首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The presence in cancer tissue of Ag-specific, activated tumor infiltrating CD8(+) T cells proves that tumors express Ags capable of eliciting immune response. Therefore, in general, tumor escape from immune-mediated clearance is not attributable to immunological ignorance. However, tumor-infiltrating lymphocytes are defective in effector phase function, demonstrating tumor-induced immune suppression that likely underlies tumor escape. Since exocytosis of lytic granules is dependent upon TCR-mediated signal transduction, it is a reasonable contention that tumors may induce defective signal transduction in tumor infiltrating T cells. In this review, we consider the biochemical basis for antitumor T cell dysfunction, focusing on the role of inhibitory signaling receptors in restricting TCR-mediated signaling in tumor-infiltrating lymphocytes.  相似文献   

2.
Immunization of cancer patients with vaccines containing full-length tumor Ags aims to elicit specific Abs and both CD4(+) and CD8(+) T cells. Vaccination with protein Ags, however, often elicits only CD4(+) T cell responses without inducing Ag-specific CD8(+) T cells, as exogenous protein is primarily presented to CD4(+) T cells. Recent data revealed that Ab-mediated targeting of protein Ags to cell surface receptors on dendritic cells could enhance the induction of both CD4(+) and CD8(+) T cells. We investigated in this study if these observations were applicable to NY-ESO-1, a cancer-testis Ag widely used in clinical cancer vaccine trials. We generated two novel targeting proteins consisting of the full-length NY-ESO-1 fused to the C terminus of two human mAbs against the human mannose receptor and DEC-205, both internalizing molecules expressed on APC. These targeting proteins were evaluated for their ability to activate NY-ESO-1-specific human CD4(+) and CD8(+) T cells in vitro. Both targeted NY-ESO-1 proteins rapidly bound to their respective targets on APC. Whereas nontargeted and Ab-targeted NY-ESO-1 proteins similarly activated CD4(+) T cells, cross-presentation to CD8(+) T cells was only efficiently induced by targeted NY-ESO-1. In addition, both mannose receptor and DEC-205 targeting elicited specific CD4(+) and CD8(+) T cells from PBLs of cancer patients. Receptor-specific delivery of NY-ESO-1 to APC appears to be a promising vaccination strategy to efficiently generate integrated and broad Ag-specific immune responses against NY-ESO-1 in cancer patients.  相似文献   

3.
4.
Peptide vaccination is an immunotherapeutic strategy being pursued as a method of enhancing Ag-specific antitumor responses. To date, most studies have focused on the use of MHC class I-restricted peptides, and have not shown a correlation between Ag-specific CD8(+) T cell expansion and the generation of protective immune responses. We investigated the effects of CD4-directed peptide vaccination on the ability of CD8(+) T cells to mount protective antitumor responses in the DUC18/CMS5 tumor model system. To accomplish this, we extended the amino acid sequence of the known MHC class I-restricted DUC18 rejection epitope from CMS5 to allow binding to MHC class II molecules. Immunization with this peptide (tumor-derived extracellular signal-regulated kinase-II (tERK-II)) induced Ag-specific CD4(+) T cell effector function, but did not directly prime CD8(+) T cells. Approximately 31% of BALB/c mice immunized with tERK-II were protected from subsequent tumor challenge in a CD40-dependent manner. Priming of endogenous CD8(+) T cells in immunized mice was detected only after CMS5 challenge. Heightened CD4(+) Th cell function in response to tERK II vaccination allowed a 12-fold reduction in the number of adoptively transferred CD8(+) DUC18 T cells needed to protect recipients against tumor challenge as compared with previous studies using unimmunized mice. Furthermore, tERK-II immunization led to a more rapid and transient expansion of transferred DUC18 T cells than was seen in unimmunized mice. These findings illustrate that CD4-directed peptide vaccination augments antitumor immunity, but that the number of tumor-specific precursor CD8(+) T cells will ultimately dictate the success of immunotherapy.  相似文献   

