首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 189 毫秒
1.
Mechanisms of plasminogen activation by mammalian plasminogen activators   总被引:4,自引:0,他引:4  
H R Lijnen  D Collen 《Enzyme》1988,40(2-3):90-96
Plasminogen activators convert the proenzyme plasminogen to the active serine protease plasmin by hydrolysis of the Arg560-Val561 peptide bond. Physiological plasminogen activation is however regulated by several additional molecular interactions resulting in fibrin-specific clot lysis. Tissue-type plasminogen activator (t-PA) binds to fibrin and thereby acquires a high affinity for plasminogen, resulting in efficient plasmin generation at the fibrin surface. Single-chain urokinase-type plasminogen activator (scu-PA) activates plasminogen directly but with a catalytic efficiency which is about 20 times lower than that of urokinase. In plasma, however, it is inactive in the absence of fibrin. Chimeric plasminogen activators consisting of the NH2-terminal region of t-PA (containing the fibrin-binding domains) and the COOH-terminal region of scu-PA (containing the active site), combine the mechanisms of fibrin specificity of both plasminogen activators. Combination of t-PA and scu-PA infusion in animal models of thrombosis and in patients with coronary artery thrombosis results in a synergic effect on thrombolysis, allowing a reduction of the therapeutic dose and elimination of side effects on the hemostatic system.  相似文献   

2.
A hybrid human cDNA was constructed by splicing of a cDNA fragment of tissue-type plasminogen activator (t-PA), encoding 5'-untranslated, the pre-pro region and amino acids Ser1-Thr263, with a cDNA fragment of urokinase-type plasminogen activator (u-PA), encoding amino acids Leu144-Leu411. The cDNA fragments were obtained from full length t-PA cDNA, cloned from Bowes melanoma poly(A)+ mRNA, and from full length u-PA cDNA, cloned from CALU-3 lung adenocarcinoma poly(A)+ mRNA. The hybrid (t-PA/u-PA) cDNA was expressed in Chinese hamster ovary cells and the translation product purified from the conditioned cell culture media. On SDS-gel electrophoresis under reducing conditions, the protein migrated as a single band with approximate Mr 70,000. On immunoblotting, it reacted both with rabbit antisera raised against human t-PA and against human u-PA. The urokinase-like amidolytic activity of the protein was only 320 IU/mg but increased to 43,000 IU/mg after treatment with plasmin, which resulted in conversion of the single-chain molecule (t-PA/scu-PA) to a two-chain molecule (t-PA/tcu-PA). The specific activity of the protein on fibrin plates was 57,000 IU/mg by comparison with the International Reference Preparation for Urokinase. Both the single-chain hybrid (t-PA/scu-PA) and the two-chain plasmin derivative (t-PA/tcu-PA) bound specifically to fibrin, albeit more weakly than t-PA. The t-PA/tcu-PA hybrid had a higher selectivity for fibrin than tcu-PA, measured in a system composed of a whole human 125I-fibrin-labeled plasma clot immersed in human plasma. Both hybrid proteins activated plasminogen directly with Km = 1.5 microM and k2 = 0.0058 s-1 for t-PA/scu-PA and with Km = 80 microM and k2 = 5.6 s-1 for t-PA/tcu-PA. CNBr-digested fibrinogen stimulated the activation of plasminogen with t-PA/tcu-PA (Km = 0.20 microM and k2 = 1.2 s-1). It is concluded that these t-PA/u-PA hybrid proteins combine, at least to some extent, the fibrin-affinity of t-PA with the enzymatic properties of u-PA (either scu-PA or tcu-PA), which in some assays result in improved fibrin-mediated plasminogen activation.  相似文献   

