首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Extirpation of the superior cervical ganglion was performed in a series of Mongolian gerbils. One or two weeks after the ganglionectomy the animals were injected with a monoamine oxidase inhibitor. Subsequently perfusion fixation was performed using the glyoxylic acid-paraformal-dehydemagnesium method (Lorén et al., 1976) for fluorescence histochemical investigation of the monoamines of the pineal complex. In the ganglionectomized animals all of the blue-fluorescent sympathetic fibers in the pineal complex (superficial pineal gland, deep pineal gland and the pineal stalk) completely disappeared. The yellow indolamine fluorescence of the cells in the superficial pineal and the deep pineal, as well as in the pineal stalk, was markedly reduced after ganglionectomy. No change in the morphology or number of sympathetic fibers in the medial habenular nucleus was observed. These results indicate that the presence of sympathetic nerve fibers with perikarya in the superior cervical ganglion is necessary for maintaining a high indolamine content in all three parts of the pineal complex. In addition, the results also indicate that the deep pineal gland is a functional part of the pineal complex. The presence of a functionally active deep pineal, bordering the pineal recess, suggests that part of the pineal hormones might be secreted into the cerebrospinal fluid.This work was supported by the Carlsberg Foundation, the Swedish Natural Science Research Council, grant no. 2126-100, and the Danish Medical Research Council, grant no. 512-7134  相似文献   

2.
Summary Serotonin-like immunoreactivity was investigated in the pineal complex of the golden hamster by use of the indirect immunohistochemical technique. The superficial and deep portions of the pineal gland, and also the pineal stalk exhibited an intense cellular immunoreaction for serotonin. In addition, perivascular serotonin-immunoreactive nerve fibers were observed. Some serotonin-immunoreactive processes of the pinealocytes terminated on the surface of the ventricular lumen in the pineal and suprapineal recesses, indicating a receptive or secretory function of these cells. Several serotonin-immunoreactive processes connected the deep pineal with the habenular area. One week after bilateral removal of both superior cervical ganglia the serotonin immunoreaction of the entire pineal complex was greatly decreased. However, some cells in the pineal complex, of which several exhibited a neuron-like morphology, remained intensively stained after ganglionectomy. This indicates that the indoleamine content of some cells in the pineal complex of the golden hamster is independent of the sympathetic innervation.Supported by a Grant from the Italian Society for Veterinary Sciences  相似文献   

3.
Nerve fibers connecting the brain with the pineal gland of the Mongolian gerbil (central pinealopetal fibers) were investigated by means of light and electron microscopy. Several myelinated fibers penetrate from the brain into the deep pineal gland, extend further into the pineal stalk and continue to the superficial portion of the pineal gland. In the centripetal direction these fibers were traced to the stria medullaris and to the habenular nuclei, where they turned laterad and then occupied a position immediately ventral to the optic tract. As shown in electron micrographs, lesions of the habenular area led to degeneration of myelinated fibers and nerve boutons in the deep pineal gland, the pineal stalk and the superficial pineal gland. Only boutons containing clear transmitter vesicles (devoid of a dense core) were observed to degenerate after the habenular lesions. On the other hand, removal of the superior cervical ganglia resulted in degeneration of boutons containing small (40 to 60 nm in diameter) dense-core vesicles. Several of the nerve fibers that penetrate into the deep pineal directly from the brain (central fibers) exhibited a positive reaction for acetylcholinesterase (AChE). AChE-positive perikarya were located in the projections of the stria medullaris, the lateral portions of the deep pineal, the area of the posterior commissure, and the periventricular gray of the mesencephalon. Such perikarya were found neither in the pineal stalk nor in the superficial pineal gland. These results present anatomical evidence that the pineal organ of the Mongolian gerbil receives multiple nervous inputs mediated by peripheral autonomic (i.e., sympathetic) nerve fibers, on the one hand, and by central fibers, on the other.  相似文献   