5.
Effective antitumor immunotherapy requires the identification of suitable target Ags. Interestingly, many of the tumor Ags used in clinical trials are present in preparations of secreted tumor vesicles (exosomes). In this study, we compared T cell responses elicited by murine MCA101 fibrosarcoma tumors expressing a model Ag at different localizations within the tumor cell in association with secreted vesicles (exosomes), as a nonsecreted cell-associated protein, or as secreted soluble protein. Remarkably, we demonstrated that only the tumor-secreting vesicle-bound Ag elicited a strong Ag-specific CD8(+) T cell response, CD4(+) T cell help, Ag-specific Abs, and a decrease in the percentage of immunosuppressive regulatory T cells in the tumor. Moreover, in a therapeutic tumor model of cryoablation, only in tumors secreting vesicle-bound Ag could Ag-specific CD8(+) T cells still be detected up to 16 d after therapy. We concluded that the localization of an Ag within the tumor codetermines whether a robust immunostimulatory response is elicited. In vivo, vesicle-bound Ag clearly skews toward a more immunogenic phenotype, whereas soluble or cell-associated Ag expression cannot prevent or even delay outgrowth and results in tumor tolerance. This may explain why particular immunotherapies based on these vesicle-bound tumor Ags are potentially successful. Therefore, we conclude that this study may have significant implications in the discovery of new tumor Ags suitable for immunotherapy and that their location should be taken into account to ensure a strong antitumor immune response.  相似文献   

6.
NK cells have been phenotypically defined by the expression of specific markers such as NK1.1, DX5, and asialo-GM1 (ASGM1). In addition to NK cells, a small population of CD3+ T cells has been shown to express these markers, and a unique subpopulation of NK1. 1+CD3+ T cells that expresses an invariant TCR has been named "NKT cells." Here, we describe NK marker expression on a broad spectrum of MHC class I- and MHC class II-restricted T cells that are induced after acute viral infection. From 5 to >500 days post lymphocytic choriomeningitis virus (LCMV) infection, more than 90% of virus-specific CD8+ and CD4+ T cells coexpress one or more of these three prototypical NK markers. Furthermore, in vivo depletion of NK cells with anti-ASGM1 Ab resulted in the removal of 90% of virus-specific CD8+ T cells and 50-80% of virus-specific CD4+ T cells. This indicates that studies using in vivo depletion to determine the role of NK cells in immune defense could potentially be misinterpreted because of the unintended depletion of Ag-specific T cells. These results demonstrate that NK Ags are widely expressed on the majority of virus-specific T cells and indicate that the NK and T cell lineages may not be as distinct as previously believed. Moreover, the current nomenclature defining NKT cells will require comprehensive modification to include Ag-specific CD8+ and CD4+ T cells that express prototypical NK Ags.  相似文献   

7.
The identification of many tumor-associated epitopes as nonmutated "self" Ags led to the hypothesis that the induction of large numbers of self/tumor Ag-specific T cells would be prevented because of central and peripheral tolerance. We report in this study on vaccination efforts in 95 HLA-A*0201 patients at high risk for recurrence of malignant melanoma who received prolonged immunization with the "anchor-modified" synthetic peptide, gp100209-217(210M). Vaccination using this altered peptide immunogen was highly effective at inducing large numbers of self/tumor-Ag reactive T cells in virtually every patient tested, with levels as high as 42% of all CD8+ T cells assessed by tetramer analysis. From 1 to 10% of all CD8+ cells were tumor-Ag reactive in 44% of patients and levels >10% were generated in 17% of patients. These studies were substantiated using the ELISPOT assay and a bulk cytokine release assay. Although our data regarding "tumor escape" were inconclusive, some patients had growing tumors that expressed Ag and HLA-A*0201 in the presence of high levels of antitumor T cells. There was no difference in the levels of antitumor Ag-specific T cells in patients who recurred compared with those that remained disease-free. Thus, the mere presence of profoundly expanded numbers of vaccine-induced, self/tumor Ag-specific T cells cannot by themselves be used as a "surrogate marker" for vaccine efficacy. Further, the induction of even high levels of antitumor T cells may be insufficient to alter tumor progression.  相似文献   