3.
There are two physiological plasminogen activators (PAs), tissue-type PA (t-PA) and urokinase (u-PA) which possess distinct immunological and biochemical characteristics. Using genetic engineering techniques a hybrid t:u-PA cDNA, comprised of amino acid (aa) sequences corresponding to the non-protease region (aa 1-261) of t-PA and the protease region (aa 132-411) of u-PA, was constructed. The t:u-PA gene after insertion into the SV40 expression vector was expressed in monkey Cos-1 cells. The 66-67 kDa t:u-PA was produced in an enzymatically active form. The fibrinolytic activity of the t:u-PA could be quenched by anti-urokinase as well as by anti-t-PA sera. Like urokinase, the t:u-PA showed a high intrinsic plasminogen activation. This activity, as in the case of t-PA, was stimulated by fibrin. The u-PA, on the other hand, stimulated plasminogen activation marginally in the presence of fibrin. Both the t:u-PA and t-PA showed binding affinity for fibrin clot. This study strongly suggests the autonomous nature of the structural domains in PA and also demonstrates the feasibility of shuffling these domains without loss of their functional activities.  相似文献   

4.
Single-chain Mr 54,000 u-PA (scu-PA) was isolated, in the presence of aprotinin, from 3-liter batches of 60-h serum-free conditioned media obtained from subcultured (4-6th passage) human umbilical vein endothelial cells (HUVECs, approximately 1.8 x 10(9) cells). In the presence of heparin and endothelial cell growth factor, subcultured human umbilical vein endothelial cells produced u-PA proteins consisting of about 85-90% Mr 54,000 scu-PA and 10-15% two-chain Mr 54,000. The major scu-PA form was purified to homogeneity by ion-exchange chromatography on CM-Sephadex C-50, immunoadsorption on purified anti-u-PA IgG-Sepharose and affinity chromatography on p-amino-benzamidine-Agarose. Typically, about 8-10 micrograms of purified scu-PA protein (antigen/protein ratio = 1) was isolated from 3-liter batches of heparin-containing serum-free conditioned media with a yield of about 41% of the total starting u-PA antigen. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of this purified u-PA protein showed a single Ag-stained band (nonreduced and reduced), with an estimated molecular weight of about 54,000, which exhibited very low fibrinolytic activity. Purified HUVEC-derived scu-PA did not incorporate 3H-labeled diisopropyl fluorophosphate. This protein did, however, exhibit very low amidolytic activity (approximately 5,000 IU/mg) on the u-PA-specific synthetic substrate pyroglu-Gly-Arg-p-nitroanilide, very low plasminogen-dependent fibrinolytic activity on 125I-labeled fibrin coated plates, and directly activated 125I-labeled plasminogen following Michaelis-Menten kinetics with high affinity, Km = 0.72 microM and low turnover number, kcat = 0.0005 s-1. Treatment with plasmin rapidly converted the HUVEC-derived scu-PA to the active two-chain Mr 54,000 u-PA form (approximately 90,000 IU/mg). Binding to fibrin clots, using antigen quantitation, indicated about 20, 10, and 90% binding for equimolar amounts of HUVEC-derived scu-PA, two-chain u-PA, and tissue plasminogen activator standards, respectively. These results indicate that subcultured HUVECs synthesize and secrete their u-PA protein as a single-chain molecule with low intrinsic amidolytic and fibrinolytic activity, high affinity for plasminogen and no specific affinity for fibrin. The role of scu-PA in endothelial cell-mediated vascular function has yet to be clearly defined.  相似文献   

5.
H R Lijnen  D Collen 《Blut》1988,57(4):147-162
Recombinant DNA technology has allowed large-scale production of the physiological, fibrin-specific, plasminogen activators tissue-type plasminogen activator (t-PA) and single-chain urokinase-type plasminogen activator (scu-PA). The results of clinical trials with these agents, mainly for the treatment of acute myocardial infarction, have revealed a limited fibrin specificity at the large therapeutic doses required for efficient thrombolysis. Mutants and variants of t-PA and scu-PA have given important information on structure-function relationships in these proteins and have resulted in rt-PA variants with significantly prolonged half-lives in vivo. Construction of chimaeric plasminogen activators containing various portions of t-PA and scu-PA has produced functionally active enzymes, however with a lower fibrin-affinity than wild-type t-PA. The promise of antibody targeting and the use of synergistic combinations of thrombolytic agents remains to be further investigated. We anticipate that eventually these research lines will yield artificial plasminogen activators with improved efficacy, risk/benefit and cost/benefit ratios.  相似文献   