4.
An immunohistochemical study of the cat pineal gland was performed using a rabbit polyclonal antibody directed against neuropeptide Y (NPY) and an antibody directed against the C-terminal flanking peptide of neuropeptide Y (CPON). Numerous NPY- and CPON-immunoreactive (IR) nerve fibers were demonstrated throughout the gland and in the pineal capsule. The number of IR nerve fibers in the capsule was high and from this location fibers were observed to penetrate into the gland proper via the pineal connective tissue septa, often following the blood vessels. From the connective tissue septa IR fibers intruded into the parenchyma between the pinealocytes. Many IR nerve fibers were observed in the pineal stalk and in the habenular as well as the posterior commissural areas. The number of NPY/CPON-IR nerve fibers in pineal glands from animals bilaterally ganglionectomized two weeks before sacrifice was low. The source of most of the extrasympathetic NPY/CPONergic nerve fibers is probably the brain from where they enter the pineal via the pineal stalk. However, an origin of some of the fibers from parasympathetic ganglia cannot be excluded due to the presence of a few IR fibers in the pineal capsule of ganglionectomized animals. It is concluded that the cat pineal is richly innervated with NPYergic nerve fibers mostly of sympathetic origin. The posttranslational processing of the NPY promolecule results in the presence of both NPY and CPON in intrapineal nerve fibers.  相似文献   

5.
The sympathetic nerve fibers originating from the superior cervical ganglia and supplying the pineal gland play the most important role in the control of the pineal activity in mammals. NPY and CPON are also present in the majority of the pinealopetal sympathetic neurons. In this study, immunohistochemical techniques were used to demonstrate the existence and coexistence of tyrosine hydroxylase (TH), dopamine beta-hydroxylase (DbetaH) as well as NPY and CPON in the nerve fibers supplying the chinchilla pineal gland. Ten two-year-old female chinchillas housed in natural light conditions were used in the study. The pineals were fixed by perfusion. ABC immunohistochemical technique and immunofluorescence labelling method were employed. TH-immunoreactive (TH-IR) varicose nerve fibers were observed in the pineal gland as well as in the posterior commissural area. Within the chinchilla pineal gland, TH-IR nerve fibers were located in the capsule and connective tissue septa. Numerous varicose TH-IR branches penetrated into the parenchyma and formed a network showing the highest density in the proximal region of the gland. In the central and distal parts of the pineal parenchyma, a subtle network, composed of thin varicose nerve branches, was observed. Double immunostaining revealed that the majority of TH-IR nerve fibers was positive for DbetaH or NPY. TH- and DbetaH-positive neuron-like cells were observed in the proximal region of the gland. The pattern of pineal innervation immunoreactive to CPON was similar to the innervation containing NPY, TH and DbetaH. The chinchilla intrapineal innervation containing TH, DbetaH, NPY and CPON is characterized by the higher density in the proximal part of the gland than in the middle and distal ones. The specific feature of the chinchilla pineal is also the presence of single TH/DbetaH-immunoreactive neuron-like cells in the proximal part of the gland.  相似文献   

6.
Application of the histochemical method for testing acetylcholinesterase (AChE, EC 3.1.1.7) showed the presence of AChE-positive nerve fibers in the deep pineal gland and the pineal stalk but not in the superficial part of adult albino rats. These findings may indirectly support the existence of the potentially cholinergic innervation of at least some of the rat pinealocytes present in these parts of the gland and augment the evidence of the heterogeneity of the rat pinealocytes. It is possible that cholinergic neurons in the medial habenular nuclei or in the parasympathetic sphenopalatine ganglion may be a source of these AChE-positive fibres. The examination was performed at the light microscope level.  相似文献   

7.
A prominent innervation of the pineal gland of the European hamster with nerve fibres containing neuropeptide Y (NPY) and tyrosine hydroxylase (TH) was demonstrated by means of immunohistochemistry. Nearly all the TH- and NPY-immunoreactive nerve fibres in the superficial pineal gland disappeared after bilateral superior cervical ganglionectomy, showing that the majority of NPY- and TH-immunoreactive nerve fibres belonged to the sympathetic nervous system. Since, in the European hamster, preliminary studies of the NPY-fibre density in the pineal gland had indicated seasonal changes, the density of NPY-immunoreactive nerve fibre profiles was ascertained in the superficial pineal gland in a series of animals between the first part of November and late April. The highest density of NPY-immunoreactive nerve fibre profiles was observed during midwinter. On the other hand, during the same period of the year, the number of sympathetic TH-immunoreactive sympathetic nerve fibre profiles did not exhibit seasonal variation, nor did substitution of testosterone, during the sexually inactive period, affect the density of NPY-containing nerve fibres in the gland. Our results show the presence of a testosterone-independent annual variation in the content of NPY in the sympathetic nerve fibres innervating the pineal gland of the European hamster. This variation can be correlated with the changes in the daily pattern of melatonin production observed by others in the same species at this period of the year.  相似文献   