8.
The activation, proliferation, differentiation, and trafficking of CD4 T cells is central to the development of type I immune responses. MHC class II (MHCII)-bearing dendritic cells (DCs) initiate CD4(+) T cell priming, but the relative contributions of other MHCII(+) APCs to the complete Th1 immune response is less clear. To address this question, we examined Th1 immunity in a mouse model in which I-A(beta)(b) expression was targeted specifically to the DCs of I-A(beta)b-/- mice. MHCII expression is reconstituted in CD11b(+) and CD8alpha(+) DCs, but other DC subtypes, macrophages, B cells, and parenchymal cells lack of expression of the I-A(beta)(b) chain. Presentation of both peptide and protein Ags by these DC subsets is sufficient for Th1 differentiation of Ag-specific CD4(+) T cells in vivo. Thus, Ag-specific CD4(+) T cells are primed to produce Th1 cytokines IL-2 and IFN-gamma. Additionally, proliferation, migration out of lymphoid organs, and the number of effector CD4(+) T cells are appropriately regulated. However, class II-negative B cells cannot receive help and Ag-specific IgG is not produced, confirming the critical MHCII requirement at this stage. These findings indicate that DCs are not only key initiators of the primary response, but provide all of the necessary cognate interactions to control CD4(+) T cell fate during the primary immune response.  相似文献   

9.
UV radiation of the skin impairs immune responses to haptens and to tumor Ags. Transcutaneous immunization (TCI) is an effective method of inducing immune responses to protein and peptide Ag. We explore the effect of UV irradiation on TCI. The generation of Ag-specific CTL to OVA protein, but not class I MHC-restricted OVA peptide, is inhibited by TCI through UV-irradiated skin. Consequently, the induction of protein contact hypersensitivity and in vivo Ag-specific CTL activity following OVA protein immunization is prevented. Application of haptens to UV-exposed skin induces hapten-specific tolerance. We demonstrate that application of protein or class II MHC-restricted OVA peptide to UV-irradiated skin induces transferable Ag-specific tolerance. This tolerance is mediated by CD4(+)CD25(+) T regulatory (T(reg)) cells. These Ag-specific T(reg) cells inhibit the priming of CTL following protein immunization in the presence of CpG adjuvant. IL-10 deficiency is known to prevent hapten-specific tolerance induction. In this study, we demonstrate, using IL-10-deficient mice and adoptive T cell transfer, that IL-10 is required for the direct inhibition of CTL priming following immunization through UV-irradiated skin. However, IL-10 is not required for the induction of T(reg) cells through UV-irradiated skin as IL-10-deficient T(reg) cells are able to mediate tolerance. Rather, host-derived IL-10 is required for the function of UV-generated T(reg) cells. These experiments indicate that protein and peptide TCI through UV-irradiated skin may be used to induce robust Ag-specific tolerance to neo-Ags and that UV-induced T(reg) cells mediate their effects in part through the modulation of IL-10.  相似文献   

10.
Known for years as professional APCs, dendritic cells (DCs) are also endowed with tumoricidal activity. This dual role of DC as killers and messengers may have important implications for tumor immunotherapy. However, the tumoricidal activity of DCs has mainly been investigated in animal models. Cancer cells inhibit antitumor immune responses using numerous mechanisms, including the induction of immunosuppressive/ tolerogenic DCs that have lost their ability to present Ags in an immunogenic manner. In this study, we evaluated the possibility of generating tumor killer DCs from patients with advanced-stage cancers. We demonstrate that human monocyte-derived DCs are endowed with significant cytotoxic activity against tumor cells following activation with LPS. The mechanism of DC-mediated tumor cell killing primarily involves peroxynitrites. This observed cytotoxic activity is restricted to immature DCs. Additionally, after killing, these cytotoxic DCs are able to activate tumor Ag-specific T cells. These observations may open important new perspectives for the use of autologous cytotoxic DCs in cancer immunotherapy strategies.  相似文献   

