。分根实验证明,随着低磷营养液中根比例的增加,在供磷水平不同的分根盒侧的根轴长度的均增加,这说明根轴生长是受体内磷浓度调控的。植株体内磷浓度的处理后1d开始变化,而在不同供磷水平营养液中小麦根轴长度的差异达到显著水平的时间是处理后的第8天,说明植株体内磷浓度的变化可能是小  相似文献   

8.
采用多年大田试验研究了小麦-大豆(A1)、小麦-甘薯(A2)、玉米(A3)、小麦/玉米/大豆(A4)和小麦/玉米/甘薯(A5)5种种植模式的根际环境变化特征和根系生长特性.结果表明:与A1、A2、A3和A5相比,A4提高了小麦、玉米、大豆在开花期和成熟期的生物量、根系活力和根干质量,提高了各作物根际土壤细菌、真菌和放线菌数量.各种植模式之间,植株生物量和根际微生物数量的变化规律为套作>单作、大豆茬口>甘薯茬口、边行>中行.小麦/玉米/大豆(A4)套作模式通过改善3种作物的根际环境,促进了作物地下部根系生长和地上部生物量的增加,从而实现作物增产.  相似文献   

9.
基于器官生物量构建植株形态的玉米虚拟模型   总被引:31,自引:0,他引:31  
探讨了基于玉米器官生物量模拟其形态的方法,并应用2000年田间试验数据提取了玉米节间、叶鞘和叶片的形态构建参数。基于玉米虚拟模型生物量分配模块模拟的器官生物量积累和建立的形态构建方法与提取的参数,模拟了2001年玉米不同生长阶段的器官形态,模拟结果与田间试验数据吻合较好。应用本模型实现了玉米生长过程中植株各个器官形态变化以及植株高度、叶面积动态的模拟,并实现了植株形态的可视化。  相似文献   

10.
基于信息管理的一种虚拟森林景观构建及应用探讨   总被引:20,自引:0,他引:20  
在分析不同尺度的森林可视化建模内容和技术特点的基础上,提出了一个基于信息管理的虚拟森林景观构造原理和技术体系.把过程建模技术与树木形态结构描述结合,提出了一种交互式、参数化的树木动态建模方法,给出了相应的绘制方法和几何体简化算法以实现加速实时绘制,并以福建省漳浦县为例,建立了典型树种的几何模型库.利用森林调查和遥感动态空间数据,借助地理信息系统ArcObiect组件、图形环境OpenGL和Visual C++语言,开发了虚拟森林管理原型系统,实现森林二维/三维交互漫游、查询分析、森林生长仿真模拟,其真实感与模拟精度满足实际森林资源管理需求.最后给出了系统的典型用户界面以及在考虑竞争条件下马尾松自然生长模拟和人工间伐前后的虚拟景观对比的应用例子.  相似文献   

11.
While the rhizosphere presents a different chemical, physical and biological environment to bulk soil, most experimental and modelling investigations of plant growth and productivity are based on bulk soil parameters. In this study, water and nutrient acquisition by wheat (Triticum aestivum L.) roots was investigated using rhizosphere- and root-system-scale modelling. The physical and chemical properties of rhizosphere soil could be influenced by phospholipid surfactants in the root mucilage. Two models were compared: a 2-dimensional (2D) Finite Element Method rhizosphere model, and a 3-dimensional (3D) root architecture model, ROOTMAP. ROOTMAP was parameterised to reproduce the results of the detailed 2D model, and was modified to include a rhizosphere soil volume. Lecithin (a phospholipid surfactant) could be exuded into the rhizosphere soil volume, decreasing soil water content and hydraulic conductivity at any given soil water potential, and decreasing phosphate adsorption to soil particles. The rhizosphere-scale modelling (5 × 5 mm2 soil area, 10 mm root length, uptake over 12 h) predicted a reduction in water uptake (up to 16% at 30 kPa) and an increase in phosphate uptake (up to 4%) with lecithin exudation into the rhizosphere, but little effect on nitrate uptake, with only a small reduction in dry soil (1.6% at 200 kPa). The 3D root model reproduced the water (y = 1.013x, R2 = 0.996), nitrate (y = 1x, R2 = 1) and phosphate (y = 0.978x, R2 = 0.998) uptake predictions of the rhizosphere model, providing confidence that a whole root system model could reproduce the dynamics simulated by a Finite Element Method rhizosphere model. The 3D root architecture model was then used to scale-up the rhizosphere dynamics, simulating the effect of lecithin exudation on water, nitrate and phosphate acquisition by a wheat root system, growing over 41 d. When applied to growing and responsive roots, lecithin exudation increased P acquisition by up to 13% in nutrient-rich, and 49% in relatively nutrient-poor soil. A comparison of wheat (Triticum aestivum L.) and lupin (Lupinus angustifolius L.) root architectures, suggested an interaction between the P acquisition benefit of rhizosphere lecithin and root architecture, with the more highly-branched wheat root structure acquiring relatively more P in the presence of lecithin than the sparsely-branched lupin root system.  相似文献   