6.
Plasminogen activators (PA) convert the inactive proenzyme plasminogen into plasmin, which is involved in the process of fibrinolysis, tissue remodeling, and cell migration. There are two distinct forms of PA: urokinase (u-PA) and tissue-type plasminogen activator (t-PA). t-PA has higher affinity for fibrin and is the main form involved in thrombolysis. By in situ chromosomal hybridization and Southern blot analysis of somatic cell hybrid DNA, we have assigned the human t-PA gene to chromosome 8, bands 8p12----q11.2. We have detected a common EcoRI restriction fragment length polymorphism within the t-PA gene that thus provides a precisely localized highly informative marker for genetic linkage studies. The t-PA gene localization coincides with a translocation breakpoint observed in myeloproliferative disorders. Whereas leukemic cells usually secrete both types of PA, a correlation exists between acute myeloid leukemic cells that release only t-PA and failure to respond to chemotherapy.  相似文献   

7.
The increasing incidence of thromboembolic diseases has sustained the search for new agents able to stimulate the natural fibrinolytic system. The first generation of antithrombotic agents include bacterial streptokinase and human urine urokinase. Because these molecules lack specificity for the fibrin clot, important efforts have been made to produce, using recombinant DNA technology, agents presenting higher fibrin clot selectivity such as t-PA (tissue-type plasminogen activator) and scu-PA (single chain urokinase-type plasminogen activator). In parallel, several laboratories are presently attempting to create mutants and hybrids plasminogen activators displaying improved thrombolytic properties with respect to the natural molecules. In this paper, we describe briefly the mechanisms of fibrinolysis and the role of the different natural thrombolytic agents. In addition, we review the possibilities of genetic engineering for the production of natural and novel plasminogen activators.  相似文献   

8.
We constructed two human tissue-type plasminogen activator/urokinase (t-PA/u-PA) hybrid cDNAs which were expressed by transfection of mouse Ltk- cells. The properties of the secreted proteins were compared with those of recombinant t-PA (rt-PA) and high molecular weight (HMW) u-PA. The hybrid proteins each contain the amino-terminal fibrin-binding chain of t-PA fused to the carboxy-terminal serine protease moiety of u-PA but differ by a stretch of 13 amino acid residues between kringle 2 of t-PA and the plasmin cleavage site of u-PA. Hybrid protein rt-PA/u-PA I contains amino acids 1-262 of t-PA connected with amino acids 147-411 of u-PA, whereas hybrid protein rt-PA/u-PA II consists of the same t-PA segment and residues 134-411 of u-PA. We demonstrated fibrin binding for rt-PA, whereas the hybrid proteins bind to a lesser extent and HMW u-PA has no affinity for fibrin. Plasminogen activation by either one of the hybrid proteins in the absence of a fibrin substitute was similar to that by HMW u-PA, while rt-PA was much less active. The catalytic efficiency, in the presence of a fibrin substitute, increases more than 2000-fold for rt-PA, about 250-fold for hybrid proteins I and II, and 12-fold for HMW u-PA, respectively. Under these conditions the hybrid proteins are more efficient plasminogen activators than the parental ones. The hybrid molecules form a 1:1 molar complex with the human endothelial plasminogen activator inhibitor (PAI-1), analogous to that formed by rt-PA and HMW u-PA. The relative affinity of rt-PA for PAI-1 is 4.6-fold higher than that of HMW u-PA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Human recombinant single chain urokinase-type plasminogen activator (recombinant scu-PA) and a hybrid between human tissue-type plasminogen activator (t-PA) and scu-PA, obtained by ligation of cDNA fragments encoding the NH2-terminal region (amino acids 1-67) of t-PA and the COOH-terminal region (amino acids 136-411) of scu-PA, were expressed in a mammalian cell system. The proteins were purified from conditioned culture media containing 2% fetal calf serum by chromatography on zinc chelate-Sepharose, immunoadsorption chromatography on an insolubilized murine monoclonal antibody directed against urokinase, benzamidine-Sepharose chromatography, and Ultrogel AcA 44 gel filtration. Between 180 and 230 micrograms of the purified proteins were obtained per liter of conditioned medium, with a yield of approximately 18% and a purification factor of 720-1900. On sodium dodecyl sulfate gel electrophoresis under reducing conditions, the proteins migrated as single bands with approximate Mr 50,000 for recombinant scu-PA and Mr 43,000 for the t-PA/scu-PA hybrid. Following conversion to urokinase with plasmin, the proteins had a specific amidolytic activity comparable to that of natural scu-PA. Both proteins activated plasminogen directly with Km = 0.53 and 1.4 microM and k2 = 0.0034 and 0.0027 s-1, respectively. Both proteins did not bind specifically to fibrin and had a comparable degree of fibrin selectivity as measured in a system composed of a whole human 125I-fibrin-labeled plasma clot suspended in human plasma. It is concluded that this chimeric protein, consisting of the NH2-terminal "finger-like" domain of t-PA and the COOH-terminal region of scu-PA, has very similar enzymatic properties as compared to scu-PA, but has not acquired the fibrin affinity of t-PA.  相似文献   

