首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Corn hulls and corn germ meal were both evaluated as feedstocks for production of ethanol for biofuel. Currently, these fibrous co-products are combined with corn steep liquor and the fermentation bottoms (if available) and marketed as cattle feed. Samples were obtained from wet and dry corn mills. The corn hulls and germ meal were evaluated for starch and hemicellulose compositions. Starch contents were 12 to 32% w/w and hemicellulose (arabinoxylans) contents were 23 to 64% w/w. Corn fibrous samples were hydrolysed, using dilute sulphuric acid, into mixed sugar streams containing arabinose, glucose and xylose. Total sugar concentrations in the hydrolysate varied from 8.4 to 10.8% w/v. The hydrolysates were fermented to ethanol using recombinant E. coli strains K011 and SL40. Ethanol yields were 0.38 to 0.41g ethanol produced/g total sugars consumed and fermentations were completed in 60h or less. However, residual xylose was detected for each hydrolysate fermentation and was especially significant for fermentations using strain SL40. Strain K011 was a superior ethanologenic strain compared with strain SL40 in terms of both ethanol yield and maximum productivity.  相似文献   

2.
Ethanol recovery from corn fiber hydrolysate fermentations by pervaporation   总被引:6,自引:0,他引:6  
Corn fiber, a byproduct of corn wet milling, is an attractive feedstock for biomass ethanol production. Corn fiber was hydrolyzed by dilute sulfuric acid and neutralized by one of two methods: conventional lime treatment or neutralization by strongly basic anion exchange. The anion exchange neutralized (AEN) hydrolysate contained substantially lower levels of the inhibiting compounds furfural, 5-hydroxymethylfurfural, and acetic acid compared to the lime neutralized hydrolysate. In batch fermentations the ethanol yields and final ethanol concentration of the two hydrolysates were similar at 0.32-0.43 g/g and 29-44 g/l, respectively. Sugar consumption in the AEN fermentations was superior. Coupling of a membrane pervaporation unit to a fed-batch fermentation of AEN hydrolysate maintained the ethanol concentration below 25 g/l with complete sugar utilization for approximately 5 days. A concentrated ethanol stream of 17 wt.% ethanol was produced by the pervaporation unit.  相似文献   

3.
External nutrient supplementation and detoxification of hydrolysate significantly increase the production cost of cellulosic ethanol. In this study, we investigated the feasibility of fermenting cellulosic hydrolysates without washing, detoxification or external nutrient supplementation using ethanologens Escherichia coli KO11 and the adapted strain ML01 at low initial cell density (16 mg dry weight/L). The cellulosic hydrolysates were derived from enzymatically digested ammonia fiber expansion (AFEX)-treated corn stover and dry distiller's grain and solubles (DDGS) at high solids loading (18% by weight). The adaptation was achieved through selective evolution of KO11 on hydrolysate from AFEX-treated corn stover. All cellulosic hydrolysates tested (36-52 g/L glucose) were fermentable. Regardless of strains, metabolic ethanol yields were near the theoretical limit (0.51 g ethanol/g consumed sugar). Volumetric ethanol productivity of 1.2 g/h/L was achieved in fermentation on DDGS hydrolysate and DDGS improved the fermentability of hydrolysate from corn stover. However, enzymatic hydrolysis and xylose utilization during fermentation were the bottlenecks for ethanol production from corn stover at these experimental conditions. In conclusion, fermentation under the baseline conditions was feasible. Utilization of nutrient-rich feedstocks such as DDGS in fermentation can replace expensive media supplementation.  相似文献   

