首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The purpose of the study was to obtain force/velocity relationships for electrically stimulated (80 Hz) human adductor pollicis muscle (n = 6) and to quantify the effects of fatigue. There are two major problems of studying human muscle in situ; the first is the contribution of the series elastic component, and the second is a loss of force consequent upon the extent of loaded shortening. These problems were tackled in two ways. Records obtained from isokinetic releases from maximal isometric tetani showed a late linear phase of force decline, and this was extrapolated back to the time of release to obtain measures of instantaneous force. This method gave usable data up to velocities of shortening equivalent to approximately one-third of maximal velocity. An alternative procedure (short activation, SA) allowed the muscle to begin shortening when isometric force reached a value that could be sustained during shortening (essentially an isotonic protocol). At low velocities both protocols gave very similar data (r2 = 0.96), but for high velocities only the SA procedure could be used. Results obtained using the SA protocol in fresh muscle were compared to those for muscle that had been fatigued by 25 s of ischaemic isometric contractions, induced by electrical stimulation at the ulnar nerve. Fatigue resulted in a decrease of isometric force [to 69 (3)%], an increase in half-relaxation time [to 431 (10)%], and decreases in maximal shortening velocity [to 77 (8)%] and power [to 42 (5)%]. These are the first data for human skeletal muscle to show convincingly that during acute fatigue, power is reduced as a consequence of both the loss of force and slowing of the contractile speed.  相似文献   

2.
The effect of stimulation frequency on twitch force potentiation was examined in the adductor pollicis muscle of ten normal subjects. The ulnar nerve was supramaximally stimulated at the wrist and isometric twitch force was measured from a 3-Hz train lasting 1 s. Test stimulation frequencies of 5, 10, 20, 25, 30, 40, 50 and 100 Hz were applied for 5 s each in random order (5 min apart) and the twitches (3 Hz) were applied immediately before and after (1 s) the test frequency and at intervals up to 5 min afterwards (10 s, and 1, 2 and 5 min). Poststimulation twitches were expressed as a percentage of the prestimulation twitch. Low frequency fatigue was not induced by the protocol since the 20:50 Hz ratio did not alter within each session. The degree of twitch potentiation was frequency dependent, with potentiation increasing up to 50 Hz [mean 173 (SD 16)%] but the effect was markedly less at 100 Hz [mean 133 (SD 25)%, P less than 0.01] for all subjects. The reduced potentiation at 100 Hz may have occurred due to high frequency fatigue produced by the 100-Hz test stimulation train. The optimal frequency of those examined in the experimental group was 50 Hz but this only produced maximal potentiation in six of the ten subjects and 100 Hz always produced less potentiation. These findings have implications for electrical stimulation of muscle in the clinical setting.  相似文献   

3.
4.
When old adults participate in a strength-training program with heavy loads, they experience an increase in muscle strength and an improvement in the steadiness of submaximal isometric contractions. The purpose of this study was to determine the effect of light- and heavy-load strength training on the ability of old adults to perform steady submaximal isometric and anisometric contractions. Thirty-two old adults (60-91 yr) participated in a 4-wk training program of a hand muscle. Both the light- and heavy-load groups increased one-repetition maximum and maximal voluntary contraction (MVC) strength and experienced similar improvements in the steadiness of the isometric and shortening and lengthening contractions. The increase in MVC strength was greater for the heavy-load group and could not be explained by changes in muscle activation. Before training, the lengthening contractions were less steady than the shortening contractions with the lightest loads (10% MVC). After training, there was no difference in steadiness between the shortening and lengthening contractions, except with the lightest load. These improvements were associated with a reduced level of muscle activation, especially during the lengthening contractions.  相似文献   