8.
Summary An immunohistochemical investigation of the mink pineal gland was performed by use of antibodies raised in rabbits against neuropeptide Y (NPY) and Cys-NPY (32–36)-amide recognizing neuropeptide Y with an amidation at position 36 (NPYamide). NPY-immunoreactive nerve fibers were located predominantly in the rostral part of the pineal gland and in the pineal stalk. Immunoreactive nerve fibers were found throughout the pineal gland, but the number of fibers in the caudal part of the gland was low. The fibers were present both in the perivascular spaces and between the pinealocytes. Many NPY-immunoreactive fibers were also located in the posterior and habenular commissures; some of these fibers were connected with the fibers in the rostral part of the mink pineal gland, indicating that at least some of the NPY-immunoreactive nerve fibers are of central origin. The nerve fibers immunoreactive to amidated NPY were distributed in a similar manner. However, the number of fibers immunoreactive to NPYamide was lower than the number of fibers immunoreactive to NPY itself. After removal of the superior cervical ganglia bilaterally 22 days or 12 months before sacrifice, NPY-immunoreactive nerve fibers remained in the gland. This immunohistochemical study of the mink pineal gland therefore shows that the NPY/NPYamide-immunoreactive nerve fibers innervating the pineal gland in this spegcies are a component of the central innervation or originnate from extracerebral parasympathetic ganglia.  相似文献   

9.
Summary Indirect immunofluorescence technique was used to study the occurrence and distribution of CGRP immunoreactivity in the submandibular gland of normal rats and after unilateral sensory and sympathetic denervations. In normal rats, CGRP-immunoreactive nerve fibers and nerve trunks were seen around or in close contact with interlobular salivary ducts as well as around small blood vessels of the gland. Occasionally, CGRP-immunoreactive nerve fibers were also detected between or around the acini of the gland.The submandibular ganglia contained CGRP-immunoreactive nerve fibers, but the ganglion cells were not immunoreactive for CGRP. The trigeminal ganglion contained a population of CGRP-immunoreactive, mainly small sized ganglion cells and nerve fibers distributed throughout the ganglion. Unilateral electrocoagulation of the trigeminal nerve caused a significant reduction in the number of immunoreactive nerve fibers in the gland, although some fibers still were present in the ipsilateral glandular tissue. Unilateral superior cervical ganglionectomy caused no detectable effect on the number of CGRP-immunoreactive nerve fibers in the gland.The present results suggest that the rat submandibular gland contains CGRP-immunoreactive nerve fibers both around blood vessels and in glandular secretory elements. Denervation experiments support the view that the majority, but perhaps not all of them originate from the trigeminal ganglion.  相似文献   

10.
S Reuss 《Acta anatomica》1989,136(4):311-314
The melatonin metabolism in the mammalian pineal gland is under the clear influence of sympathetic fibers originating in the superior cervical ganglia (SCG). Previous studies suggested that also pineal 'synaptic' ribbons (SR) are regulated by the gland's sympathetic innervation. To gain more insight into the mechanisms involved, SR numbers were determined in adult rats which were chemically sympathectomized as newborns by injection of 6-hydroxydopamine (6-OHDA). In control animals (saline injections), a clear day/night difference in the number of SR is present. In sympathectomized animals, SR are higher in number throughout the 24-hour cycle but are not significantly elevated at night. The present results further strengthen the hypothesis that SR are involved in intercellular communication in the mammalian pineal gland.  相似文献   