4.
Both the current corn starch to ethanol industry and the emerging lignocellulosic biofuels industry view recycling of spent fermentation broth or stillage as a method to reduce fresh water use. The objective of this study was to understand the impact of recycling stillage on conversion of corn stover to ethanol. Sugars in a dilute‐acid pretreated corn stover hydrolysate were fermented to ethanol by the glucose–xylose fermenting bacteria Zymomonas mobilis 8b. Three serial fermentations were performed at two different initial sugar concentrations using either 10% or 25% of the stillage as makeup water for the next fermentation in the series. Serial fermentations were performed to achieve near steady state concentration of inhibitors and other compounds in the corn stover hydrolysate. Little impact on ethanol yields was seen at sugar concentrations equivalent to pretreated corn stover slurry at 15% (w/w) with 10% recycle of the stillage. However, ethanol yields became progressively poorer as the sugar concentration increased and fraction of the stillage recycled increased. At an equivalent corn stover slurry concentration of 20% with 25% recycled stillage the ethanol yield was only 5%. For this microorganism with dilute‐acid pretreated corn stover, recycling a large fraction of the stillage had a significant negative impact on fermentation performance. Although this finding is of concern for biochemical‐based lignocellulose conversion processes, other microorganism/pretreatment technology combinations will likely perform differently. Biotechnol. Bioeng. 2010;105: 992–996. © 2009 Wiley Periodicals, Inc.  相似文献   

5.
Hemicellulose syrups from dilute sulfuric acid hydrolysates of hemicellulose contain inhibitors that prevent efficient fermentation by yeast or bacteria. It is well known that the toxicity of these hydrolysate syrups can be ameliorated by optimized "overliming" with Ca(OH)(2). We have investigated the optimization of overliming treatments for sugar cane bagasse hydrolysates (primarily pentose sugars) using recombinant Escherichia coli LY01 as the biocatalyst. A comparison of composition before and after optimal overliming revealed a substantial reduction in furfural, hydroxymethylfurfural, and three unidentified high-performance liquid chromatography (HPLC) peaks. Organic acids (acetic, formic, levulinic) were not affected. Similar changes have been reported after overliming of spruce hemicellulose hydrolysates (Larsson et al., 1999). Our studies further demonstrated that the extent of furan reduction correlated with increasing fermentability. However, furan reduction was not the sole cause for reduced toxicity. After optimal overliming, bagasse hydrolysate was rapidly and efficiently fermented (>90% yield) by LY01. During these studies, titration, and conductivity were found to be in excellent agreement as methods to estimate sulfuric acid content. Titration was also found to provide an estimate of total organic acids in hydrolysate, which agreed well with the sum of acetic, levulinic, and formic acids obtained by HPLC. Titration of acids, measurement of pH before and after treatment, and furan analyses are proposed as relatively simple methods to monitor the reproducibility of hydrolysate preparations and the effectiveness of overliming treatments.  相似文献   

6.
In order to improve the fermentative efficiency of sugar maple hemicellulosic hydrolysates for fuel ethanol production, various methods to mitigate the effects of inhibitory compounds were employed. These methods included detoxification treatments utilizing activated charcoal, anion exchange resin, overliming, and ethyl acetate extraction. Results demonstrated the greatest fermentative improvement of 50% wood hydrolysate (v/v) by Pichia stipitis with activated charcoal treatment. Another method employed to reduce inhibition was an adaptation procedure to produce P. stipitis stains more tolerant of inhibitory compounds. This adaptation resulted in yeast variants capable of improved fermentation of 75% untreated wood hydrolysate (v/v), one of which produced 9.8 g/l ± 0.6 ethanol, whereas the parent strain produced 0.0 g/l ± 0.0 within the first 24 h. Adapted strains RS01, RS02, and RS03 were analyzed for glucose and xylose utilization and results demonstrated increased glucose and decreased xylose utilization rates in comparison to the wild type. These changes in carbohydrate utilization may be indicative of detoxification or tolerance activities related to proteins involved in glucose and xylose metabolism.  相似文献   

7.
Water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate has been utilized as a substrate for ethanol production using Pichia stipitis NRRL Y-7124. Hydrolysate fermentability was considerable improved by boiling, and overliming up to pH 10.0 with solid Ca(OH)(2) in combination with sodium sulfite. The percent total sugar utilized and ethanol yield (Y(p/s)) for the untreated hydrolysate were 20.15+/-0.17% and 0.19+/-0.003 g(p) g(s)(-1), respectively, compared with 76.0+/-0.32% and 0.35 g(p) g(s)(-1), respectively for the treated material. The fermentation was very effective at an aeration rate of 0.02 v/v/m, temperature 30+/-0.2 degrees C and pH 6.0+/-0.2. However, the volumetric productivity (Q(p)) was still considerably less than observed in a simulated synthetic hydrolysate medium with a sugar composition similar to the hemicellulose acid hydrolysate. L-Arabinose was not fermented but assimilated. The presence of acetic acid in the hydrolysate decreased the ethanol yield and productivity considerably.  相似文献   

