首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Cellular plasticity and complex functional requirements of the periodontal ligament (PDL) assume a local stem cell (SC) niche to maintain tissue homeostasis and repair. Here, pathological alterations caused by inflammatory insults might impact the regenerative capacities of these cells. As bone homeostasis is fundamentally controlled by Wnt-mediated signals, it was the aim of this study to characterize the SC-like capacities of cells derived from PDL and to investigate their involvement in bone pathophysiology especially regarding the canonical Wnt pathway.

Methods

PDLSCs were investigated for their SC characteristics via analysis of cell surface marker expression, colony forming unit efficiency, proliferation, osteogenic differentiation and adipogenic differentiation, and compared to bone marrow derived mesenchymal SCs (BMMSCs). To determine the impact of both inflammation and the canonical Wnt pathway on osteogenic differentiation, cells were challenged with TNF-α, maintained with or without Wnt3a or DKK-1 under osteogenic induction conditions and investigated for p-IκBα, p-NF-κB, p-Akt, β-catenin, p-GSK-3β, ALP and Runx2.

Results

PDLSCs exhibit weaker adipogenic and osteogenic differentiation capacities compared to BMMSCs. TNF-α inhibited osteogenic differentiation of PDLSCs more than BMMSCs mainly through regulating canonical Wnt pathway. Blocking the canonical Wnt pathway by DKK-1 reconstituted osteogenic differentiation of PDLSCs under inflammatory conditions, whereas activation by Wnt3a increased osteogenic differentiation of BMMSCs.

Conclusions

Our results suggest a diverse regulation of the inhibitory effect of TNF-α in BMMSCs and PDLSCs via canonical Wnt pathway modulation.

General significance

These findings provide novel insights on PDLSC SC-like capacities and their involvement in bone pathophysiology under the impact of the canonical Wnt pathway.  相似文献   

2.
3.

Background

In recent years, there has been a growing interest to explore the association between liver injury and diabetes. Advanced glycated end product (AGE) formation which characterizes diabetic complications is formed through hyperglycemia mediated oxidative stress and is itself a source for ROS. Further, in VL-17A cells over-expressing ADH and CYP2E1, greatly increased oxidative stress and decreased viability have been observed with high glucose exposure.

Methods

In VL-17A cells treated with high glucose and pretreated with the different inhibitors of ADH and CYP2E1, the changes in cell viability, oxidative stress parameters and formation of AGE, were studied.

Results

Inhibition of CYP2E1 with 10 μM diallyl sulfide most effectively led to decreases in the oxidative stress and toxicity as compared with ADH inhibition with 2 mM pyrazole or the combined inhibition of ADH and CYP2E1 with 5 mM 4-methyl pyrazole. AGE formation was decreased in VL-17A cells when compared with HepG2 cells devoid of the enzymes. Further, AGE formation was decreased to the greatest extent with the inhibitor for CYP2E1 suggesting that high glucose inducible CYP2E1 and the consequent ROS aid AGE formation.

Conclusions

Thus, CYP2E1 plays a pivotal role in the high glucose induced oxidative stress and toxicity in liver cells as observed through direct evidences obtained utilizing the different inhibitors for ADH and CYP2E1.

General significance

The study demonstrates the role of CYP2E1 mediated oxidative stress in aggravating hyperglycemic insult and suggests that CYP2E1 may be a vital component of hyperglycemia mediated oxidative injury in liver.  相似文献   

4.
5.
6.

Aims

The purposes of this study were to determine whether Cervi Pantotrichum Cornu (CPC) has osteogenic activities in human osteoblastic MG-63 cells and to investigate the underlying molecular mechanism.

Main methods

The effects of CPC on alkaline phosphatase activity, collagen synthesis, and calcium deposits were measured. The COL1A1, ALPL, BGLAP, and SPP1 expressions were measured by real-time PCR. Phosphorylated MAP kinases (ERK1/2, JNK1/2, p38, ELK1, and cJUN) were studied by western blot analysis. The involvement of MAPK pathway in osteogenic gene expressions was determined by using each selective MAPK inhibitor (PD98059, SP600125, and SB203580).