11.
Summary Histochemical, immunocytochemical, and radioenzymatic techniques were used to examine the neurotransmitter-related properties of the innervation of thoracic hairy skin in rats during adulthood and postnatal development. In the adult, catecholamine-containing fibers were associated with blood vessels and piloerector muscles, and ran in nerve bundles throughout the dermis. The distribution of tyrosine hydroxylase (TH)-immunoreactive (IR) fibers was identical. Neuronal fibers displaying neuropeptide Y (NPY) immunoreactivity were seen in association with blood vessels. Double-labeling studies suggested that most, if not all, NPY-IR fibers were also TH-IR and likewise most, if not all, vessel-associated TH-IR fibers were also NPY-IR. Calcitonin gene-related peptide (CGRP)-IR fibers were observed near and penetrating into the epidermis, in close association with hair follicles and blood vessels, and in nerve bundles. A similar distribution of substance P (SP)-IR fibers was evident. In adult animals treated as neonates with the sympathetic neurotoxin 6-hydroxydopamine, a virtual absence of TH-IR and NPY-IR fibers was observed, whereas the distribution of CGRP-IR and SP-IR fibers appeared unaltered. During postnatal development, a generalized increase in the number, fluorescence intensity, and varicose morphology of neuronal fibers displaying catecholamine fluorescence, NPY-IR, CGRP-IR, and SP-IR was observed. By postnatal day 21, the distribution of the above fibers had reached essentially adult levels, although the density of epidermal-associated CGRP-IR and SP-IR fibers was significantly greater than in the adult. The following were not evident in thoracic hairy skin at any timepoint examined: choline acetyltransferase activity, acetylcholinesterase histochemical staining or immunoreactivity, fibers displaying immunoreactivity to vasoactive intestinal peptide, cholecystokinin, or leucine-enkephalin. The present study demonstrates that the thoracic hairy skin in developing and adult rats receives an abundant sympathetic catecholaminergic and sensory innervation, but not a cholinergic innervation.  相似文献   

12.
Indirect immunofluorescence technique was used to study the occurrence and distribution of CGRP immunoreactivity in the submandibular gland of normal rats and after unilateral sensory and sympathetic denervations. In normal rats, CGRP-immunoreactive nerve fibers and nerve trunks were seen around or in close contact with interlobular salivary ducts as well as around small blood vessels of the gland. Occasionally, CGRP-immunoreactive nerve fibers were also detected between or around the acini of the gland. The submandibular ganglia contained CGRP-immunoreactive nerve fibers, but the ganglion cells were not immunoreactive for CGRP. The trigeminal ganglion contained a population of CGRP-immunoreactive, mainly small sized ganglion cells and nerve fibers distributed throughout the ganglion. Unilateral electrocoagulation of the trigeminal nerve caused a significant reduction in the number of immunoreactive nerve fibers in the gland, although some fibers still were present in the ipsilateral glandular tissue. Unilateral superior cervical ganglionectomy caused no detectable effect on the number of CGRP-immunoreactive nerve fibers in the gland. The present results suggest that the rat submandibular gland contains CGRP-immunoreactive nerve fibers both around blood vessels and in glandular secretory elements. Denervation experiments support the view that the majority, but perhaps not all of them originate from the trigeminal ganglion.  相似文献   

13.
Summary The intergeniculate leaflet of the lateral geniculate nucleus is considered to modulate circadian activity rhythms probably mediated by a direct neuronal connection to the suprachiasmatic nucleus. The present study in the gerbil demonstrates, by anterograde tracing with Phaseolus vulgaris-leucoagglutinin (PHA-L), the existence of an additional neuronal projection from a subportion of the lateral geniculate nucleus, involving the intergeniculate leaflet, directly to the pineal gland. PHA-L-immunoreactive nerve fibers originating from perikarya at the injection site were located under the optic tract projecting towards the midsagittal plane. Delicate PHA-L-immunoreactive nerve fibers were observed in the posterior paraventricular thalamic nucleus, precommissural nucleus, olivary pretectal nucleus, anterior and posterior pretectal nuclei, and posterior commissure. Single fibers could be followed from the caudal part of the medial habenular nucleus and the pretectal area into the rostral part of the deep pineal gland. Other fibers continued through the posterior commissure into the contralateral hemisphere to terminate in the same structures as on the ipsilateral side. From the posterior commissure, small bundles of thick fibers entered the deep pineal gland where they arborized among the endocrine cells. A few nerve fibers were observed in the habenular commissure and the pineal stalk, but no fibers were identified in the superficial pineal. This direct geniculo-pineal connection suggests that the pineal gland is directly influenced by the optic system.  相似文献   