10.
Transformation of fibrinogen into fibrin with consequent formation of the fibrin clot trimeric structure is one of the final steps in the blood coagulation system. The plasminogen activation by the tissue plasminogen activator (t-PA) is one of the fibrinolysis system key reactions. The effect of different factors on transformation of plasminogen into plasmin is capable to change essentially the equilibrium between coagulation and fibrinolytic sections of haemostasis system. We have studied the plasminogen activation by tissue plasminogen activator on fibrin clots surface formed on the interface between two phases and in presence of one phase. The t-PA plasminogen activation rate on fibrin clots both with film and without it the latter has been analyzed. These data allow to assume that the changes of fibrin clot structure depend on its formations, as well as are capable to influence essentially on plasminogen activation process by means of its tissue activating agent.  相似文献   

11.
A chimeric plasminogen activator (t-PA/scu-PA-s), consisting of amino acids 1-263 of tissue-type plasminogen activator (t-PA) and 144-411 of single-chain urokinase-type plasminogen activator (scu-PA), was previously shown to maintain the enzymatic properties of scu-PA but to have only partially acquired the fibrin affinity of t-PA, possibly as a result of steric interaction between the functional domains of t-PA and scu-PA (Nelles, L., Lijnen, H. R., Collen, D., and Holmes, W.E. (1987) J. Biol. Chem. 262, 10855-10862). Therefore, we now have constructed an extended chimeric t-PA/scu-PA protein, consisting of amino acids 1-274 of t-PA and 138-411 of scu-PA, which thus has an additional sequence of 17 residues in the region joining the two proteins. The highly purified extended chimeric protein (t-PA/scu-PA-e) was found to have similar specific activity on fibrin film (65,000 IU/mg), kinetic constants for the activation of plasminogen (Km = 1 microM, k2 = 0.0026 s-1), fibrin affinity (50% binding at a fibrin concentration of 3.3 g/liter), and fibrin specificity of clot lysis in a plasma environment (50% lysis in 2 h with 8 nM of the chimer) as the previously characterized chimeric protein (t-PA/scu-PA-s). Thus, unexpectedly, the fibrin affinity of t-PA is also only partially expressed in this extended chimeric protein. Therefore, the NH2-terminal chains (A-chains) of the plasmin-generated two-chain derivatives t-PA/tcu-PA-e, t-PA/tcu-PA-s, and of t-PA were isolated. These A-chain structures of the chimers were found to have lost most of their fibrin affinity, whereas the fibrin affinity of the A-chain of native t-PA was maintained. Differential reactivity of the A-chain structures of both chimeric molecules with monoclonal antibodies directed against the A-chain of t-PA suggested that they were conformationally altered. Sequential fibrin binding experiments with t-PA/scu-PA-e and t-PA/scu-PA-s yielded 45 +/- 8 (n = 11) and 43 +/- 5% (n = 8), respectively, binding in the first cycle and 44 +/- 7 (n = 11) and 27 +/- 10% (n = 8), respectively, binding in the second cycle. This suggests that the low affinity of the chimeric molecules for fibrin is not due to the occurrence of subpopulations of molecules with different fibrin affinity but, instead, to a uniformly decreased fibrin affinity in all molecules.  相似文献   