5.
It has been observed consistently and is well accepted that the steady-state isometric force after active muscle stretch is greater than the corresponding isometric force for electrically stimulated muscles and maximal voluntary contractions. However, this so-called force enhancement has not been studied for submaximal voluntary efforts; therefore, it is not known whether this property affects everyday movements. The purpose of this study was to determine whether there was force enhancement during submaximal voluntary contractions. Human adductor pollicis muscles (n = 17) were studied using a custom-built dynamometer, and both force and activation were measured while muscle activation and force were controlled at a level of 30% of maximal voluntary contraction. The steady-state isometric force and activation after active stretch were compared with the corresponding values obtained during isometric reference contractions. There was consistent and reliable force enhancement in 8 of the 17 subjects, whereas there was no force enhancement in the remaining subjects. Subjects with force enhancement had greater postactivation potentiation and a smaller resistance to fatigue in the adductor pollicis. We conclude from these results that force enhancement exists during submaximal voluntary contractions in a subset of the populations and suggest that it may affect everyday voluntary movements in this subset. On the basis of follow-up testing, it appears that force enhancement during voluntary contractions is linked to potentiation and fatigue resistance and therefore possibly to the fiber-type distribution in the adductor pollicis muscle.  相似文献   

6.
It is unclear whether accumulation of lactate in skeletal muscle during exercise contributes to muscle fatigue. The purpose of the present study was to examine the effect of lactate infusion on muscle fatigue during prolonged indirect stimulation in situ. For this purpose, the plantaris muscle was electrically stimulated (50 Hz, for 200 ms, every 2.7 s, 5 V) in situ through the sciatic nerve to perform concentric contractions for 60 min while either saline or lactate was infused intravenously (8 rats/group). Lactate infusion (lactate concentration approximately 12 mM) attenuated the reduction in submaximal dynamic force (-49 vs. -68% in rats infused with saline; P < 0.05). Maximum dynamic and isometric forces at the end of the period of stimulation were also higher (P < 0.05) in rats infused with lactate (3.8 +/- 0.3 and 4.4 +/- 0.3 N) compared with saline (3.1 +/- 0.2 and 3.6 +/- 0.2 N). The beneficial effect of lactate infusion on muscle force during prolonged stimulation was associated with a better maintenance of M-wave characteristics compared with control. In contrast, lactate infusion was not associated with any reduction in muscle glycogen utilization or with any reduction of fatigue at the neuromuscular junction (as assessed through maximal direct muscle stimulation: 200 Hz, 200 ms, 150 V).  相似文献   

7.
Mechanical properties of skeletal muscles are often studied for controlled, electrically induced, maximal, or supra-maximal contractions. However, many mechanical properties, such as the force-length relationship and force enhancement following active muscle stretching, are quite different for maximal and sub-maximal, or electrically induced and voluntary contractions. Force depression, the loss of force observed following active muscle shortening, has been observed and is well documented for electrically induced and maximal voluntary contractions. Since sub-maximal voluntary contractions are arguably the most important for everyday movement analysis and for biomechanical models of skeletal muscle function, it is important to study force depression properties under these conditions. Therefore, the purpose of this study was to examine force depression following sub-maximal, voluntary contractions. Sets of isometric reference and isometric-shortening-isometric test contractions at 30% of maximal voluntary effort were performed with the adductor pollicis muscle. All reference and test contractions were executed by controlling force or activation using a feedback system. Test contractions included adductor pollicis shortening over 10 degrees, 20 degrees, and 30 degrees of thumb adduction. Force depression was assessed by comparing the steady-state isometric forces (activation control) or average electromyograms (EMGs) (force control) following active muscle shortening with those obtained in the corresponding isometric reference contractions. Force was decreased by 20% and average EMG was increased by 18% in the shortening test contractions compared to the isometric reference contractions. Furthermore, force depression was increased with increasing shortening amplitudes, and the relative magnitudes of force depression were similar to those found in electrically stimulated and maximal contractions. We conclude from these results that force depression occurs in sub-maximal voluntary contractions, and that force depression may play a role in the mechanics of everyday movements, and therefore may have to be considered in biomechanical models of human movement.  相似文献   

