首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.

Background

Factor VIII is the cofactor for Factor X activation by Factor IXa. Activated Factor X, Factor Xa, in turn activates prothrombin in a sequence that leads to fibrin clot formation at the site of vascular injury. Although the biochemistry of the cascade has been well studied, the molecular mechanism underlying the cofactor role of Factor VIII is not understood.

Methods

We screened a bacterial peptide display library with Factor IXa and Factor X co-immobilized on tosylactivated Dynabeads which were then used as platelet surrogates. Validation of peptide selection procedure and comparison of Factor VIII-like cofactor activity of oxidoreductases was performed using COATEST assays. Determination of Factor VIII as a folding catalyst with potential disulphide isomerase activity was determined using the RNase A renaturation assay.

Results

We set out to identify the cofactor requirements of the Factor IXa/Factor X procoagulant complex by random peptide display, and isolated a peptide with the active-site sequence, CGPC, of thioredoxin. This peptide was able to activate Factor X in a Factor IXa-dependent manner. Redox catalysts or oxidoreductases with homologous active-site vicinal cysteines such as PDI and DsbA also mimicked Factor VIII in their requirement of Factor IXa in Factor X activation. However, the cofactor activity of these peptides was up to a 1000-fold lower than that of Factor VIII and they were therefore unable to catalyse blood coagulation. Factor X activation by PDI and by Factor VIII was abolished by oxidation in an isolated system, which implies a possible role for thiol–disulphide exchange in the activity of the tenase complex. Using scrambled RNase A as a surrogate substrate, we also found that Factor VIII could renature this enzyme.

Conclusion

Our findings suggest that Factor VIII may be a specialized folding catalyst with disulphide isomerase activity. We suggest that it is this activity that may underlie its cofactor function in Factor X activation, and that this function is interchangeable with classical oxidoreductases.

General significance

The possible involvement of thiol–disulphide interchange as a mechanism underlying Factor VIII cofactor activity may provide some insight into the biochemistry of the intrinsic tenase complex.  相似文献   

2.

Background

Mammalian GPx7 is a monomeric glutathione peroxidase of the endoplasmic reticulum (ER), containing a Cys redox center (CysGPx). Although containing a peroxidatic Cys (CP) it lacks the resolving Cys (CR), that confers fast reactivity with thioredoxin (Trx) or related proteins to most other CysGPxs.

Methods

Reducing substrate specificity and mechanism were addressed by steady-state kinetic analysis of wild type or mutated mouse GPx7. The enzymes were heterologously expressed as a synuclein fusion to overcome limited expression. Phospholipid hydroperoxide was the oxidizing substrate. Enzyme–substrate and protein–protein interaction were analyzed by molecular docking and surface plasmon resonance analysis.

Results

Oxidation of the CP is fast (k+ 1 > 103 M− 1 s− 1), however the rate of reduction by GSH is slow (k′+ 2 = 12.6 M− 1 s− 1) even though molecular docking indicates a strong GSH–GPx7 interaction. Instead, the oxidized CP can be reduced at a fast rate by human protein disulfide isomerase (HsPDI) (k+ 1 > 103 M− 1 s− 1), but not by Trx. By surface plasmon resonance analysis, a KD = 5.2 μM was calculated for PDI–GPx7 complex. Participation of an alternative non-canonical CR in the peroxidatic reaction was ruled out. Specific activity measurements in the presence of physiological reducing substrate concentration, suggest substrate competition in vivo.

Conclusions

GPx7 is an unusual CysGPx catalyzing the peroxidatic cycle by a one Cys mechanism in which GSH and PDI are alternative substrates.

General significance

In the ER, the emerging physiological role of GPx7 is oxidation of PDI, modulated by the amount of GSH.  相似文献   

3.

Background

Expression of tissue factor (TF) antigen and activity in platelets is controversial and dependent upon the laboratory and reagents used. Two forms of TF were described: an oxidized functional form and a reduced nonfunctional form that is converted to the active form through the formation of an allosteric disulfide. This study tests the hypothesis that the discrepancies regarding platelet TF expression are due to differential expression of the two forms.

Methods

Specific reagents that recognize both oxidized and reduced TF were used in flow cytometry of unactivated and activated platelets and western blotting of whole platelet lysates. TF-dependent activity measurements were used to confirm the results.