8.
Summary Hemicellulose and residual starch in corn hulls from wet milling and hemicellulose in corn cobs were hydrolyzed by incubation in dilute sulfuric acid at 140°C to 160°C. These hydrolysates were efficiently fermented to ethanol by a genetically engineered derivative ofE. coli B, strain KO11. Fermentation of com hull hydrolysate was complete after 48 h with a final ethanol concentration of 38 grams per liter. Fermentation of corn cob hydrolysate was essentially complete after 24 h due to a lower concentration of sugars and higher levels of inocula. In both cases, ethanol produced was equivalent to 100% of the maximum theoretical yield (0.51 grams ethanol/gram sugar) based on momoner sugar content. ThusE. coli B strain KO11 appears to be an excellent candidate for the efficient production of ethanol from hydrolysates of corn residues.  相似文献   

9.
Escherichia coli strain FBR5, which has been engineered to direct fermentation of sugars to ethanol, was further engineered, using three different constructs, to contain and express the Vitreoscilla hemoglobin gene (vgb). The three resulting strains expressed Vitreoscilla hemoglobin (VHb) at various levels, and the production of ethanol was inversely proportional to the VHb level. High levels of VHb were correlated with an inhibition of ethanol production; however, the strain (TS3) with the lowest VHb expression (approximately the normal induced level in Vitreoscilla) produced, under microaerobic conditions in shake flasks, more ethanol than the parental strain (FBR5) with glucose, xylose, or corn stover hydrolysate as the predominant carbon source. Ethanol production was dependent on growth conditions, but increases were as high as 30%, 119%, and 59% for glucose, xylose, and corn stover hydrolysate, respectively. Only in the case of glucose, however, was the theoretical yield of ethanol by TS3 greater than that achieved by others with FBR5 grown under more closely controlled conditions. TS3 had no advantage over FBR5 regarding ethanol production from arabinose. In 2 L fermentors, TS3 produced about 10% and 15% more ethanol than FBR5 for growth on glucose and xylose, respectively. The results suggest that engineering of microorganisms with vgb/VHb could be of significant use in enhancing biological production of ethanol.  相似文献   

10.
A natural isolate, Candida tropicalis was tested for xylitol production from corn fiber and sugarcane bagasse hydrolysates. Fermentation of corn fiber and sugarcane bagasse hydrolysate showed xylose uptake and xylitol production, though these were very low, even after hydrolysate neutralization and treatments with activated charcoal and ion exchange resins. Initial xylitol production was found to be 0.43 g/g and 0.45 g/g of xylose utilised with corn fiber and sugarcane bagasse hydrolysate respectively. One of the critical factors for low xylitol production was the presence of inhibitors in these hydrolysates. To simulate influence of hemicellulosic sugar composition on xylitol yield, three different combinations of mixed sugar control experiments, without the presence of any inhibitors, have been performed and the strain produced 0.63 g/g, 0.68 g/g and 0.72 g/g of xylose respectively. To improve yeast growth and xylitol production with these hydrolysates, which contain inhibitors, the cells were adapted by sub culturing in the hydrolysate containing medium for 25 cycles. After adaptation the organism produced more xylitol 0.58 g/g and 0.65 g/g of xylose with corn fiber hydrolysate and sugarcane bagasse hydrolysate respectively.  相似文献   

11.
The inexpensive production of sugars from lignocellulose is an essential step for the use of biomass to produce fuel ethanol. Olive cake is an abundant by-product of the olive oil industry and represents a potentially significant lignocellulosic source for bioethanol production in the Mediterranean basin. Furthermore, converting olive cake to ethanol could add further value to olive production. In the present study, olive cake was evaluated as a feedstock for ethanol production. To this end, the lignocellulosic component of the olive cake was dilute-acid pretreated at a 13.5% olive-cake loading with 1.75% (w/v) sulfuric acid and heating at 160°C for 10 min. This was followed by chemical elimination of fermentation inhibitors. Soluble sugars resulting from the pretreatment process were fermented using E. coli FBR5, a strain engineered to selectively produce ethanol. 8.1 g of ethanol/L was obtained from hydrolysates containing 18.1 g of soluble sugars. Increasing the pretreatment temperature to 180°C resulted in failed fermentations, presumably due to inhibitory by-products released during pretreatment.  相似文献   