8.
The purpose of this study was to determine the history dependence of force production during and following stretch-shortening and shortening-stretch cycles in mammalian skeletal muscle. Thirty-three different isometric, stretch, shortening, stretch-shortening and shortening-stretch experiments were preformed in cat soleus (n=8) using previously established methods. Stretch-shortening and shortening-stretch cycles are not commutative with respect to the isometric forces following the length changes. Whereas force depression following shortening is virtually unaffected by previous stretching of the muscle, force enhancement following stretch depends in a dose-dependent manner on the amount of muscle shortening preceding the stretch. The history dependence of isometric force following shortening-stretch cycles can conveniently be modelled using an elastic (compressive and tensile) element that engages at the length of muscle activation. Such an "elastic" mechanism has been proposed by Edman and Tsuchiya (1996) (Edman, K.A. P., Tsuchiya, T., 1996. Strain of passive elements during force enhancement by stretch in frog mucle fibres. Journal of Physiology 490. 1, 191-205) based on experimental observations, and has been implemented theoretically in a rheological model of muscle (Forcinito et al., 1997) (Forcinito, M., Epstein, M., Herzog, W., 1997. Theoretical considerations on myofibril stiffness. Biophysics Journal 72, 1278-1286). The history dependence of isometric force following stretch-shortening cycles appears independent of the stretch preceding the shortening, except perhaps, if stretching occurs at very high speeds (i.e. 6-10 times fibre length per second). The results of this study are hard to reconcile with the two major mechanisms associated with history dependence of force production: sarcomere length non-uniformity (Edman et al., 1993) and stress-induced cross-bridge inhibition (Maréchal and Plaghki, 1979) (Maréchal, G., Plaghki, L., 1979. The deficit of the isometric tetanic tension redeveloped after a relase of frog muscle at a constant velocity. Journal of General Physiology 73, 453-467). It appears that studying the history dependence of force production under more functionally relevant conditions than has been done to date may provide new information that contributes to our understanding of possible mechanisms associated with force depression and force enhancement following muscular length changes.  相似文献   

9.
Movements generated by muscle contraction generally include periods of muscle shortening and lengthening as well as force development in the absence of external length changes (isometric). However, in the specific case of resistance exercise training, exercises are often intentionally designed to emphasize one of these modes. The purpose of the present study was to objectively evaluate the relative effectiveness of each training mode for inducing compensatory hypertrophy. With the use of a rat model with electrically stimulated (sciatic nerve) contractions, groups of rats completed 10 training sessions in 20 days. Within each training session, the duration of the stimulation was equal across the three modes. Although this protocol provided equivalent durations of duty cycle, the torque integral for the individual contractions varied markedly with training mode such that lengthening > isometric > shortening. The results indicate that the hypertrophy response did not track the torque integral with mass increases of isometric by 14%, shortening by 12%, and lengthening by 11%. All three modes of training resulted in similar increases in total muscle DNA and RNA. Isometric and shortening but not lengthening mode training resulted in increased muscle insulin-like growth factor I mRNA levels. These results indicate that relatively pure movement mode exercises result in similar levels of compensatory hypertrophy that do not necessarily track with the total amount of force generated during each contraction.  相似文献   

10.
The purpose of this study was to examine the effects of stretching and shortening on the isometric forces at different lengths on the descending limb of the force-length relationship. Cat soleus (N = 10) was stretched and shortened by various amounts on the descending limb of the force-length relationship, and the steady-state forces following these dynamic contractions were compared to the isometric forces at the corresponding muscle lengths. We found a shift of the force-length relationship to greater force values following muscle stretching, and to smaller force values following muscle shortening. Shifts in both directions critically depended on the magnitude of stretching/shortening and the final muscle length. We confirm recent findings that the steady-state isometric force following some stretch conditions clearly exceeded the maximal isometric forces at optimum muscle length, and that force enhancement was associated with an increase in the passive force, i.e., a passive force enhancement. When the passive force enhancement was subtracted from the total force enhancement, forces following stretch were always equal to or smaller than the isometric force at optimum muscle length. Together, these findings led to the conclusions: (a). that force enhancement is composed of an "active and a "passive" component; (b). that the "passive" component of force enhancement allows for forces greater than the maximal isometric forces at the muscle's optimum length; and (c). that force enhancement and force depression are critically affected by muscle length and stretch/shortening amplitude.  相似文献   