Results

Western blotting analyses of placental TF demonstrated that, in contrast to anti-TF#5, which is directed against the oxidized form of TF, a sheep anti-human TF polyclonal antibody recognizes both the reduced and oxidized forms. Flow cytometric analyses demonstrated that the sheep antibody did not react with the surface of unactivated platelets or platelets activated with thrombin receptor agonist peptide, PAR-1. This observation was confirmed using biotinylated active site-blocked factor (F)VIIa: no binding was observed. Likewise, neither form of TF was detected by western blotting of whole platelet lysates with sheep anti-hTF. Consistent with these observations, no FXa or FIXa generation by FVIIa was detected at the surface of these platelets. Similarly, no TF-related activity was observed in whole blood using thromboelastography.

Conclusion and significance

Platelets from healthy donors do not express either oxidized (functional) or reduced (nonfunctional) forms of TF.  相似文献   

4.

Background

The neurodegenerative disease Friedreich's ataxia is the result of frataxin deficiency. Frataxin is a mitochondrial protein involved in iron–sulfur cluster (Fe–S) cofactor biogenesis, but its functional role in this pathway is debated. This is due to the interconnectivity of iron metabolic and oxidative stress response pathways that make distinguishing primary effects of frataxin deficiency challenging. Since Fe–S cluster assembly is conserved, frataxin overexpression phenotypes in a simple eukaryotic organism will provide additional insight into frataxin function.

Methods

The Schizosaccharomyces pombe frataxin homologue (fxn1) was overexpressed from a plasmid under a thiamine repressible promoter. The S. pombe transformants were characterized at several expression strengths for cellular growth, mitochondrial organization, iron levels, oxidative stress, and activities of Fe–S cluster containing enzymes.

Results

Observed phenotypes were dependent on the amount of Fxn1 overexpression. High Fxn1 overexpression severely inhibited S. pombe growth, impaired mitochondrial membrane integrity and cellular respiration, and led to Fxn1 aggregation. Cellular iron accumulation was observed at moderate Fxn1 overexpression but was most pronounced at high levels of Fxn1. All levels of Fxn1 overexpression up-regulated oxidative stress defense and mitochondrial Fe–S cluster containing enzyme activities.

Conclusions

Despite the presence of oxidative stress and accumulated iron, activation of Fe–S cluster enzymes was common to all levels of Fxn1 overexpression; therefore, Fxn1 may regulate the efficiency of Fe–S cluster biogenesis in S. pombe.

General Significance

We provide evidence that suggests that dysregulated Fe–S cluster biogenesis is a primary effect of both frataxin overexpression and deficiency as in Friedreich's ataxia.  相似文献   

5.

Background

Protein Z (PZ) has been reported to promote the inactivation of factor Xa (FXa) by PZ-dependent protease inhibitor (ZPI) by about three orders of magnitude. Previously, we prepared a chimeric PZ in which its C-terminal pseudo-catalytic domain was grafted on FX light-chain (Gla and EGF-like domains) (PZ/FX-LC). Characterization of PZ/FX-LC revealed that the ZPI interactive-site is primarily located within PZ pseudo-catalytic domain. Nevertheless, the cofactor function and apparent Kd of PZ/FX-LC for interaction with ZPI remained impaired ~ 6–7-fold, suggesting that PZ contains a ZPI interactive-site outside pseudo-catalytic domain. X-ray structural data indicates that Tyr-240 of ZPI interacts with EGF2-domain of PZ. Structural data further suggests that 3 other ZPI surface loops make salt-bridge interactions with PZ pseudo-catalytic domain. To identify ZPI interactive-sites on PZ, we grafted the N-terminal EGF2 subdomain of PZ onto PZ/FX-LC chimera (PZ-EGF2/FX-LC) and also generated two compensatory charge reversal mutants of PZ pseudo-catalytic domain (Glu-244 and Arg-212) and ZPI surface loops (Lys-239 and Asp-293).

Methods

PZ chimeras were expressed in mammalian cells and ZPI derivatives were expressed in Escherichia coli.

Results

The PZ EGF2 subdomain fusion restored the defective cofactor function of PZ/FX-LC. The activities of PZ and ZPI mutants were all impaired if assayed individually, but partially restored if the compensatory charge reversal mutants were used in the assay.

Conclusions

PZ EGF2 subdomain constitutes an interactive-site for ZPI. Data with compensatory charge reversal mutants validates structural data that the identified residues are part of interactive-sites.