12.
Detoxification of dilute acid hydrolysates of lignocellulose with lime   总被引:2,自引:0,他引:2  
The hydrolysis of hemicellulose to monomeric sugars by dilute acid hydrolysis is accompanied by the production of inhibitors that retard microbial fermentation. Treatment of hot hydrolysate with Ca(OH)(2) (overliming) is an effective method for detoxification. Using ethanologenic Escherichia coli LY01 as the biocatalyst, our results indicate that the optimal lime addition for detoxification varies and depends on the concentration of mineral acids and organic acids in each hydrolysate. This optimum was shown to be readily predicted on the basis of the titration of hydrolysate with 2 N NaOH at ambient temperature to either pH 7.0 or pH 11.0. The average composition of 15 hydrolysates prior to treatment was as follows (per L): 95.24 +/- 7.29 g sugar, 5.3 +/- 2.99 g acetic acid, 1.305 +/- 0.288 g total furans (furfural and hydroxymethylfurfural), and 2.86 +/- 0.34 g phenolic compounds. Optimal overliming resulted in a 51 +/- 9% reduction of total furans, a 41 +/- 6% reduction in phenolic compounds, and a 8.7 +/- 4.5% decline in sugar. Acetic acid levels were unchanged. Considering the similarity of microorganisms, it is possible that the titration method described here may also prove useful for detoxification and fermentation processes using other microbial biocatalysts.  相似文献   

13.

Background

Fermentations using Escherichia coli KO11, Saccharomyces cerevisiae 424A(LNH-ST), and Zymomonas mobilis AX101 are compared side-by-side on corn steep liquor (CSL) media and the water extract and enzymatic hydrolysate from ammonia fiber expansion (AFEX)-pretreated corn stover.

Results

The three ethanologens are able produce ethanol from a CSL-supplemented co-fermentation at a metabolic yield, final concentration and rate greater than 0.42 g/g consumed sugars, 40 g/L and 0.7 g/L/h (0-48 h), respectively. Xylose-only fermentation of the tested ethanologenic bacteria are five to eight times faster than 424A(LNH-ST) in the CSL fermentation. All tested strains grow and co-ferment sugars at 15% w/v solids loading equivalent of ammonia fiber explosion (AFEX)-pretreated corn stover water extract. However, both KO11 and 424A(LNH-ST) exhibit higher growth robustness than AX101. In 18% w/w solids loading lignocellulosic hydrolysate from AFEX pretreatment, complete glucose fermentations can be achieved at a rate greater than 0.77 g/L/h. In contrast to results from fermentation in CSL, S. cerevisiae 424A(LNH-ST) consumed xylose at the greatest extent and rate in the hydrolysate compared to the bacteria tested.

Conclusions

Our results confirm that glucose fermentations among the tested strains are effective even at high solids loading (18% by weight). However, xylose consumption in the lignocellulosic hydrolysate is the major bottleneck affecting overall yield, titer or rate of the process. In comparison, Saccharomyces cerevisiae 424A(LNH-ST) is the most relevant strains for industrial production for its ability to ferment both glucose and xylose from undetoxified and unsupplemented hydrolysate from AFEX-pretreated corn stover at high yield.  相似文献   

14.
The inhibitory effects of furfural and acetic acid on the fermentation of xylose and glucose to ethanol in YEPDX medium by a recombinant Saccharomyces cerevisiae strain (LNH‐ST 424A) were investigated. Initial furfural concentrations below 5 g/L caused negligible inhibition to glucose and xylose consumption rates in batch fermentations with high inoculum (4.5–6.0 g/L). At higher initial furfural concentrations (10–15 g/L) the inhibition became significant with xylose consumption rates especially affected. Interactive inhibition between acetic acid and pH were observed and quantified, and the results suggested the importance of conditioning the pH of hydrolysates for optimal fermentation performance. Poplar biomass pretreated by various CAFI processes (dilute acid, AFEX, ARP, SO2‐catalyzed steam explosion, and controlled‐pH) under respective optimal conditions was enzymatically hydrolyzed, and the mixed sugar streams in the hydrolysates were fermented. The 5‐hydroxymethyl furfural (HMF) and furfural concentrations were low in all hydrolysates and did not pose negative effects on fermentation. Maximum ethanol productivity showed that 0–6.2 g/L initial acetic acid does not substantially affect the ethanol fermentation with proper pH adjustment, confirming the results from rich media fermentations with reagent grade sugars. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