11.
Residual force depression (rFD) and residual force enhancement (rFE) are intrinsic contractile properties of muscle. rFD is characterized as a decrease in steady-state isometric force following active shortening compared with a purely isometric contraction at the same muscle length and level of activation. By contrast, isometric force is increased following active lengthening compared to a reference isometric contraction at the same muscle length and level of activation; this is termed rFE. To date, there have been no investigations of rFD and rFE in human muscle fibres, therefore the purpose of this study was to determine whether rFD and rFE occur at the single muscle fibre level in humans. rFD and rFE were investigated in maximally activated single muscle fibres biopsied from the vastus lateralis of healthy adults. To induce rFD, fibres were activated and shortened from an average sarcomere length (SL) of 3.2–2.6 μm. Reference isometric contractions were performed at an average SL of 2.6 μm. To induce rFE, fibres were actively lengthened from an average SL of 2.6–3.2 μm and a reference isometric contraction was performed at an average SL of 3.2 μm. Isometric steady-state force was lower following active shortening (p < 0.05), and higher following active lengthening (p < 0.05), as compared to the reference isometric contractions. We demonstrated rFD and rFE in human single fibres which is consistent with previous animal models. The non-responder phenomenon often reported in rFE studies involving voluntary contractions at the whole human level was not observed at the single fibre level.  相似文献   

12.
The goals of this study were to investigate adductor pollicis muscle (n = 7) force depression after maximal electrically stimulated and voluntarily activated isovelocity (19 and 306 degrees /s) shortening contractions and the effects of fatigue. After shortening contractions, redeveloped isometric force was significantly (P < 0.05) depressed relative to isometric force obtained without preceding shortening. For voluntarily and electrically stimulated contractions, relative force deficits respectively were (means +/- SE) 25.0 +/- 3.5 and 26.6 +/- 1.9% (19 degrees /s), 7.8 +/- 2.2 and 11.5 +/- 0.6% (306 degrees /s), and 23.9 +/- 4.4 and 31.6 +/- 4.7% (19 degrees /s fatigued). The relative force deficit was significantly smaller after fast compared with slow shortening contractions, whereas activation manner and fatigue did not significantly affect the deficit. It was concluded that in unfatigued and fatigued muscle the velocity-dependent relative force deficit was similar with maximal voluntary activation and electrical stimulation. These findings have important implications for experimental studies of force-velocity relationships. Moreover, if not accounted for in muscle models, they will contribute to differences observed between the predicted and the actually measured performance during in vivo locomotion.  相似文献   

13.
Many studies have demonstrated a biphasic effect of peroxynitrite in the myocardium, but few studies have investigated this biphasic effect on beta-adrenergic responsiveness and its dependence on contractile state. We have previously shown that high 3-morpholinosydnonimine (SIN-1) (source of peroxynitrite, 200 micromol/L) produced significant anti-adrenergic effects during maximal beta-adrenergic stimulation in cardiomyocytes. In the current study, we hypothesize that the negative effects of high SIN-1 will be greatest during high contractile states, whereas the positive effects of low SIN-1 (10 micromol/L) will predominate during low contractility. Isolated murine cardiomyocytes were field stimulated at 1 Hz, and [Ca(2+)](i) transients and shortening were recorded. After submaximal isoproterenol (ISO) (beta-adrenergic agonist, 0.01 micromol/L) stimulation, 200 micromol/L SIN-1 induced two distinct phenomena. Cardiomyocytes undergoing a large response to ISO showed a significant reduction in contractility, whereas cardiomyocytes exhibiting a modest response to ISO showed a further increase in contractility. Additionally, 10 micromol/L SIN-1 always increased contractility during low ISO stimulation, but had no effect during maximal ISO (1 micromol/L) stimulation. SIN-1 at 10 micromol/L also increased basal contractility. Interestingly, SIN-1 produced a contractile effect under only one condition in phospholamban-knockout cardiomyocytes, providing a potential mechanism for the biphasic effect of peroxynitrite. These results provide clear evidence for a biphasic effect of peroxynitrite, with high peroxynitrite modulating high levels of beta-adrenergic responsiveness and low peroxynitrite regulating basal function and low levels of beta-adrenergic stimulation.  相似文献   