General significance

Insight is provided into mechanisms through which specificity of ZPI–PZ–FXa complex formation is determined.  相似文献   

6.

Background

Chronic supplementation with l-citrulline plus l-arginine has been shown to exhibit anti-atherosclerotic effects. However, the short-term action of this combination on the nitric oxide (NO)–cGMP pathway remains to be elucidated. The objective of the present study was to investigate the acute effects of a combination of oral l-citrulline and l-arginine on plasma l-arginine and NO levels, as well as on blood circulation.

Methods

Rats or New Zealand white rabbits were treated orally with l-citrulline, or l-arginine, or a combination of each at half dosage. Following supplementation, plasma levels of l-arginine, NOx, cGMP and changes in blood circulation were determined sequentially.

Results

l-Citrulline plus l-arginine supplementation caused a more rapid increase in plasma l-arginine levels and marked enhancement of NO bioavailability, including plasma cGMP concentrations, than with dosage with the single amino acids. Blood flow in the central ear artery in rabbits was also significantly increased by l-citrulline plus l-arginine administration as compared with the control.

Conclusion

Our data show for the first time that a combination of oral l-citrulline and l-arginine effectively and rapidly augments NO-dependent responses at the acute stage. This approach may have clinical utility for the regulation of cardiovascular function in humans.  相似文献   

7.

Background

Dietary and recycled iron are in the Fe2 + oxidation state. However, the metal is transported in serum by transferrin as Fe3 +. The multi-copper ferroxidase ceruloplasmin is suspected to be the missing link between acquired Fe2 + and transported Fe3 +.

Methods

This study uses the techniques of chemical relaxation and spectrophotometric detection.

Results

Under anaerobic conditions, ceruloplasmin captures and oxidizes two Fe2 +. The first uptake occurs in domain 6 (< 1 ms) at the divalent iron-binding site. It is accompanied by Fe2 + oxidation by Cu2 +D6. Fe3 + is then transferred from the binding site to the holding site. Cu+D6 is then re-oxidized by a Cu2 + of the trinuclear cluster in about 200 ms. The second Fe2 + uptake and oxidation involve domain 4 and are under the kinetic control of a 200 s change in the protein conformation. With transferrin and in the formed ceruloplasmin–transferrin adduct, two Fe3 + are transferred from their holding sites to two C-lobes of two transferrins. The first transfer (~ 100 s) is followed by conformation changes (500 s) leading to the release of monoferric transferrin. The second transfer occurs in two steps in the 1000–10,000 second range.

Conclusion

Fe3 + is transferred after Fe2 + uptake and oxidation by ceruloplasmin to the C-lobe of transferrin in a protein–protein adduct. This adduct is in a permanent state of equilibrium with all the metal-free or bounded ceruloplasmin and transferrin species present in the medium.

General significance

Ceruloplasmin is a go-between dietary or recycled Fe2 + and transferrin transported Fe3 +.  相似文献   

8.

Background

Trypanosomatids are early-diverging eukaryotes devoid of the major disulfide reductases – glutathione reductase and thioredoxin reductase – that control thiol-redox homeostasis in most organisms. These protozoans have evolved a unique thiol-redox system centered on trypanothione, a bis-glutathionyl conjugate of spermidine. Notably, the trypanothione system is capable to sustain several cellular functions mediated by thiol-dependent (redox) processes.

Scope of review

This review provides a summary of some historical and evolutionary aspects related to the discovery and appearance of trypanothione in trypanosomatids. It also addresses trypanothione's biosynthesis, physicochemical properties and reactivity towards biologically-relevant oxidants as well as its participation as a cofactor for metal binding. In addition, the role of the second most abundant thiol of trypanosomatids, glutathione, is revisited in light of the putative glutathione-dependent activities identified in these organisms.

Major conclusions

Based on biochemical and genome data, the occurrence of a thiol-redox system that is strictly dependent on trypanothione appears to be a feature unique to the order Kinetoplastida. The properties of trypanothione, a dithiol, are the basis for its unique reactivity towards a wide diversity of oxidized and/or electrophilic moieties in proteins and low molecular weight compounds from endogenous or exogenous sources. Novel functions have emerged for trypanothione as a potential cofactor in iron metabolism.

