首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Pentachloronitrosyliridate(III) ([IrCl5(NO)]), the most electrophilic NO+ known to date, can be reduced chemically and/or electrochemically by one or two electrons to produce the NO and HNO/NO forms. The nitroxyl complex can be formed either by hydride attack to the NO+ in organic solvent, or by decomposition of iridium-coordinated nitrosothiols in aqueous solutions, while NO is produced electrochemically or by reduction of [IrCl5(NO)] with H2O2. Both NO and HNO/NO complexes are stable under certain conditions but tend to labilize the trans chloride and even the cis ones after long periods of time. As expected, the NO+ is practically linear, although the IrNO moiety is affected by the counterions due to dramatic changes in the solid state arrangement. The other two nitrosyl redox states comprise bent structures.  相似文献   

5.
6.
7.
Kinetics of ferric Mycobacterium leprae truncated hemoglobin O (trHbOFe(III)) oxidation by H2O2 and of trHbOFe(IV)O reduction by NO and NO2 are reported. The value of the second-order rate constant for H2O2-mediated oxidation of trHbOFe(III) is 2.4 × 103 M−1 s−1. The value of the second-order rate constant for NO-mediated reduction of trHbOFe(IV)O is 7.8 × 106 M−1 s−1. The value of the first-order rate constant for trHbOFe(III)ONO decay to the resting form trHbOFe(III) is 2.1 × 101 s−1. The value of the second-order rate constant for NO2-mediated reduction of trHbOFe(IV)O is 3.1 × 103 M−1 s−1. As a whole, trHbOFe(IV)O, generated upon reaction with H2O2, catalyzes NO reduction to NO2. In turn, NO and NO2 act as antioxidants of trHbOFe(IV)O, which could be responsible for the oxidative damage of the mycobacterium. Therefore, Mycobacterium leprae trHbO could be involved in both H2O2 and NO scavenging, protecting from nitrosative and oxidative stress, and sustaining mycobacterial respiration.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
Generation of reactive oxygen species by damaged respiratory chain followed by the formation of cytochrome c (cyt c)-cardiolipin (CL) complex with peroxidase activity are early events in apoptosis. By quenching the peroxidase activity of cyt c-CL complexes in mitochondria, nitric oxide can exert anti-apoptotic effects. Therefore, mitochondria-targeted pro-drugs capable of gradual nitric oxide radical (NO) release are promising radioprotectants. Here we demonstrate that (2-hydroxyamino-vinyl)-triphenyl-phosphonium effectively accumulates in mitochondria, releases NO upon mitochondrial peroxidase reaction, protects mouse embryonic cells from irradiation-induced apoptosis and increases their clonogenic survival after irradiation. We conclude that mitochondria-targeted peroxidase-activatable NO-donors represent a new interesting class of radioprotectors.  相似文献   

16.
17.
18.
19.
The seedling stage is arguably the most vulnerable phase in the plant life cycle, where the young establishing plant is extremely sensitive to environmental stresses such as drought. Here, the production of superoxide (O2), a molecule involved in stress signaling, was measured in response to desiccation of Pisum sativum L. seedlings. Following desiccation that was sufficient to kill the radicle meristem, viability could be retained by seedlings that grew secondary roots. Upon rehydration, secondary roots formed in a region that had displayed intense extracellular O2production on desiccation. Treating partially desiccated seedlings with hydrogen peroxide (H2O2) prevented viability loss. In summary, reactive oxygen species (ROS) appear to participate in the signaling required for secondary root formation following desiccation stress of P. sativum seedlings.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号