Key findings

CPC increased alkaline phosphatase activity, collagen synthesis, and calcium deposits. CPC activated ERK1/2, JNK1/2, p38, and ELK1 phosphorylation except cJUN. CPC increased the COL1A1, ALPL, BGLAP, and SPP1 gene expressions. The elevated COL1A1 and BGLAP expressions were inhibited by PD98059, SP600125 or SB203580. The elevated ALPL expression was blocked by SB203580. The elevated SPP1 expression was inhibited by SP600125 or SB203580. CPC increased COL1A1 and BGLAP expressions via ERK1/2, JNK1/2, and p38 MAPKs pathways and SPP1 expression via JNK1/2 and p38 pathways. p38 pathway is needed for ALPL expression.

Significance

These results imply that MAPK signaling pathway is an indispensable factor for bone matrix genes expression of CPC in MG-63 human osteoblast-like cells.  相似文献   

7.

Background

Hepatic ischemia reperfusion injury (IRI) is an inevitable clinical problem for liver surgeons. Because microRNAs (miRNAs) participate in various hepatic pathophysiological processes, this study aimed to explore the role and potential mechanism of miR-124 in hepatic IRI.

Methods

A liver IRI model was established in rats. The differential expression of miRNAs was detected using microarrays, and the expression of miR-124 was measured by qRT-PCR. A hydrogen peroxide (H2O2)-induced oxidative stress apoptosis model was also established. Cell apoptosis was detected by flow cytometry, and viability was detected by CCK8. The expression of Rab38 was detected by Western blotting and qRT-PCR, and a luciferase reporter assay was used to verify the expression of the miR-124 target gene.

Results

The miRNA spectrum changes dramatically after hepatic IRI in rats, and miR-124 is significantly down-regulated after liver IRI. MiR-124 decreases the H2O2-induced apoptosis of human hepatic L02 cells by up-regulating the activation of the AKT pathway. Rab38 is a target gene of miR-124 and is involved in H2O2-induced apoptosis. Interference with the expression of the Rab38 gene can protect hepatic L02 from H2O2-induced apoptosis by increasing the phosphorylation of AKT. These protective effects of miR-124 are attenuated by over-expression of Rab38.

Conclusions

Many miRNAs are involved in hepatic IRI in rats, and miR-124 is significantly decreased in this model. MiR-124 significantly decreases the H2O2-induced apoptosis of human hepatic L02 cells by targeting the Rab38 gene and activating the AKT pathway.  相似文献   

8.
A designed angiopoietin-1 (Ang1) chimeric protein with nonleaky angiogenic activity, COMP-Ang1, is an effective alternative to native Ang1 for therapeutic angiogenesis in vivo. Recombinant Chinese hamster ovary (rCHO) cell lines expressing a high level (>20 mug/mL) of COMP-Ang1 and an amino-terminal FLAG-tag were constructed by transfecting the expression vector into dihydrofolate reductase-deficient CHO cells and the subsequent gene amplification in medium containing stepwise increments in methotrexate level such as 0.02, 0.08, 0.32, and 1 muM. The COMP-Ang1 secreted from rCHO cells was purified at a purification yield of 40.3% from the culture medium using an anti-FLAG M2 agarose affinity gel. SDS-PAGE and Western blot analyses showed that rCHO cells secrete COMP-Ang1 in homopentameric and homotetrameric glycoprotein forms. Furthermore, COMP-Ang1 binds to the Tie2 receptor and phosphorylates Tie2, indicating its potential for therapeutic angiogenesis.  相似文献   

9.