15.
AIM: Pentose-utilizing yeast development by protoplast fusion and sequential mutations and ethanol fermentation using lignocellulosic substrate. METHODS AND RESULTS: Protoplasts of thermotolerant Saccharomyces cerevisiae and mesophilic, xylose-utilizing Candida shehatae were fused by electrofusion. The fusants were selected based on their growth at 42 degrees C and ability to utilize xylose. The selected best fusant was mutated sequentially and 3 mutant fusants obtained were tested for their stability. The mutant fusant CP11 was found to be stable and used for lignocellulosic fermentation. The Prosopis juliflora wood material was hydrolysed with 1% sulphuric acid initially for 18 h at room temperature and then for 20 min at 121 degrees C. The acid hydrolysate was separated and used for detoxification by ethyl acetate and overliming. The hard cellulosic fraction was hydrolysed with Aspergillus niger crude cellulase enzyme for 18 h at 50 degrees C. The substrate (15% w/v) yielded 84 g l(-1) sugars, representing 80% (w/w) hydrolysis of carbohydrate content present in the lignocellulosic material. The acid and enzyme hydrolysates were then equally mixed and used for fermentation with the developed fusant yeast (CP11). The fusant yeast gave an ethanol yield of 0.459 +/- 0.012 g g(-1), productivity of 0.67 +/- 0.015 g l(-1) h(-1) and fermentation efficiency of 90%. CONCLUSIONS: Protoplast fusion followed by sequential mutations method gave a stable and good performing fusant with maximum utilization of reducing sugars in the media. SIGNIFICANCE AND IMPACT OF THE STUDY: This new method could be applied to develop fusants for better biotechnological applications.  相似文献   

16.
The maximum growth rate of Saccharomyces cerevisiae ATCC 96581, adapted to fermentation of spent sulphite liquor (SSL), was 7 times higher in SSL of hardwood than the maximum growth rate of bakers' yeast. ATCC 96581 was studied in the continuous fermentation of spruce hydrolysate without and with cell recycling. Ethanol productivity by ATCC 96581 in continuous fermentation of an enzymatic hydrolysate of spruce was increased 4.6 times by employing cell recycling. On-line analysis of CO2, glucose and ethanol (using a microdialysis probe) was used to investigate the effect of fermentation pH on cell growth and ethanol production, and to set the dilution rate. Cell growth in the spruce hydrolysates was strongly influenced by fermentation pH. The fermentation was operated in continuous mode for 210 h and a theoretical ethanol yield on fermentable sugars was obtained. Received: 25 May 1998 / Received revision: 11 August 1998 / Accepted: 12 August 1998  相似文献   

17.
A decreased fermentation rate due to inhibition is a significant problem for economic conversion of acid-pretreated lignocellulose hydrolysates to ethanol, since the inhibition gives rise to a requirement for separate detoxification steps. Together with acetic acid, the sugar degradation products furfural and 5-hydroxymethyl furfural are the inhibiting compounds found at the highest concentrations in hydrolysates. These aldehydes have been shown to affect both the specific growth rate and the rate of fermentation by yeast. Two strains of Saccharomyces cerevisiae with different abilities to ferment inhibiting hydrolysates were evaluated in fermentations of a dilute acid hydrolysate from spruce, and the reducing activities for furfural and 5-hydroxymethyl furfural were determined. Crude cell extracts of a hydrolysate-tolerant strain (TMB3000) converted both furfural and 5-hydroxymethyl furfural to the corresponding alcohol at a rate that was severalfold higher than the rate observed for cell extracts of a less tolerant strain (CBS 8066), thereby confirming that there is a correlation between the fermentation rate in a lignocellulosic hydrolysate and the bioconversion capacity of a strain. The in vitro NADH-dependent furfural reduction capacity of TMB3000 was three times higher than that of CBS 8066 (1,200 mU/mg protein and 370 mU/mg protein, respectively) in fed-batch experiments. Furthermore, the inhibitor-tolerant strain TMB3000 displayed a previously unknown NADH-dependent reducing activity for 5-hydroxymethyl furfural (400 mU/mg protein during fed-batch fermentation of hydrolysates). No corresponding activity was found in strain CBS 8066 (<2 mU/mg). The ability to reduce 5-hydroxymethyl furfural is an important characteristic for the development of yeast strains with increased tolerance to lignocellulosic hydrolysates.  相似文献   