11.
DNA-based immunizations have been used to determine the patterns of type 1 and type 2 cytokines that can be induced in vivo for Ag-specific CD4(+) and CD8(+) T cells. IL-4 was used as a signature cytokine for a type 2 T cell response and IFN-gamma as the signature cytokine for a type 1 response. Gene gun deliveries of secreted Ags were used to bias responses toward type 2 and saline injections of cell-associated Ags to bias responses toward type 1. The studies revealed that gene gun bombardments of DNAs expressing secreted Ags strongly biased responses toward type 2, inducing IL-4-producing CD8(+) as well as CD4(+) T cells. Saline injections of DNAs expressing cell-associated Ags strongly biased responses toward type 1, inducing IFN-gamma-producing CD8(+) and CD4(+) cells. A mixed type 1/type 2 response of IFN-gamma-producing CD8(+) T cells and IL-4-producing CD4(+) T cells was found for gene gun deliveries of cell-associated Ags. Saline injections of secreted Ags raised a weakly type 1-biased response characterized by only slightly higher frequencies of IFN-gamma- than IL-4-producing CD4(+) and CD8(+) T cells. Studies in B cell knockout and hen egg lysozyme Ig transgenic mice revealed that B cells were required for the generation of IL-4-producing CD8(+) T cells.  相似文献   

12.
Improvement of the strategy to target tumor Ags to dendritic cells (DCs) for immunotherapy requires the identification of the most appropriate ligand/receptor pairing. We screened a library of Ab fragments on mouse DCs to isolate new potential Abs capable of inducing protective immune responses. The screening identified a high-affinity Ab against CD36, a multi-ligand scavenger receptor primarily expressed by the CD8alpha+ subset of conventional DCs. The Ab variable regions were genetically linked to the model Ag OVA and tested in Ag presentation assays in vitro and in vivo. Anti-CD36-OVA was capable of delivering exogenous Ags to the MHC class I and MHC class II processing pathways. In vivo, immunization with anti-CD36-OVA induced robust activation of naive CD4+ and CD8+ Ag-specific T lymphocytes and the differentiation of primed CD8+ T cells into long-term effector CTLs. Vaccination with anti-CD36-OVA elicited humoral and cell-mediated protection from the growth of an Ag-specific tumor. Notably, the relative efficacy of targeting CD11c/CD8alpha+ via CD36 or DEC205 was qualitatively different. Anti-DEC205-OVA was more efficient than anti-CD36-OVA in inducing early events of naive CD8+ T cell activation. In contrast, long-term persistence of effector CTLs was stronger following immunization with anti-CD36-OVA and did not require the addition of exogenous maturation stimuli. The results identify CD36 as a novel potential target for immunotherapy and indicate that the outcome of the immune responses vary by targeting different receptors on CD8alpha+ DCs.  相似文献   

13.
The activation of Ag-specific T cells locally in the CNS could potentially contribute to the development of immune-mediated brain diseases. We addressed whether Ag-specific T cells could be stimulated in the CNS in the absence of peripheral lymphoid tissues by analyzing Ag-specific T cell responses in organotypic brain slice cultures. Organotypic brain slice cultures were established 1 h after intracerebral OVA Ag microinjection. We showed that when OVA-specific CD8(+) T cells were added to Ag-containing brain slices, these cells became activated and migrated into the brain to the sites of their specific Ags. This activation of OVA-specific T cells was abrogated by the deletion of CD11c(+) cells from the brain slices of the donor mice. These data suggest that brain-resident CD11c(+) cells stimulate Ag-specific naive CD8(+) T cells locally in the CNS and may contribute to immune responses in the brain.  相似文献   

14.
To avoid immune escape by down-regulation or loss of Ag by the tumor cells, target Ags are needed, which are important for the malignant phenotype and survival of the tumor. We could identify a CD4(+) T cell epitope derived from the human melanoma-associated chondroitin sulfate proteoglycan (MCSP) (also known as high m.w.-melanoma-associated Ag), which is strongly expressed on >90% of human melanoma lesions and is important for the motility and invasion of melanoma cells. However, MCSP is not strictly tumor specific, because it is also expressed in a variety of normal tissues. Therefore, self tolerance should prevent the induction of strong T cell responses against these Ags by vaccination strategies. In contrast, breaking self tolerance to this Ag by effectively manipulating the immune system might mediate antitumor responses, although it would bear the risk of autoimmunity. Surprisingly, we could readily isolate CD4(+) Th cells from the blood of a healthy donor-recognizing peptide MCSP(693-709) on HLA-DR11-expressing melanoma cells. Broad T cell reactivity against this Ag could be detected in the peripheral blood of both healthy donors and melanoma patients, without any apparent signs of autoimmune disease. In some patients, a decline of T cell reactivity was observed upon tumor progression. Our data indicate that CD4(+) T cells are capable of recognizing a membrane glycoprotein that is important in melanoma cell function, and it may be possible that the sizable reactivity to this Ag in most normal individuals contributes to immune surveillance against cancer.  相似文献   