Background

Diabetes mellitus is characterized by high blood glucose levels. Pancreatic ß cell death contributes to type 1 and type 2 diabetes. Akita mice, which harbor a human permanent neonatal diabetes-linked mutation (Cys96Tyr) in the insulin gene, are well established as an animal model of diabetes caused by pancreatic ß cell exhaustion. Mutant Insulin 2 protein (Ins2C96Y) induces endoplasmic reticulum (ER) stress and pancreatic ß cell death in Akita mice, although the molecular mechanism of InsC96Y-induced cell death remains unclear.

Methods

We investigate the mechanisms of Ins2C96Y-induced pancreatic ß cell death in vitro and in vivo, using p38 inhibitor (SB203580), MIN6 cell (pancreatic ß cell line), Akita mice and apoptosis signal-regulating kinase 1 (ASK1) knockout mice.

Results

The expression of InsC96Y activated the ASK1–p38 pathway. Deletion of ASK1 mitigated InsC96Y-induced pancreatic ß cell death and delayed the onset of diabetes in Akita mice. Moreover, p38 inhibitor suppressed InsC96Y-induced MIN6 cell death.

Conclusions

These findings suggest that ER stress-induced ASK1–p38 activation, which is triggered by the accumulation of InsC96Y, plays an important role in the pathogenesis of diabetes.

General significance

Pancreatic ß cell death caused by insulin overload appears to be involved in the pathogenesis of type 1 and type 2 diabetes. Inhibition of the ASK1–p38 pathway may be an effective therapy for various types of diabetes.  相似文献   

10.

Objective

Over 5% of the world's population suffers from disabling hearing loss. Stem cell homing in target tissue is an important aspect of cell‐based therapy, which its augmentation increases cell therapy efficiency. Deferoxamine (DFO) can induce the Akt activation, and phosphorylation status of AKT (p‐AKT) upregulates CXC chemokine receptor‐4 (CXCR4) expression. We examined whether DFO can enhance mesenchymal stem cells (MSCs) homing in noise‐induced damaged cochlea by PI3K/AKT dependent mechanism.

Materials and Methods

Mesenchymal stem cells were treated with DFO. AKT, p‐AKT protein and hypoxia inducible factor 1‐ α (HIF‐1α) and CXCR4 gene and protein expression was evaluated by RT‐ PCR and Western blot analysis. For in vivo assay, rats were assigned to control, sham, noise exposure groups without any treatment or receiving normal, DFO‐treated and DFO +LY294002 (The PI3K inhibitor)‐treated MSCs. Following chronic exposure to 115 dB white noise, MSCs were injected into the rat cochlea through the round window. Number of Hoechst‐ labelled cells was determined in the endolymph after 24 hours.

Results

Deferoxamine increased P‐AKT, HIF‐1α and CXCR4 expression in MSCs compared to non‐treated cells. DFO pre‐conditioning significantly increased the homing ability of MSCs into injured ear compared to normal MSCs. These effects of DFO were blocked by LY294002.

Conclusions

Pre‐conditioning of MSCs by DFO before transplantation can improve stem cell homing in the damaged cochlea through PI3K/AKT pathway activation.
  相似文献   

11.

Background and aims

Sustained interaction of advanced glycation end products (AGEs) with their receptor RAGE and subsequent signaling plays an important role in the development of diabetic complications. Genetic variation of RAGE gene may be associated with the development of vascular complications in type 2 diabetes mellitus (T2DM).

Objectives

The present study aimed to explore the possible association of RAGE gene polymorphisms namely − 374T/A, − 429T/C and G82S with serum level of AGEs, paraoxonase (PON1) activity and macro-vascular complications (MVC) in Indian type 2 diabetes mellitus patients (T2DM).

Methods

A total of 265 diabetic patients, including DM without any complications (n = 135), DM-MVC (n = 130) and 171 healthy individuals were enrolled. Genotyping of RAGE variants were assessed by polymerase chain reaction-restriction fragment length polymorphism. Serum AGEs were estimated by ELISA and fluorometrically. and PON1 activity was assessed spectrophotometrically.