12.
ABSTRACT

We investigated whether changes in the root system of pine seedlings induced by stress (lifting of bare-root seedlings from the nursery bed irrespective of dormancy; prolonged storage of bare-root seedlings in a cold room) could provide a measure of plant vigour. Physiological parameters, such as growth potential and root electrolyte leakage, and morphological parameters, such as root length and number of root tips, were calculated. Computerised image analysis was used to measure root growth, overall and based on root-diameter class (0–0.5 mm, 0.5–1.0 mm and 1.0–1.5 mm). The efficiency of vigour assessment was evaluated by correlating the data for each parameter with percentage seedling survival. Root growth potential was more efficient than root electrolyte leakage, but both parameters were affected by seedling age. Total root length was a more efficient indicator of plant vigour than root tip number, particularly when referred to roots of the same diameter class. A comparative analysis of physiological and morphological parameters referred to the root systems improves their relative effciency.  相似文献   

13.

Aims

Because plants cannot change their environmental circumstances by changing their location, they must instead adapt to a wide variety of environmental conditions, especially soil conditions. One of the most effective ways for a plant to adapt to a given soil condition is by modifying its root system architecture. We aim to identify the genetic factors controlling root growth angle, a trait that affects root system architecture.

Methods

The present study consisted of a genetic analysis of the seminal root growth angle in wheat; the parental varieties of the doubled haploid lines (DHLs) used in this study exhibited significantly different root growth directions. Using the ‘basket’ method, the ratio of deep roots (DRR; the proportion of total roots with GA > 45 degrees) was observed for evaluating deep rooting.

Results

We were able to identify novel quantitative trait loci (QTLs) controlling the gravitropic and hydrotropic responses of wheat roots. Moreover, we detected one QTL for seminal root number per seedling (RN) on chromosome 5A and two QTLs for seminal root elongation rate (ER) on chromosomes 5D and 7D.

Conclusions

Gravitropic and hydrotropic responses of wheat roots, which play a significant role in establishing root system architecture, are controlled by independent genetic factors.  相似文献   

14.
Sun  Haiguo  Zhang  Fusuo  Li  Long  Tang  Caixian 《Plant and Soil》2002,245(2):233-238
Effects of localized phosphate supply on the seedling growth of wheat (Triticum aestivum L.) genotypes 81(85)5-3-3-3 (P-efficient) and NC37 (P-inefficient) were studied using a device which allowed only 3 cm length of root segment to be exposed to phosphate treatment. Localized supply of 0 mmol P L–1 and the rest of root supplied with 0.1 mmol P L–1 (HLH), increased the shoot height, leaf area, root/shoot ratio for 81(85)5-3-3-3, length of root and root axis for NC37, and root axis length and density of first-laterals for both the genotypes, compared to plants with the whole root system in P-sufficient solution (HHH). This suggested that above- and below-ground morphological parameters of wheat were promoted by a localized P-deficiency, presumably via a P deficiency signal. There was a significant difference in the number of first-order laterals between the two wheat genotypes when most of the roots were grown without P and only 3 cm length of root was supplied with 0.3 mmol P L–1. The relationship between the number and density of 2nd-order lateral roots and level of local P supply was quadratic. Maximum number and density of 2nd-order lateral roots were obtained with a localized P supply of 0.70 mmol L–1.  相似文献   