15.
In cancer, the coordinate engagement of professional APC and Ag-specific cell-mediated effector cells may be vital for the induction of effective antitumor responses. We speculated that the enhanced differentiation and function of dendritic cells through CD40 engagement combined with IL-2 administration to stimulate T cell expansion would act coordinately to enhance the adaptive immune response against cancer. In mice bearing orthotopic metastatic renal cell carcinoma, only the combination of an agonist Ab to CD40 and IL-2, but neither agent administered alone, induced complete regression of metastatic tumor and specific immunity to subsequent rechallenge in the majority of treated mice. The combination of anti-CD40 and IL-2 resulted in significant increases in dendritic cell and CD8(+) T cell number in advanced tumor-bearing mice compared with either agent administered singly. The antitumor effects of anti-CD40 and IL-2 were found to be dependent on CD8(+) T cells, IFN-gamma, IL-12 p40, and Fas ligand. CD40 stimulation and IL-2 may therefore be of use to promote antitumor responses in advanced metastatic cancer.  相似文献   

16.
Chemotherapy and/or radiation therapy are widely used as cancer treatments, but the antitumor effects they produce can be enhanced when combined with immunotherapies. Chemotherapy kills tumor cells, but it also releases tumor antigen and allows the cross-presentation of the tumor antigen to trigger antigen-specific cell-mediated immune responses. Promoting CD4+ T helper cell immune responses can be used to enhance the cross-presentation of the tumor antigen following chemotherapy. The pan HLA-DR binding epitope (PADRE peptide) is capable of generating antigen-specific CD4+ T cells that bind various MHC class II molecules with high affinity and has been widely used in conjunction with vaccines to improve their potency by enhancing CD4+ T cell responses. Here, we investigated whether intratumoral injection of PADRE and the adjuvant CpG into HPV16 E7-expressing TC-1 tumors following cisplatin chemotherapy could lead to potent antitumor effects and antigen-specific cell-mediated immune responses. We observed that treatment with all three agents produced the most potent antitumor effects compared to pairwise combinations. Moreover, treatment with cisplatin, CpG and PADRE was able to control tumors at a distant site, indicating that our approach is able to induce cross-presentation of the tumor antigen. Treatment with cisplatin, CpG and PADRE also enhanced the generation of PADRE-specific CD4+ T cells and E7-specific CD8+ T cells and decreased the number of MDSCs in tumor loci. The treatment regimen presented here represents a universal approach to cancer control.  相似文献   

17.
The initiation of antitumor immunity relies on dendritic cells (DCs) to cross-present cell-associated tumor Ag to CD8(+) T cells (T(CD8+)) due to a lack of costimulatory molecules on tumor cells. Innate danger signals have been demonstrated to enhance cross-priming of T(CD8+) to soluble as well as virally encoded Ags; however, their effect on enhancing T(CD8+) cross-priming to cell genome-encoded Ags remains unknown. Furthermore, influenza A virus (IAV) has not been shown to enhance antitumor immunity. Using influenza-infected allogeneic cell lines, we show in this study that T(CD8+) responses to cell-associated Ags can be dramatically enhanced due to enhanced T(CD8+) expansion. This enhanced cross-priming in part involves TLR7- but not TLR3-mediated sensing of IAV and is entirely dependent on MyD88 and IFN signaling pathways. We also showed that the inflammasome-induced IL-1 and IFN-γ did not play a role in enhancing cross-priming in our system. We further demonstrated in our ex vivo system that CD8(+) DCs are the only APCs able to prime TCR-transgenic T(CD8+). Importantly, plasmacytoid DCs and CD8(-) DCs were both able to enhance such priming when provided in coculture. These observations suggest that IAV infection of tumor cells may facilitate improved cross-presentation of tumor Ags and may be used to augment clinical vaccine efficacy.  相似文献   