Results

Of the three examined SNPs, association of − 429T/C polymorphism with MVC in T2DM was observed (OR = 3.001, p = 0.001) in the dominant model. Allele ‘A’ of − 374T/A polymorphism seems to confer better cardiac outcome in T2DM. Patients carrying C allele (− 429T/C) and S allele (G82S) had significantly higher AGEs levels. − 429T/C polymorphism was also found to be associated with low PON1 activity. Interaction analysis revealed that the risk of development of MVC was higher in T2DM patients carrying both a CC genotype of − 429T/C polymorphism and a higher level of AGEs (OR = 1.343, p = 0.040).

Conclusion

RAGE gene polymorphism has a significant effect on AGEs level and PON1 activity in diabetic subjects compared to healthy individuals. Diabetic patients with a CC genotype of − 429T/C are prone to develop MVC, more so if AGEs levels are high and PON1 activity is low.  相似文献   

12.

Background

Although some reciprocal glycolysis–respiration relationships are well recognized, the relationship between reduced glycolysis flux and mitochondrial respiration has not been critically characterized.

Methods

We concomitantly measured the extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) of SH-SY5Y neuroblastoma cells under free and restricted glycolysis flux conditions.

Results

Under conditions of fixed energy demand ECAR and OCR values showed a reciprocal relationship. In addition to observing an expected Crabtree effect in which increasing glucose availability raised the ECAR and reduced the OCR, a novel reciprocal relationship was documented in which reducing the ECAR via glucose deprivation or glycolysis inhibition increased the OCR. Substituting galactose for glucose, which reduces net glycolysis ATP yield without blocking glycolysis flux, similarly reduced the ECAR and increased the OCR. We further determined how reduced ECAR conditions affect proteins that associate with energy sensing and energy response pathways. ERK phosphorylation, SIRT1, and HIF1a decreased while AKT, p38, and AMPK phosphorylation increased.

Conclusions

These data document a novel intracellular glycolysis–respiration effect in which restricting glycolysis flux increases mitochondrial respiration.

General significance

Since this effect can be used to manipulate cell bioenergetic infrastructures, this particular glycolysis–respiration effect can practically inform the development of new mitochondrial medicine approaches.  相似文献   

13.
14.

Background

Activation of ATP-gated P2X7 receptors (P2X7R) in macrophages leads to production of reactive oxygen species (ROS) by a mechanism that is partially characterized. Here we used J774 cells to identify the signaling cascade that couples ROS production to receptor stimulation.

Methods

J774 cells and mP2X7-transfected HEK293 cells were stimulated with Bz-ATP in the presence and absence of extracellular calcium. Protein inhibitors were used to evaluate the physiological role of various kinases in ROS production. In addition, phospho-antibodies against ERK1/2 and Pyk2 were used to determine activation of these two kinases.

Results

ROS generation in either J774 or HEK293 cells (expressing P2X7, NOX2, Rac1, p47phox and p67phox) was strictly dependent on calcium entry via P2X7R. Stimulation of P2X7R activated Pyk2 but not calmodulin. Inhibitors of MEK1/2 and c-Src abolished ERK1/2 activation and ROS production but inhibitors of PI3K and p38 MAPK had no effect on ROS generation. PKC inhibitors abolished ERK1/2 activation but barely reduced the amount of ROS produced by Bz-ATP. In agreement, the amount of ROS produced by PMA was about half of that produced by Bz-ATP.

Conclusions

Purinergic stimulation resulted in calcium entry via P2X7R and subsequent activation of the PKC/c-Src/Pyk2/ERK1/2 pathway to produce ROS. This signaling mechanism did not require PI3K, p38 MAPK or calmodulin.

General significance

ROS is generated in order to kill invading pathogens, thus elucidating the mechanism of ROS production in macrophages and other immune cells allow us to understand how our body copes with microbial infections.  相似文献   

15.