14.
The purpose of this study was to investigate the force-velocity (F/) relationship for the erector spinae muscles in submaximal activation movements, with particular attention to their response during lengthening movements and at lower shortening contraction velocities. Dynamic models that predict lower back muscle forces require reasonable representations of the modulating effect of instantaneous velocity. Ten males were observed performing trunk flexion and extension in the sagittal plane under constant load. Contraction velocities were measured as the first derivative from a devise sensitive to changes in spine curvature, and controlled by a visual feedback system while a constant load was applied through a chest harness. The erector spinae exhibited a yielding phenomenon which causes an abrupt drop in force during constant velocity stretching under constant, submaximal, stimulation. The findings were consistent with previous isovelocity muscle lengthening experiments. Yielding appeared dependent on the level of load/activation supporting the theory of a state-variableF/ relationship. The eccentric behaviour of the lower erectors (L3) seemed independent of velocity and length, while that of the upper erectors (T9) showed a dependence on length. At lower concentric velocities, concavity in torque-velocity curves was noted after a threshold velocity. The findings of this study strongly reinforce the notion that theF/ length relationship is not a continuous hyperbolic relationship during muscle shortening and that the commonly modelled force augmentation effect of lengthening is incorrect, at least for submaximal activation of the extensors of the lower back.  相似文献   

15.
When a skeletal muscle that is actively producing force is shortened or stretched, the resulting steady-state isometric force after the dynamic phase is smaller or greater, respectively, than the purely isometric force obtained at the corresponding final length. The cross-bridge model of muscle contraction does not readily explain this history dependence of force production. The most accepted proposal to explain both, force depression after shortening and force enhancement after stretch, is a nonuniform behavior of sarcomeres that develops during and after length changes. This hypothesis is based on the idea of instability of sarcomere lengths on the descending limb of the force-length relationship. However, recent evidence suggests that skeletal muscles may be stable over the entire range of active force production, including the descending limb of the force-length relationship. The purpose of this review was to critically evaluate hypotheses aimed at explaining the history dependence of force production and to provide some novel insight into the possible mechanisms underlying these phenomena. It is concluded that the sarcomere nonuniformity hypothesis cannot always explain the total force enhancement observed after stretch and likely does not cause all of the force depression after shortening. There is evidence that force depression after shortening is associated with a reduction in the proportion of attached cross bridges, which, in turn, might be related to a stress-induced inhibition of cross-bridge attachment in the myofilament overlap zone. Furthermore, we suggest that force enhancement is not associated with instability of sarcomeres on the descending limb of the force-length relationship and that force enhancement has an active and a passive component. Force depression after shortening and force enhancement after stretch are likely to have different origins.  相似文献   

16.
AMP-activated protein kinase (AMPK) is a key signaling protein in the regulation of skeletal muscle glucose uptake, but its role in mediating contraction-induced glucose transport is still debated. The effect of contraction on glucose transport is impaired in EDL muscle of transgenic mice expressing a kinase-dead, dominant negative form of the AMPKalpha(2) subunit (KD-AMPKalpha(2) mice). However, maximal force production is reduced in this muscle, raising the possibility that the defect in glucose transport was due to a secondary decrease in force production and not impaired AMPKalpha(2) activity. Generation of force-frequency curves revealed that muscle force production is matched between wild-type (WT) and KD-AMPKalpha(2) mice at frequencies < or =50 Hz. Moreover, AMPK activation is already maximal at 50 Hz in muscles of WT mice. When EDL muscles from WT mice were stimulated at a frequency of 50 Hz for 2 min (200-ms train, 1/s, 30 volts), contraction caused an approximately 3.5-fold activation of AMPKalpha(2) activity and an approximately 2-fold stimulation of glucose uptake. Conversely, whereas force production was similar in EDL of KD-AMPKalpha(2) animals, no effect of contraction was observed on AMPKalpha(2) activity, and glucose uptake stimulation was reduced by 50% (P < 0.01) As expected, 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranosyl 5'-monophosphate (AICAR) caused a 2.3-fold stimulation of AMPKalpha(2) activity and a 1.7-fold increase in glucose uptake in EDL from WT mice, whereas no effect was detected in muscle from KD-AMPKalpha(2) mice. These data demonstrate that AMPK activation is essential for both AICAR and submaximal contraction-induced glucose transport in skeletal muscle but that AMPK-independent mechanisms are also involved.  相似文献   