General significance

The minimalist thiol-redox system, developed by trypanosomatids, is an example of metabolic fitness driven by the remarkable physicochemical properties of a glutathione derivative. From a pharmacological point of view, such specialization is the Achilles' heel of these ancient and deadly parasites. This article is part of a Special Issue entitled Cellular functions of glutathione.  相似文献   

9.

Background

Celiac disease (CD) is an immune-mediated disorder caused by the ingestion of wheat gluten. A lifelong, gluten-free diet is required to normalize the intestinal mucosa. We previously found that transamidation by microbial transglutaminase (mTGase) suppressed the gliadin-specific immune response in intestinal T-cell lines from CD patients and in models of gluten sensitivity.

Methods

SDS-PAGE, Western blot, ELISA, tissue transglutaminase (tTGase) assay and nano-HPLC–ESI-MS/MS experiments were used to analyze prolamins isolated from treated wheat flour.

Results

Gliadin and glutenin yields decreased to 7.6 ± 0.5% and 7.5 ± 0.3%, respectively, after a two-step transamidation reaction that produced a water-soluble protein fraction (spf). SDS-PAGE, Western blot and ELISA analyses confirmed the loss of immune cross-reactivity with anti-native gliadin antibodies in residual transamidated gliadins (K-gliadins) and spf as well as the occurrence of neo-epitopes. Nano-HPLC–ESI-MS/MS experiments identified some native and transamidated forms of celiacogenic peptides including p31–49 and confirmed that mTGase had similar stereo-specificity of tTGase. Those peptides resulted to be 100% and 57% modified in spf and K-gliadins, respectively. In particular, following transamidation p31–49 lost its ability to increase tTGase activity in Caco-2 cells. Finally, bread manufactured with transamidated flour had only minor changes in baking characteristics.

Conclusions

The two-step transamidation reaction modified the analyzed gliadin peptides, which are known to trigger CD, without influencing main technological properties.

General significance

Our data shed further light on a detoxification strategy alternative to the gluten free diet and may have important implications for the management of CD patients.  相似文献   

10.

Background

Protein tyrosine nitration is a post-translational modification (PTM) mediated by nitric oxide-derived molecules. Peroxisomes are oxidative organelles in which the presence of nitric oxide (NO) has been reported.

Methods

We studied peroxisomal nitroproteome of pea leaves by high-performance liquid chromatography with tandem mass spectrometry (LC–MS/MS) and proteomic approaches.

Results

Proteomic analysis of peroxisomes from pea leaves detected a total of four nitro-tyrosine immunopositive proteins by using an antibody against nitrotyrosine. One of these proteins was found to be the NADH-dependent hydroxypyruvate reductase (HPR). The in vitro nitration of peroxisomal samples caused a 65% inhibition of HPR activity. Analysis of recombinant peroxisomal NADH-dependent HPR1 activity from Arabidopsis in the presence of H2O2, NO, GSH and peroxynitrite showed that the ONOO molecule caused the highest inhibition of activity (51% at 5 mM SIN-1), with 5 mM H2O2 having no inhibitory effect. Mass spectrometric analysis of the nitrated recombinant HPR1 enabled us to determine that, among the eleven tyrosine present in this enzyme, only Tyr-97, Tyr-108 and Tyr-198 were exclusively nitrated to 3-nitrotyrosine by peroxynitrite. Site-directed mutagenesis confirmed Tyr198 as the primary site of nitration responsible for the inhibition on the enzymatic activity by peroxynitrite.

Conclusion

These findings suggest that peroxisomal HPR is a target of peroxynitrite which provokes a loss of function.

General significance

This is the first report demonstrating the peroxisomal NADH-dependent HPR activity involved in the photorespiration pathway is regulated by tyrosine nitration, indicating that peroxisomal NO metabolism may contribute to the regulation of physiological processes under no-stress conditions.  相似文献   

11.

Background

The mitochondrial carnitine/acylcarnitine carrier (CAC) is essential for cell metabolism since it catalyzes the transport of acylcarnitines into mitochondria allowing the β-oxidation of fatty acids. CAC functional and structural properties have been characterized. Cys residues which could form disulfides suggest the involvement of CAC in redox switches.

Methods

The effect of GSH and GSSG on the [3H]-carnitine/carnitine antiport catalyzed by the CAC in proteoliposomes has been studied. The Cys residues involved in the redox switch have been identified by site-directed mutagenesis. Glutathionylated CAC has been assessed by glutathionyl-protein specific antibody.