18.
The search for new microbial strains that are able to withstand inhibitors released from hemicellulosic hydrolysis and are also still able to convert sugars in ethanol/xylitol is highly desirable. A yeast strain isolated from sugarcane juice and identified as Meyerozyma guilliermondii was evaluated for the ability to grow and ferment pentoses in synthetic media and in sugarcane bagasse hydrolysate. The yeast grew in xylose, arabinose and glucose at the same rate at an initial medium pH of 5.5. At pH 4.5, the yeast grew more slowly in arabinose. There was no sugar exhaustion within 60 h. At higher xylose concentrations with a higher initial cell concentration, sugar was exhausted within 96 h at pH 4.5. An increase of 350 % in biomass was obtained in detoxified hydrolysates, whereas supplementation with 3 g/L yeast extract increased biomass production by approximately 40 %. Ethanol and xylitol were produced more significantly in supplemented hydrolysates regardless of detoxification. Xylose consumption was enhanced in supplemented hydrolysates and arabinose was consumed only when xylose and glucose were no longer available. Supplementation had a greater impact on ethanol yield and productivity than detoxification; however, the product yields obtained in the present study are still much lower when compared to other yeast species in bagasse hydrolysate. By the other hand, the fermentation of both xylose and arabinose and capability of withstanding inhibitors are important characteristics of the strain assayed.  相似文献   

19.
The ethanolic fermentation of liquid fractions (hydrolysates) issued from dilute acid pre-treatment of olive tree biomass by Pichia stipitis is reported for the first time. On the one side, P. stipitis has been reported as the most promising naturally occurring C5 fermenting microorganism; on the other side, olive tree biomass is a renewable, low cost, and lacking of alternatives agricultural residue especially abundant in Mediterranean countries. The study was performed in two steps. First, the fermentation performance of P. stipitis was evaluated on a fermentation medium also containing the main inhibitors found in these hydrolysates (acetic acid, formic acid, and furfural), as well as glucose and xylose as carbon sources. The effect of inhibitors, individually or in a mixture, on kinetic and yield parameters was calculated. In a second step, hydrolysates obtained from 1% (w/w) sulfuric acid pre-treatment of olive tree biomass at 190°C for 10 min were used as a real fermentation medium with the same microorganism. Due to inhibition, effective fermentation required dilution of the hydrolysate and either overliming or activated charcoal treatment. Results show that ethanol yields obtained from hydrolysates, ranging from 0.35 to 0.42 g/g, are similar to those from synthetic medium, although the process proceeds at lower rates. Inhibiting compounds affect the fermentation performance in a synergistic way. Furfural is rapidly assimilated by the yeast; acetic acid and formic acid concentrations decrease slowly during the process. Activated charcoal or overliming detoxification improve the fermentability of diluted hydrolysates.  相似文献   

20.
Tamarind wastes such as tamarind husk, pulp, seeds, fruit and the effluent generated during tartaric acid extraction were used as supplements to evaluate their effects on alcohol production from cane molasses using yeast cultures. Small amounts of these additives enhanced the rate of ethanol production in batch fermentations. Tamarind fruit increased ethanol production (9.7%, w/v) from 22.5% reducing sugars of molasses as compared to 6.5% (w/v) in control experiments lacking supplements after 72 h of fermentation. In general, the addition of tamarind supplements to the fermentation medium showed more than 40% improvement in ethanol production using higher cane molasses sugar concentrations. The direct fermentation of aqueous tamarind effluent also yielded 3.25% (w/v) ethanol, suggesting its possible use as a diluent in molasses fermentations. This is the first report, to our knowledge, in which tamarind-based waste products were used in ethanol production. Received 2 April 1998/ Accepted in revised form 13 November 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号