17.
18.
The purpose of this study was to investigate the force-frequency relationships and the post-tetanic twitch potentiation as a function of joint angle (i.e. muscle length) in human skeletal muscles under isometric conditions. The dorsiflexor muscles of healthy subjects were stimulated at different ankle joint angles by means of constant frequency bursts at seven submaximal frequencies (50, 33, 25, 20, 16, 12, 8 Hz) with a duration of two seconds. Particular attention has been focused on the stability of recruitment in the range of joint angles examined. The results show that moment-frequency curves of human dorsiflexors change as a function of ankle angle: especially for the lower stimulation frequency range (8, 12, 16, 20 Hz), the normalized moment increases from dorsiflexion to plantar flexion (i.e. with increasing muscle length) resulting in a leftward shift of the normalized moment-frequency curves. Post-tetanic twitch potentiation is shown to be ankle joint dependent as well.  相似文献   

19.
Residual force enhancement (RFE) and force depression (FD) refer to an increased or decreased force following an active lengthening or shortening contraction, respectively, relative to the isometric force produced at the same activation level and muscle length. Our intent was to determine if EMG characteristics differed in the RFE or FD states compared with a purely isometric reference contraction for maximal and submaximal voluntary activation of the adductor pollicis muscle. Quantifying these alterations to EMG in history-dependent states allows for more accurate modeling approaches for movement control in the future. For maximal voluntary contractions (MVC), RFE was 6–15% (P < 0.001) and FD was 12–19% (P < 0.001). The median frequency of the EMG was not different between RFE, FD and isometric reference contractions for the 100% and 40% MVC intensities (P > 0.05). However, root mean square EMG (EMGRMS) amplitude for the submaximal contractions was higher in the FD and lower in the RFE state, respectively (P < 0.05). For maximal contractions, EMGRMS was lower for the FD state but was the same for the RFE state compared to the isometric reference contractions (P > 0.05). Neuromuscular efficiency (NME; force/EMG) was lower in the force depressed state and higher in the force enhanced state (P < 0.05) compared to the isometric reference contractions. EMG spectral properties were not altered between the force-enhanced and depressed states relative to the isometric reference contractions, while EMG amplitude measures were.  相似文献   

20.
Repetitive activation of a skeletal muscle results in potentiation of the twitch contractile response. Incompletely fused tetanic contractions similar to those evoked by voluntary activation may also be potentiated by prior activity. We aimed to investigate the role of stimulation frequency on the enhancement of unfused isometric contractions in rat medial gastrocnemius muscles in situ. Muscles set at optimal length were stimulated via the sciatic nerve with 50-micros duration supramaximal pulses. Trials consisted of 8 s of repetitive trains [5 pulses (quintuplets) 2 times per second or 2 pulses (doublets) 5 times per second] at 20, 40, 50, 60, 70, and 80 Hz. These stimulation frequencies represent a range over which voluntary activation would be expected to occur. When the frequency of stimulation was 20, 50, or 70 Hz, the peak active force (highest tension during a contraction - rest tension) of doublet contractions increased from 2.2 +/- 0.2, 4.1 +/- 0.4, and 4.3 +/- 0.5 to 3.1 +/- 0.3, 5.6 +/- 0.4, and 6.1 +/- 0.7 N, respectively. Corresponding measurements for quintuplet contractions increased from 2.2 +/- 0.2, 6.1 +/- 0.5, and 8.7 +/- 0.7 to 3.2 +/- 0.3, 7.3 +/- 0.6, and 9.0 +/- 0.7 N, respectively. Initial peak active force values were 27 +/- 1 and 61.5 +/- 5% of the maximal (tetanic) force for doublet and quintuplet contractions, respectively, at 80 Hz. With doublets, peak active force increased at all stimulation frequencies. With quintuplets, peak active force increased significantly for frequencies up to 60 Hz. Twitch enhancement at the end of the 8 s of repetitive stimulation was the same regardless of the pattern of stimulation during the 8 s, and twitch peak active force returned to prestimulation values by 5 min. These experiments confirm that activity-dependent potentiation is evident during repeated, incompletely fused tetanic contractions over a broad range of frequencies. This observation suggests that, during voluntary motor unit recruitment, derecruitment or decreased firing frequency would be necessary to achieve a fixed (submaximal) target force during repeated isometric contractions over this time period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号