15.
Jourdan  Christophe  Rey  Hervé 《Plant and Soil》1997,190(2):217-233
The objective of this work was to model the architecture and growth dynamics of the oil-palm root system. The morphological and functional unit of the root system, called root architectural unit and its development sequence enabled us to establish the basis of a mathematical formalization of the root system architecture. The topology of the branched structures and the processes of growth, branching and mortality were described and modelled by stochastic processes (graph model, automata, laws of probability). The models obtained were then combined with geometrical parameters in an overall mathematical model: the reference axis. Simulation of this model provided 3-D numerical models. Validations of the overall model based on comparing the 3-D numerical models with observed root systems, appeared satisfactory.  相似文献   

16.
Root architecture plays important roles in plant water and nutrient acquisition. However, accurate modeling of the root system that provides a realistic representation of roots in the soil is limited by a lack of appropriate tools for the non‐destructive and precise measurement of the root system architecture in situ. Here we describe a root growth system in which the roots grow in a solid gel matrix that was used to reconstruct 3D root architecture in situ and dynamically simulate its changes under various nutrient conditions with a high degree of precision. A 3D laser scanner combined with a transparent gel‐based growth system was used to capture 3D images of roots. The root system skeleton was extracted using a skeleton extraction method based on the Hough transformation, and mesh modeling using Ball‐B spline was employed. We successfully used this system to reconstruct rice and soybean root architectures and determine their changes under various phosphorus (P) supply conditions. Our results showed that the 3D root architecture parameters that were dynamically calculated based on the skeletonization and simulation of root systems were significantly correlated with the biomass and P content of rice and soybean based on both the simulation system and previous reports. Therefore, this approach provides a novel technique for the study of crop root growth and its adaptive changes to various environmental conditions.  相似文献   

17.
We present a 2-D model for simulation of root density and plant nitrogen (N) uptake for crops grown in agricultural systems, based on a modification of the root density equation originally proposed by Gerwitz and Page in J Appl Ecol 11:773–781, (1974). A root system form parameter was introduced to describe the distribution of root length vertically and horizontally in the soil profile. The form parameter can vary from 0 where root density is evenly distributed through the soil profile, to 8 where practically all roots are found near the surface. The root model has other components describing root features, such as specific root length and plant N uptake kinetics. The same approach is used to distribute root length horizontally, allowing simulation of root growth and plant N uptake in row crops. The rooting depth penetration rate and depth distribution of root density were found to be the most important parameters controlling crop N uptake from deeper soil layers. The validity of the root distribution model was tested with field data for white cabbage, red beet, and leek. The model was able to simulate very different root distributions, but it was not able to simulate increasing root density with depth as seen in the experimental results for white cabbage. The model was able to simulate N depletion in different soil layers in two field studies. One included vegetable crops with very different rooting depths and the other compared effects of spring wheat and winter wheat. In both experiments variation in spring soil N availability and depth distribution was varied by the use of cover crops. This shows the model sensitivity to the form parameter value and the ability of the model to reproduce N depletion in soil layers. This work shows that the relatively simple root model developed, driven by degree days and simulated crop growth, can be used to simulate crop soil N uptake and depletion appropriately in low N input crop production systems, with a requirement of few measured parameters.  相似文献   

18.

Objectives

To identify parameters that can be used for the analysis of natural variation in leaf senescence of wheat; and to understand the association between the onset and progression of leaf senescence with N uptake and root traits.

Methods

Chlorophyll content and the proportion of yellow leaves were used as senescence indicators and their relation with other morphological and physiological traits were measured in contrasting early senescing (ES) and late senescing (LS) wheat lines.

Results

There were significant genotype effects on the onset and progress of senescence. The ES lines in which leaf senescence commenced early had significantly lower root biomass and N uptake than LS lines. The strong negative association between the extent of leaf senescence with root biomass and N uptake indicated that the poor root growth induced N limitation caused the early senescence of ES lines.

Conclusions

The leaf senescence development in ES lines was precocious and constitutive as the trait expressed even under optimal growth conditions suggesting they could be useful in understanding the genetic regulation of senescence under different abiotic stress situations. Accelerated leaf senescence in wheat could be a mechanism to compensate for limitations in the root system that tend to restrict nutrient uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号