Results

GSH led to increase of transport activity of the CAC extracted from liver mitochondria. A similar effect was observed on the recombinant CAC. The presence of glutaredoxin-1 (Grx1) accelerated the GSH activation of the recombinant CAC. The effect was more evident at 37 °C. GSSG led to transport inhibition which was reversed by dithioerythritol (DTE). The effects of GSH and GSSG were studied on CAC Cys-mutants. CAC lacking C136 and C155 was insensitive to both reagents. Mutants containing these two Cys responded as the wild-type. Anti-glutathionyl antibody revealed the formation of glutathionylated CAC.

Conclusions

CAC is redox-sensitive and it is regulated by the GSH/GSSG couple. C136 and C155 are responsible for the regulation which occurs through glutathionylation.

General significance

CAC is sensitive to the redox state of the cell switching between oxidized and reduced forms in response to variation of GSSG and GSH concentrations.  相似文献   

12.

Background

Ionizing irradiation causes not only growth arrest and cell death, but also release of growth factors or signal transmitters, which promote cancer malignancy. Extracellular ATP controls cancer growth through activation of purinoceptors. However, there is no report of radiation-induced ATP release from cancer cells. Here, we examined γ-irradiation-induced ATP release and its mechanism in B16 melanoma.

Methods

Extracellular ATP was measured by luciferin–luciferase assay. To investigate mechanism of radiation-induced ATP release, we pharmacologically inhibited the ATP release and established stable P2X7 receptor-knockdown B16 melanoma cells using two short hairpin RNAs targeting P2X7 receptor.

Results

Cells were exposed to 0.5–8 Gy of γ-rays. Extracellular ATP was increased, peaking at 5 min after 0.5 Gy irradiation. A selective P2X7 receptor channel antagonist, but not anion transporter inhibitors, blocked the release of ATP. Further, radiation-induced ATP release was significantly decreased in P2X7 receptor-knockdown cells. Our results indicate that γ-irradiation evokes ATP release from melanoma cells, and P2X7 receptor channel plays a significant role in mediating the ATP release.

General Significance

We suggest that extracellular ATP could be a novel intercellular signaling molecule released from cancer cells when cells are exposed to ionizing radiation.  相似文献   

13.

Background

Nitric oxide (NO) plays a vital role in maintaining the survivability of circulating erythrocytes. Here we have investigated whether NO depletion associated with visceral leishmaniasis (VL) is responsible for the reduced survival of erythrocytes observed during the disease.

Methods

Infected hamsters were treated with standard anti-leishmanial sodium stibogluconate (SAG) and NO donor isosorbide dinitrate (ISD). Erythrophagocytosis by macrophages was determined by labelling the cells with FITC followed by flow cytometry. Aggregation of band3 was estimated from band3 associated EMA fluorescence. Caspase 3 activity was measured using immunosorbent assay kit. Phosphatidylserine (PS) externalization and cell shrinkage were determined using annexin V. Aminophspholipid translocase and scramblase activities were measured following NBD-PS and NBD-PC internalization, respectively.

Results

Impairment of both synthesis and uptake of NO resulted in decreased bioavailability of this signaling molecule in erythrocytes in VL. NO level was replenished after simultaneous treatment with ISD and SAG. Combination treatment decreased red cell apoptosis in infected animals by deactivating caspase 3 through s-nitrosylation. Drug treatment prevented infection-mediated ATP depletion and altered calcium homeostasis in erythrocytes. Improved metabolic environment effectively amended dysregulation of aminophospholipid translocase and scramblase, which in turn reduced cell shrinkage, and exposure of phosphatidylserine on the cell surface under the diseased condition.

Conclusion and general significance

In this study, we have identified NO depletion to be an important factor in promoting premature hemolysis with the progress of leishmanial infection. The study implicates NO to be a possible target for future drug development towards the promotion of erythrocyte survival in VL.  相似文献   

14.

Background

The peptide mastoparan 7 (MST7) stimulated ATP release in human erythrocytes. We explored intra- and extracellular processes governing the time-dependent accumulation of extracellular ATP (i.e., ATPe kinetics).

Methods

Human erythrocytes were treated with MST7 in the presence or absence of two blockers of pannexin 1. ATPe concentration was monitored by luciferin–luciferase based real-time luminometry.