Background

We previously reported that the σ1-receptor (σ1R) is down-regulated following cardiac hypertrophy and dysfunction in transverse aortic constriction (TAC) mice. Here we address how σ1R stimulation with the selective σ1R agonist SA4503 restores hypertrophy-induced cardiac dysfunction through σ1R localized in the sarcoplasmic reticulum (SR).

Methods

We first confirmed anti-hypertrophic effects of SA4503 (0.1–1 μM) in cultured cardiomyocytes exposed to angiotensin II (Ang II). Then, to confirm the ameliorative effects of σ1R stimulation in vivo, we administered SA4503 (1.0 mg/kg) and the σ1R antagonist NE-100 (1.0 mg/kg) orally to TAC mice for 4 weeks (once daily).

Results

σ1R stimulation with SA4503 significantly inhibited Ang II-induced cardiomyocyte hypertrophy. Ang II exposure for 72 h impaired phenylephrine (PE)-induced Ca2 + mobilization from the SR into both the cytosol and mitochondria. Treatment of cardiomyocytes with SA4503 largely restored PE-induced Ca2 + mobilization into mitochondria. Exposure of cardiomyocytes to Ang II for 72 h decreased basal ATP content and PE-induced ATP production concomitant with reduced mitochondrial size, while SA4503 treatment completely restored ATP production and mitochondrial size. Pretreatment with NE-100 or siRNA abolished these effects. Chronic SA4503 administration also significantly attenuated myocardial hypertrophy and restored ATP production in TAC mice. SA4503 administration also decreased hypertrophy-induced impairments in LV contractile function.

Conclusions

σ1R stimulation with the specific agonist SA4503 ameliorates cardiac hypertrophy and dysfunction by restoring both mitochondrial Ca2 + mobilization and ATP production via σ1R stimulation.

General significance

Our observations suggest that σ1R stimulation represents a new therapeutic strategy to rescue the heart from hypertrophic dysfunction.  相似文献   

16.

Background

Mitochondria, essential to the cell homeostasis maintenance, are central to the intrinsic apoptotic pathway and their dysfunction is associated with multiple diseases. Recent research documents that microRNAs (miRNAs) regulate important signalling pathways in mitochondria, and many of these miRNAs are deregulated in various diseases including cancers.

Scope of review

In this review, we summarise the role of miRNAs in the regulation of the mitochondrial bioenergetics/function, and discuss the role of miRNAs modulating the various metabolic pathways resulting in tumour suppression and their possible therapeutic applications.

Major conclusions

MiRNAs have recently emerged as key regulators of metabolism and can affect mitochondria by modulating mitochondrial proteins coded by nuclear genes. They were also found in mitochondria. Reprogramming of the energy metabolism has been postulated as a major feature of cancer. Modulation of miRNAs levels may provide a new therapeutic approach for the treatment of mitochondria-related pathologies, including neoplastic diseases.

General significance

The elucidation of the role of miRNAs in the regulation of mitochondrial activity/bioenergetics will deepen our understanding of the molecular aspects of various aspects of cell biology associated with the genesis and progression of neoplastic diseases. Eventually, this knowledge may promote the development of innovative pharmacological interventions. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research.  相似文献   

17.

Objectives

To evaluate the effects of cartilage oligomeric matrix protein (COMP)- angiopoietin-1 (Ang1) on allogeneic islet graft survival in a bioinert perforated chamber.

Results

COMP-Ang1 treatment significantly decreased lipopolysaccharide-induced cell apoptosis and islet-related lymph node cell proliferation (both P < 0.01). Tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 levels in the chamber exudate were significantly lower in the COMP-Ang1 + chamber group than in the chamber group (all P < 0.05), as were the protein expression levels. COMP-Ang1 significantly inhibited the expression of Toll-like receptor 4 (TLR4) in cultured islets. Finally, full COMP-Ang1 treatment resulted in the longest survival time among the treatment groups.

Conclusion

Combined use of the bioinert perforated chamber with COMP-Ang1 is an effective strategy for improving islet allograft survival.
  相似文献   

18.