12.
The main physiological function of plasmin is blood clot fibrinolysis and restoration of normal blood flow. To date, however, it became apparent that in addition to thrombolysis, the plasminogen/plasmin system plays an important physiological and pathological role in a number of other essential processes: degradation of the extracellular matrix, embryogenesis, cell migration, tissue remodeling, wound healing, angiogenesis, inflammation, and tumor cell migration. This review focuses on structural features of plasminogen, regulation of its activation by physiological plasminogen activators, inhibitors of plasmin, and plasminogen activators, and the role of plasminogen binding to fibrin, cellular receptors, and extracellular ligands in various functions performed by plasmin thus formed.  相似文献   

13.
The increased levels of extracellular DNA found in a number of disorders involving dysregulation of the fibrinolytic system may affect interactions between fibrinolytic enzymes and inhibitors. Double-stranded (ds) DNA and oligonucleotides bind tissue-(tPA) and urokinase (uPA)-type plasminogen activators, plasmin, and plasminogen with submicromolar affinity. The binding of enzymes to DNA was detected by EMSA, steady-state, and stopped-flow fluorimetry. The interaction of dsDNA/oligonucleotides with tPA and uPA includes a fast bimolecular step, followed by two monomolecular steps, likely indicating slow conformational changes in the enzyme. DNA (0.1-5.0 μg/ml), but not RNA, potentiates the activation of Glu- and Lys-plasminogen by tPA and uPA by 480- and 70-fold and 10.7- and 17-fold, respectively, via a template mechanism similar to that known for fibrin. However, unlike fibrin, dsDNA/oligonucleotides moderately affect the reaction between plasmin and α(2)-antiplasmin and accelerate the inactivation of tPA and two chain uPA by plasminogen activator inhibitor-1 (PAI-1), which is potentiated by vitronectin. dsDNA (0.1-1.0 μg/ml) does not affect the rate of fibrinolysis by plasmin but increases by 4-5-fold the rate of fibrinolysis by Glu-plasminogen/plasminogen activator. The presence of α(2)-antiplasmin abolishes the potentiation of fibrinolysis by dsDNA. At higher concentrations (1.0-20 μg/ml), dsDNA competes for plasmin with fibrin and decreases the rate of fibrinolysis. dsDNA/oligonucleotides incorporated into a fibrin film also inhibit fibrinolysis. Thus, extracellular DNA at physiological concentrations may potentiate fibrinolysis by stimulating fibrin-independent plasminogen activation. Conversely, DNA could inhibit fibrinolysis by increasing the susceptibility of fibrinolytic enzymes to serpins.  相似文献   

14.
Activation of plasminogen by pro-urokinase. I. Mechanism   总被引:7,自引:0,他引:7  
The mechanism of the activation of plasminogen by recombinant pro-urokinase (Rec-pro-UK), obtained by expression of the human pro-urokinase gene in Escherichia coli, was investigated in purified systems. In mixtures of Rec-pro-UK and plasminogen, both active urokinase and plasmin are quickly generated. Addition of plasmin inhibitors (aprotinin or alpha 2-antiplasmin) abolishes the conversion of Rec-pro-UK to urokinase but not the activation of plasminogen to plasmin, suggesting that Rec-pro-UK activates plasminogen directly. Human plasma competitively inhibits the activation of plasminogen by pro-urokinase with a Ki of 0.2% (v/v). This explains the relative stability of Rec-pro-UK in plasma and the lack of activation of the plasma fibrinolytic system in the absence of fibrin. The competitive inhibition by plasma is abolished by the addition of CNBr-digested fibrinogen although Rec-pro-UK has no specific affinity for fibrin. These findings suggest that the fibrin specificity of the activation of plasminogen by pro-urokinase is due to neutralization by fibrin of the competitive inhibition exerted by plasma and not to fibrin-enhanced activation of plasminogen.  相似文献   