18.
Cross-presentation of cell-bound Ags from established, solid tumors to CD8 cells is efficient and likely to have a role in determining host response to tumor. A number of investigators have predicted that when tumor Ags are derived from apoptotic cells either no response, due to Ag "sequestration," or CD8 cross-tolerance would ensue. Because the crucial issue of whether this happens in vivo has never been addressed, we induced apoptosis of established hemagglutinin (HA)-transfected AB1 tumors in BALB/c mice using the apoptosis-inducing reagent gemcitabine. This shrank the tumor by approximately 80%. This induction of apoptosis increased cross-presentation of HA to CD8 cells yet neither gross deletion nor functional tolerance of HA-specific CD8 cells were observed, based on tetramer analysis, proliferation of specific CD8 T cells, and in vivo CTL activity. Interestingly, apoptosis primed the host for a strong antitumor response to a second, virus-generated HA-specific signal in that administration of an HA-expressing virus after gemcitabine administration markedly decreased tumor growth compared with viral administration without gemcitabine. Thus tumor cell apoptosis in vivo neither sequesters tumor Ags nor cross-tolerizes tumor-specific CD8 cells. This observation has fundamental consequences for the development of tumor immunotherapy protocols and for understanding T cell reactivity to tumors and the in vivo immune responses to apoptotic cells.  相似文献   

19.
Many tumor-associated Ags represent tissue differentiation Ags that are poorly immunogenic. Their weak immunogenicity may be due to immune tolerance to self-Ags. Prostatic acid phosphatase (PAP) is just such an Ag that is expressed by both normal and malignant prostate tissue. We have previously demonstrated that PAP can be immunogenic in a rodent model. However, generation of prostate-specific autoimmunity was seen only when a xenogeneic homolog of PAP was used as the immunogen. To explore the potential role of xenoantigen immunization in cancer patients, we performed a phase I clinical trial using dendritic cells pulsed with recombinant mouse PAP as a tumor vaccine. Twenty-one patients with metastatic prostate cancer received two monthly vaccinations of xenoantigen-loaded dendritic cells with minimal treatment-associated side effects. All patients developed T cell immunity to mouse PAP following immunization. Eleven of the 21 patients also developed T cell proliferative responses to the homologous self-Ag. These responses were associated with Ag-specific IFN-gamma and/or TNF-alpha secretion, but not IL-4, consistent with induction of Th1 immunity. Finally, 6 of 21 patients had clinical stabilization of their previously progressing prostate cancer. All six of these patients developed T cell immunity to human PAP following vaccination. These results demonstrate that xenoantigen immunization can break tolerance to a self-Ag in humans, resulting in a clinically significant antitumor effect.  相似文献   

20.
Aging is associated with a decline in immune function, particularly within the T cell compartment. Because CD8(+) T cells are critical mediators of protective immunity against cancer, which arises more frequently with advancing age, it is important to understand how aging affects T cell-based antitumor responses. We used our DUC18 T cell/CMS5 tumor model system to examine the ability of both aged APCs and aged, tumor-specific CD8(+) T cells to mount protective responses to tumors in vivo. An assessment of aged DUC18 T cells in vitro showed a naive phenotype, but impaired proliferation in response to anti-CD3 and anti-CD28 stimulation. We found that DCs from young and old recipient mice are comparable phenotypically, and endogenous APCs in these mice are equally able to prime adoptively transferred young DUC18 T cells. Even when aged DUC18 T cells are transferred into aged CMS5-challenged mice, Ag-specific proliferation and CD25 expression are similar to those found when young DUC18 T cells are transferred into young mice. Although trafficking to tumor sites appears unequal, old and young DUC18 T cells reject primary CMS5 challenges to the same degree and with similar kinetics. Overall, we found no loss of endogenous APC function or intrinsic defects in CD8(+) DUC18 T cells with advanced age. Therefore, when young and old tumor-specific T cell populations are equivalently sized, CD8(+) T cell-mediated antitumor immunity in our system is not impaired by age, a finding that has positive implications for T cell-based immunotherapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号