14.
The location of perikarya and nerve fibers projecting via the habenular and posterior commissures from the brain into the pineal organ of the Mongolian gerbil was investigated by the use of the retrograde horseradish peroxidase (HRP)-tracing method. After microiontophoretic or hydraulic injection of the tracer into the superficial pineal gland via a glass micropipette, and after survival periods of 6 to 48 h, the animals were transcardially perfused and the brains processed for the histochemical demonstration of the enzyme. In the pineal stalk 15 to 20 nerve fibers, including 4 to 7 myelinated elements, were traced back to the brain. HRP-labeled perikarya were located in the medial and lateral habenular nuclei as well as in the nucleus of the posterior commissure. Few fibers projected rostrally to perikarya in the paraventricular nucleus of the hypothalamus. A striking and persistent finding was the labeling of fibers that, in the habenular area, bent laterad and continued ventral to the optic tract. These fibers originated from perikarya located in the dorsal nucleus of the lateral geniculate body. These results strongly suggest a central innervation of the pineal organ in the Mongolian gerbil originating from hypothalamic and limbic areas of the brain as well as from the optic system.  相似文献   

15.
The anatomy and innervation of the mammalian pineal gland   总被引:8,自引:0,他引:8  
The parenchymal cells of the mammalian pineal gland are the hormone-producing pinealocytes and the interstitial cells. In addition, perivascular phagocytes are present. The phagocytes share antigenic properties with microglial and antigen-presenting cells. In certain species, the pineal gland also contains neurons and/or neuron-like peptidergic cells. The peptidergic cells might influence the pinealocyte by a paracrine secretion of the peptide. Nerve fibers innervating the mammalian pineal gland originate from perikarya located in the sympathetic superior cervical ganglion and the parasympathetic sphenopalatine and otic ganglia. The sympathetic nerve fibers contain norepinephrine and neuropeptide Y as neurotransmitters. The parasympathetic nerve fibers contain vasoactive intestinal peptide and peptide histidine isoleucine. Recently, neurons in the trigeminal ganglion, containing substance P, calcitonin gene-related peptide, and pituitary adenylate cyclase-activating peptide, have been shown to project to the mammalian pineal gland. Finally, nerve fibers originating from perikarya located in the brain containing, for example, GABA, orexin, serotonin, histamine, oxytocin, and vasopressin innervate the pineal gland directly via the pineal stalk. Biochemical studies have demonstrated numerous receptors on the pinealocyte cell membrane, which are able to bind the neurotransmitters located in the pinealopetal nerve fibers. These findings indicate that the mammalian pinealocyte can be influenced by a plethora of neurotransmitters.  相似文献   

16.
The innervation of the rat pineal gland from the sphenopalatine, otic, superior cervical and trigeminal ganglia was investigated in animals by use of in vivo retrograde tracings. A solution of 2% Fluorogold was iontophoretically injected into the superficial pineal gland in a series of Wistar rats. After a survival time of 4-10 days, the animals were fixed by perfusion and the brains, sphenopalatine, otic, superior cervical and trigeminal ganglia were investigated with a fluorescence microscope. Many retrogradely labelled perikarya were found in the superior cervical ganglia, but a smaller number of neurones were also labelled in the sphenopalatine, otic and trigeminal ganglia. Injections of the tracer into the subarachnoidal space were used as the control for unspecific uptake and transport of the tracer. The input to the pineal gland from the parasympathetic sphenopalatine and otic ganglia might be involved in the regulation of the annual rhythms of the pineal gland. The projections from the sensory trigeminal ganglion could be involved in the control of the blood flow of the gland.  相似文献   