15.
The mechanism of the activation of plasminogen by single-chain urokinase-type plasminogen activator (single-chain u-PA, scu-PA) was studied using rscu-PA-Glu158, a recombinant plasmin-resistant mutant of human scu-PA obtained by site-specific mutagenesis of Lys158 to Glu, and rPlg-Ala740, a recombinant human plasminogen in which the catalytic site is destroyed by mutagenesis of the active-site Ser740 to Ala. Conversion of 125I-labeled single-chain plasminogen to two-chain plasmin was quantitated on reduced sodium dodecyl sulfate-gel electrophoresis combined with autoradiography and radioisotope counting of gels bands. The efficiencies of both rscu-PA-Glu158 and rscu-PA for the activation of rPlg-Ala740 and of natural plasminogen were comparable and were 250-500-fold lower than that of recombinant two-chain u-PA (rtcu-PA) for rscu-PA-Glu158 and 100-200-fold lower for rscu-PA. Pretreatment of rscu-PA-Glu158 or rscu-PA with excess alpha 2-antiplasmin, which efficiently neutralizes all contaminating rtcu-PA, did not significantly reduce the catalytic efficiency of these single-chain moieties, indicating that they have a low but significant intrinsic plasminogen activating potential. The low intrinsic catalytic efficiency of rscu-PA for the conversion of plasminogen to plasmin may be sufficient to generate trace amounts of plasmin, which may regulate plasminogen activation by converting poorly active rscu-PA to very active rtcu-PA.  相似文献   

16.
Thrombin converts single-chain urokinase-type plasminogen activator (scu-PA) to an inactive two-chain derivative (thrombin-derived tcu-PA) by hydrolysis of the Arg-156--Phe-157 peptide bond. In the present study, we show that inactive thrombin-derived tcu-PA (specific activity 1000 IU/mg) can be converted with plasmin to active two-chain urokinase-type plasminogen activator (specific activity 43,000 IU/mg) by hydrolysis of the Lys-158--Ile-159 peptide bond. This conversion follows Michaelis-Menten kinetics with a Michaelis constant Km of 37 microM and a catalytic rate constant k2 of 0.013 s-1. The catalytic efficiency (k2/Km) for the activation of thrombin-derived tcu-PA by plasmin is about 500-fold lower than that for the conversion of intact scu-PA to tcu-PA. tcu-PA, generated by plasmin treatment of thrombin-derived tcu-PA, has similar properties to tcu-PA obtained by digestion of intact scu-PA with plasmin (plasmin-derived tcu-PA); its plasminogen activating potential and fibrinolytic activity in an in vitro plasma clot lysis system appear to be unaltered. These observations confirm that the structure of the NH2-terminal region of the B chain of u-PA is an important determinant for its enzymatic activity, whereas that of the COOH-terminal region of the A chain is not.  相似文献   

17.
Positioned at the boundary between intra- and extravascular compartments, endothelial cells may influence many processes through their production of plasminogen activators (PA). Available data have shown that tissue-type plasminogen activator (t-PA) is the major form produced by human endothelial cells. We have compared the molecular forms of PA produced by human endothelial cells from different microvascular and large vessel sources including two different sites within the circulation of the kidney. Using combined immunoactivity assays specific for u-PA and t-PA activity and antigen, we found that both human renal microvascular and renal artery endothelial cells produced high levels of u-PA antigen (60.48 ng/10(5) cells/24 h and 50.42 ng/10(5) cells/24 h, respectively) and corresponding levels of u-PA activity after activation with plasmin. Activity was not evident before plasmin activation, showing that the u-PA produced is almost exclusively as single chain form U-PA. In contrast, human omental microvascular endothelial cells and human umbilical vein endothelial cells produced exclusively t-PA (8.80 ng/10(5) cells/24 h and 2.17 ng/10(5) cells/24 h, respectively). Neither endothelial cell type from human kidney produced plasminogen activator inhibitor, as determined by reverse fibrin autography and titration assays. Agents including phorbol ester, thrombin, and dexamethasone were shown to regulate the renal endothelial cell production and mRNA expression of both u-PA and t-PA. Among the macro- and microvascular endothelial cells tested, only those from the renal circulation produced high levels of single chain form U-PA, suggesting the vascular bed of origin determines the expression of plasminogen activators.  相似文献   