Background

Angiogenesis is a critical early event in inflammatory arthritis, facilitating leukocyte migration into the synovium resulting in invasion and destruction of articular cartilage and bone. This study investigates the effect of TLR2 on angiogenesis, EC adhesion and invasion using microvascular endothelial cells and RA whole tissue synovial explants ex-vivo.

Methods

Microvascular endothelial cells (HMVEC) and RA synovial explants ex vivo were cultured with the TLR2 ligand, Pam3CSK4 (1 µg/ml). Angiopoietin 2 (Ang2), Tie2 and TLR2 expression in RA synovial tissue was assessed by immunohistology. HMVEC tube formation was assessed using Matrigel matrix assays. Ang2 was measured by ELISA. ICAM-1 cell surface expression was assessed by flow cytometry. Cell migration was assessed by wound repair scratch assays. ECM invasion, MMP-2 and -9 expression were assessed using transwell invasion chambers and zymography. To examine if the angiopoietin/Tie2 signalling pathway mediates TLR2 induced EC tube formation, invasion and migration assays were performed in the presence of a specific neutralising anti-Tie2mAb (10 ug/ml) and matched IgG isotype control Ab (10 ug/ml).

Results

Ang2 and Tie2 were localised to RA synovial blood vessels, and TLR2 was localised to RA synovial blood vessels, sub-lining infiltrates and the lining layer. Pam3CSK4 significantly increased angiogenenic tube formation (p<0.05), and upregulated Ang2 production in HMVEC (p<0.05) and RA synovial explants (p<0.05). Pam3CSK4 induced cell surface expression of ICAM-1, from basal level of 149±54 (MFI) to 617±103 (p<0.01). TLR-2 activation induced an 8.8±2.8 fold increase in cell invasion compared to control (p<0.05). Pam3CSK4 also induced HMVEC cell migration and induced MMP-2 and -9 from RA synovial explants. Neutralisation of the Ang2 receptor, Tie2 significantly inhibited Pam3CSK4-induced EC tube formation and invasion (p<0.05).

Conclusion

TLR2 activation promotes angiogenesis, cell adhesion and invasion, effects that are in part mediated through the Tie2 signalling pathway, key mechanisms involved in the pathogenesis of RA.  相似文献   

19.

Background

Diallyl disulfide (DADS) is a garlic-derived organosulfur compound. The current study is designed to evaluate the protective effects of DADS against ethanol-induced oxidative stress, and to explore the underlying mechanisms by examining the HO-1/Nrf-2 pathway.

Methods

We investigated whether or not DADS could activate the HO-1 in normal human liver cell LO2, and then evaluated the protective effects of DADS against ethanol-induced damage in LO2 cells and in acute ethanol-intoxicated mice. The biochemical parameters were measured using commercial kits. HO-1 mRNA level was determined by RT-PCR. Histopathology and immunofluorescence assay were performed with routine methods. Protein levels were measured by western blot.

Results

DADS significantly increased the mRNA and protein levels of HO-1, stimulated the nuclear translocation of Nrf-2 and increased the phosphorylation of MAPK in LO2 cells. The nuclear translocation of Nrf-2 was abrogated by MAPK inhibitors. DADS significantly suppressed ethanol-induced elevation of lactate dehydrogenase (LDH) and aspartate transaminase (AST) activities, decrease of glutathione (GSH) level, increase of malondialdehyde (MDA) levels, and apoptosis of LO2 cells, which were all blocked by ZnPPIX. In mice, DADS effectively suppressed acute ethanol-induced elevation of aminotransferase activities, and improved liver histopathological changes, which might be associated with HO-1 activation.

Conclusion

These results demonstrate that DADS could induce the activation of HO-1/Nrf-2 pathway, which may contribute to the protective effects of DADS against ethanol-induced liver injury.

General significance

DADS may be beneficial for the prevention and treatment of ALD due to significant activation of HO-1/Nrf-2 pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号