17.
Summary A time course study with enkephalin(Enk)-like immunoreactivity has revealed that nerve fibers intensely immunoreactive for Enk-8 appeared transiently only during the postnatal week 2 and 4 within the acini as well as in the inter- and intralobular connective tissues of the submandibular gland of rats. At these stages numerous nerve fibers immunoreactive for tyrosine hydroxylase (TH) appeared also in the inter- and intralobular connective tissues and within the acini. Coincidently with these postnatal stages, abundant Enk-immunoreactive principal ganglion cells appeared in the superior cervical ganglion. These were not immunoreactive for neuropeptide tyrosine (NPY). A substantial number of Enk-immunoreactive ganglion cells were also present in the submandibular ganglia at these younger postnatal stages. Superior cervical ganglionectomy at these stages resulted in a marked decrease in number of the inter- and intralobular Enk-immunoreactive nerve fibers, a slight decrease in number of the intraacinar Enk-immunoreactive nerve fibers, and almost complete disappearance of intraglandular TH-immunoreactive nerve fibers. Immuno-electron-microscopic analysis revealed that Enk-immunoreactive nerve fibers in the submandibular gland were identified as electron-dense neuronal profiles enclosed by Schwann cells in the inter- and intralobular connective tissues and those directly apposed to secretory cells within the acini. They contained small clear vesicles mixed with some large granular vesicles. After postnatal week 6, no Enk-immunoreactive nerve fibers were detected in the submandibular gland, and no TH-immunoreactive nerve fibers were seen within the acini, while TH-immunoreactive nerve fibers remained numerous in the inter- and intralobular connective tissues. These findings indicate that both sympathetic and parasympathetic nerve fibers exhibit Enk-like immunoreactivity transiently during postnatal weeks 2 and 4. It is further indicated that the inter- and intralobular nerve fibers lose Enk-like immunoreactivity while the intraacinar fibers disappear at the adult stage.  相似文献   

18.
In order to establish that the pineal gland is innervated by pituitary adenylate cyclase-activating polypeptide (PACAP)-immunoreactive nerve fibers originating in the trigeminal ganglion, ophthalmic and maxillary nerves were transected by using a subtemporal fossa approach. The number of PACAP-immunoreactive nerve fibers in the pineal gland of rats with a total transection of the nerve was compared with that of rats without surgery. In the operated rat, PACAP-immunoreactive nerve fibers in the superficial pineal decreased remarkably, indicating that the trigeminal ganglion was the origin of these nerve fibers. This research provides evidence supporting the hypothesis that PACAP-immunoreactive nerves regulate the synthesis and/or secretion of melatonin in the pineal gland.  相似文献   

19.
Ultrastructural changes in the rat pineal gland were studied quantitatively 7 and 60 days after the sympathetic denervation by bilateral excission or decentralization of superior cervical ganglia. The surface occupied by pineal parenchymal cells decreased in rats of experimental groups with respect to the control group. Furthermore, profile areas of the cytoplasm, nucleus and nucleolus of the pinealocytes were also diminished. Cytoplasmic lipid droplets in the pinealocytes were markedly decreased in number and size in experimental rats. As demonstrated by the Kruskal-Wallis H test, statistically significant differences were found between rats of the control and operated groups. Rats treated by superior cervical ganglionectomy or decentralization showed morphological changes indicating a hypofunctional pineal gland, although differences were found between both groups.  相似文献   

20.
Summary A histochemical method for demonstrating amines by fluorescence showed that the pinealocytes of the ferret contained a high concentration of a yellow fluorophore (probably 5-HT). Numerous green-fluorescent (noradrenaline-containing) nerve fibres occurred around intrapineal blood vessels, between pinealocytes and in the N. conarii (which entered the gland caudally). A collection of neuron-like cells (the pineal ganglion) lay, surrounded by a meshwork of nerve fibres, in the posterior part of the pineal. Neither the cells nor the fibres of the pineal ganglion contained monoamines, but both showed the presence of acetyl-cholinesterase which otherwise was found in the pineal only in fibres which stretched from the ganglion towards the cranial pole of the gland. The medial habenular nucleus showed a remarkable perivascular green fluorescence not seen in the lateral habenular nucleus nor anywhere else in the adjacent diencephalon and brain stem. The cells and fibres of this nucleus also contained much acetyl-cholinesterase.Bilateral superior cervical ganglionectomy, or treating animals with reserpine, removed the green fluorescence from both pineal nerve fibres and the habenula. Ganglionectomy also resulted in a progressive alteration in the colour of the parenchymal fluorescence from yellow to green; the original yellow colour was restored by treating ganglionectomised animals with nialamide (a monoamine oxidase inhibitor). L-Dopa, 5-hydroxytryptophan or nialamide, alone or in combination, had no effect on the fluorescence of the nerve fibres or cells of the pineal, or on the habenula.These results are related to previous findings that pinealectomy or ganglionectomy prevents the acceleration by artificial light of oestrus in ferrets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号