18.
The generation of the proteolytic enzyme plasmin from its inactive precursor plasminogen, mediated by so called plasminogen activators, is the essential step in thrombolytic therapy. Plasmin is responsible for the degradation of the insoluble fibrin, the major component of a thrombus, to soluble fibrin degradation products. So far, the use of the more recently developed thrombolytic agents single-chain urokinase-type plasminogen activator (scu-PA) and tissue-type plasminogen activator (t-PA) were disappointing, mainly due to some of their negative propertiesin vivo, i.e., rapid inhibition and/or hepatic clearance. Besides some background information on the haemostatic balance; t-PA and scu-PA structure; and mechanisms of action, we here review some reported attempts to improve on these agents for thrombolytic therapy following various strategies. One of the more potential strategies, antibody-targeted thrombolytic therapy using bispecific monoclonal antibodies, is discussed somewhat more extensively, as are the several procedures that can befollowed for bispecific antibody preparation.  相似文献   

19.
The cDNA encoding full-length single chain urokinase-type plasminogen activator (scu-PA) was cloned and sequenced, and the recombinant scu-PA (rscu-PA) was expressed in Chinese hamster ovary cells. Two mutants, constructed by in vitro site-specific mutagenesis of Lys158 in rscu-PA to Gly158 (rscu-PA-Gly158) or to Glu158 (rscu-PA-Glu158), were also expressed in Chinese hamster ovary cells. Wild type and mutant rscu-PAs were purified to homogeneity by immunoadsorption on an insolubilized monoclonal antibody raised against natural scu-PA (nscu-PA), followed by gel filtration. The specific activity of the mutant scu-PAs on fibrin plates is very low (less than 1,000 IU/mg) compared to that of the wild type rscu-PA (44,000 IU/mg). The mutants, in contrast to the wild type rscu-PA, are not converted to amidolytically active two chain u-PA (tcu-PA) by plasmin and do not cause lysis of a 125I-fibrin-labeled plasma clot immersed in citrated plasma. However, in a purified system, both rscu-PA-Gly158 and rscu-PA-Glu158 activate plasminogen following Michaelis-Menten kinetics, with a much lower affinity (Km = 60-80 microM) but with a higher turnover rate constant (k2 = 0.01 s-1) as compared to the wild type rscu-PA (Km = 1.0 microM, k2 = 0.002 s-1). We conclude that conversion of scu-PA to tcu-PA is not a prerequisite for the activation of plasminogen. Substitution of Lys158 by Gly158 or Glu158 does, however, markedly decrease the stability of the Michaelis complex.  相似文献   

20.
The activity of tissue plasminogen activator (t-PA) and urokinase-type plasminogen activator (u-PA) is stimulated by heparin. Heparin binds tightly to t-PA, u-PA, and plasminogen and decreases the usual stimulatory effect of fibrin on t-PA activity. In the present study we have found that low molecular weight heparin (LMW-heparin) preparations obtained by nitrous acid depolymerization or heparinase treatment of standard heparin have different properties with respect to their interaction with the fibrinolytic system. LMW-heparin prepared by either method does not stimulate plasmin formation by t-PA. However, these preparations of heparin still efficiently accelerate the inhibition of thrombin by antithrombin III. Binding data show that LMW-heparin does not bind t-PA and Glu-plasminogen and only binds very weakly to Lys-plasminogen. These results illustrate that it is possible to selectively destroy the fibrinolytic stimulating properties of heparin while leaving the classical anticoagulant characteristics intact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号