Results

Exposure of human erythrocytes to MST7 led to an acute increase in [ATPe], followed by a slower increase phase. ATPe kinetics reflected a strong activation of ATP efflux and a low rate of ATPe hydrolysis by ectoATPase activity. Enhancement of [ATPe] by MST7 required adhesion of erythrocytes to poly-D-lysin-coated coverslips, and correlated with a 31% increase of cAMP and 10% cell swelling. However, when MST7 was dissolved in a hyperosmotic medium to block cell swelling, ATPe accumulation was inhibited by 49%.Erythrocytes pre-exposure to 10 μM of either carbenoxolone or probenecid, two blockers of pannexin 1, exhibited a partial reduction of ATP efflux.Erythrocytes from pannexin 1 knockout mice exhibited similar ATPe kinetics as those of wild type mice erythrocytes exposed to pannexin 1 blockers.

Conclusions

MST7 induced release of ATP required either cell adhesion or strong activation of cAMP synthesis. Part of this release required cell swelling. Kinetic analysis and a data driven model suggested that ATP efflux is mediated by two ATP conduits displaying different kinetics, with one conduit being fully blocked by pannexin 1 blockers.

General significance

Kinetic analysis of extracellular ATP accumulation from human erythrocytes and potential effects on microcirculation.  相似文献   

15.

Background

Leishmania donovani – the causative agent of visceral leishmaniasis – has several evolutionary characteristics that make the disease difficult to combat. Among these differences, a rare heterodimeric DNA topoisomerase IB has been reported thus opening a new promising field in the therapy of leishmaniasis. Several studies of the human enzyme have pointed to the importance of the linker domain in respect to camptothecin sensitivity. At present, it has been impossible to pinpoint the regions that make up the linker domain in Leishmania.

Methods

Several site-directed mutations as well as internal and linear truncations involving both subunits were assayed on both, relaxation activity and sensitivity to camptothecin.

Results

Truncations performed on the trypanosomatids conserved motif (RPPVVRS) of the small subunit of leishmanial DNA topoisomerase IB demonstrated that elimination of pentapeptide RPPVV produced a nonfunctional enzyme. However, the removal of the dipeptide RS led to an enzyme with reduced relaxation activity and less sensitivity to camptothecin. The basic structure, both sensitive to camptothecin and able to fully relax DNA, composed of amino acids 1–592 and 175–262 in the large and small subunits, respectively.

Conclusion

It has been established that the region between amino acids 175 and 180 (RPPVV) of the small subunit plays a pivotal role in both interaction with the large subunit and sensitivity to camptothecin in Leishmania.

General significance

The present report describes a functional analysis of the leishmanial DNA topoisomerase IB regions directly involved both in sensitivity to poisons and in the conformation of the linker domain.  相似文献   

16.

Background

The unmitigated rise in demand for the assessment of vitamin D status has taxed the ability of clinical mass spectrometry laboratories to preserve turn-around times. We aimed to improve the throughput of liquid–liquid extraction of plasma/serum for the assay of 25-hydroxy vitamin D.

Methods

We designed and fabricated a flexible rubber gasket that seals two 96-well plates together to quantitatively transfer the contents of one plate to another. Using the transfer gasket and a dry-ice acetone bath to freeze the aqueous infranatant, we developed a novel liquid–liquid extraction workflow in a 96-well plate format. We applied the technology to the mass spectrometric quantification of 25-hydroxy vitamin D.

Results

Cross-contamination between wells was ≤0.13%. The interassay imprecision over 132 days of clinical implementation was less than 10%. The method compared favorably to a standard liquid–liquid extraction in glass tubes (Deming slope = 1.018, Sx|y = 0.022). The accuracy of the assay was 102–105% as assessed with the recently released control materials from NIST.

Conclusions

The development of a plate-sealing gasket permits the liquid–liquid extraction of clinical specimens in a moderate-throughput workflow and the reliable assay of vitamin D status. In the future, the gasket may also prove useful in other sample preparation techniques for HPLC or mass spectrometry.  相似文献   

17.

Background

Chronic inflammation in lung diseases contributes to lung tissue destruction leading to the formation of chemotactic collagen fragments such as N-acetylated proline–glycine–proline (N-ac-PGP). In the current study, we investigate whether N-ac-PGP influences β2-integrin activation and function in neutrophilic firm adhesion to endothelium.

Methods

Human polymorphonuclear leukocytes (PMNs) were isolated from fresh human blood. Subsequently, a transmigration assay was performed to evaluate the active migration of PMNs towards N-ac-PGP. Furthermore, the effect of the tripeptide on β2-integrin activation was assessed by performing the adhesion assay using fibrinogen as a ligand. To determine whether this effect was due to conformational change of β2-integrins, antibodies against CD11b and CD18 were used in the adhesion assay and the expression pattern of CD11b was determined.

Results

Human neutrophils transmigrated through an endothelial cell layer in response to basolateral N-ac-PGP. N-ac-PGP induced also a neutrophil adherence to fibrinogen. Using functional blocking antibodies against CD11b and CD18, it was demonstrated that CD11b/CD18 (Mac-1) was responsible for the N-ac-PGP-induced firm adhesion of neutrophils to fibrinogen. Pertussis toxin decreased the Mac-1 activation indicating the involvement of G-proteins. N-ac-PGP most likely activated Mac-1 by initiating a conformational change, since the expression pattern of Mac-1 on the cell surface did not change significantly.

Conclusions

Chemo-attractant N-acetyl proline–glycine–proline induces CD11b/CD18-dependent neutrophil adhesion.

General significance

This is the first study to describe that the chemo-attractant N-ac-PGP also activates Mac-1 on the surface of neutrophils, which can additionally contribute to neutrophilic transmigration into the lung tissue during lung inflammation.  相似文献   

18.

Background

Ginseng is a traditional Chinese herb that has been used for thousands of years. In the present study, effects and mechanisms of AD-1 were evaluated for its development as a novel anti-lung cancer drug.

Methods

The cytotoxic activity was evaluated by MTT assay. Flow cytometry was employed to detect cell cycle, apoptosis and ROS. Western blot and immunohistochemistry were used to analyze signaling pathways. Lung cancer xenograft models were established by subcutaneous implantation of A549 or H292 cells into nude mice.

Results

AD-1 concentration-dependently reduces lung cancer cell viability without affecting normal human lung epithelial cell viability. In A549 and H292 lung cancer cells, AD-1 induces G0/G1 cell cycle arrest, apoptosis and ROS production. The apoptosis can be attenuated by a ROS scavenger — N-acetylcysteine (NAC). In addition, AD-1 up-regulates the expression of p38 and ERK phosphorylation. Addition of a p38 inhibitor SB203580, suppresses the AD-1-induced decrease in cell viability. Furthermore, genetic silencing of p38 attenuates the expression of p38 and decreases the AD-1-induced apoptosis. Treatment with NAC reduces AD-1-induced p38 phosphorylation, which indicates that ROS generation is involved in the AD-1-induced p38 activation. In mice, oral administration of AD-1 (10–40 mg/kg) dose-dependently inhibited the growth of xenograft tumors without affecting body weight and decreases the expression of VEGF, MMP-9 and CD34 in tumor tissue. TUNEL staining confirms that the tumors from AD-1 treated mice exhibit a markedly higher apoptotic index.

Conclusions and general significance

These data support development of AD-1 as a potential agent for lung cancer therapy.  相似文献   

19.

Objective

Aspirin is an antiplatelet agent commonly used in treatment of patients with high risk to develop stroke and myocardial infarction. However, inter-individual variability regarding the inhibition of platelet function by aspirin is well documented. In this study, the correlation between platelet glycoproteins (GPIa C807T and GPIba C-5T) and cyclooxygenase 2 (COX-2G-765C) polymorphisms and antiplatelet response in patients treated with aspirin was investigated.

Methods

Jordanian adult patients (n = 584) who are taking aspirin as an antiplatelet agent participated in the study. Platelet aggregation response was measured using Multiplate Analyzer® system. Polymerase chain reaction–restriction fragment length polymorphism assay (PCR–RFLP) was used for genotyping of the examined polymorphisms.

Results

Aspirin resistance was found in 15.8% of patients. Response to aspirin was significantly associated with GPIba C-5T polymorphism (P < 0.05). However, the GPIa C807T and COX-2G-765C polymorphisms were not related to aspirin resistance (P > 0.05).

Conclusion

A considerable fraction of the Jordanian population is resistant to the antiplatelet effect of aspirin, which might be related to GPIba C-5T polymorphism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号