首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Infections caused by the intracellular bacterium Chlamydia trachomatis are a global health burden affecting more than 100 million people annually causing damaging long-lasting infections. In this review, we will present and discuss important aspects of the interaction between C. trachomatis and monocytes/macrophages.  相似文献   

3.
Summary In order to investigate the mechanism of synthesis and secretion of lysozyme (LZ) by human mononuclear phagocytes, the ultrastructural localization of LZ was studied by a pre-embedding direct immunoperoxidase method. Blood monocytes showed a reaction product for LZ in cytoplasmic granules, whereas cultured monocytes showed the reaction product in phagosomes as well as granules at 5 h of culture and in numerous large granules at 3 days of culture. In Kupffer cells, LZ was present in cytoplasmic granules, vacuoles and phagosomes. Some Kupffer cells showed a positive reaction for LZ in the rough endoplasmic reticulum, perinuclear cisterna and Golgi apparatus. Macrophages in the lymph nodes contained LZ in cytoplasmic granules. Bone marrow macrophages contained numerous phagosomes with electron-dense degradation products of erythrocytes, but the reaction product for LZ could not be clearly identified. The present study demonstrated that LZ is present in the granules of human mononuclear phagocytes and released into phagosomes. An in-vitro culture study, furthermore, demonstrated that macrophages produce LZ-containing large granules distinct from those of monocytes. However, findings that indicate the synthesis and secretion of LZ by cultured monocytes, as suggested previously by other investigators, were not observed in this study.  相似文献   

4.
Tumor associated monocytes/macrophages (MO/MA) are known contributors to the immune-inflammatory cell environment of advanced epithelial ovarian carcinoma (EOC). The secreted proteome of ascitic MO/MA was examined as an aid to the discovery of novel proteins in EOC that are likely to have biological relevance in the inflammatory pathways of EOC. Ascitic fluid MO/MA were isolated from EOC patients, grown short-term in serum-free media. MO/MA supernatants were analyzed for secreted proteins by HPLC fractionation followed by LC-tandem mass spectrometric analysis. The 14-3-3 zeta adaptor protein was identified in supernatants of three of three EOC patients but not in supernatants of buffy coat monocytes isolated from normal donors or the established monocyte cell line THP1. Moreover, 14-3-3 zeta was identified in ascitic fluids in eight of eight chemotherapy-naïve patients by both immunoblot and mass spectrometric analysis. Immunofluorescent staining for 14-3-3 zeta demonstrated expression of the protein on ascitic and peritumoral macrophages in EOC patients. 14-3-3 zeta was also expressed on endothelial cells in the peritumoral stroma and partially on tumor cells. Uptake of 14-3-3 zeta was observed in EOC cell lines co-cultured with the recombinant protein expressed in E. coli. It is demonstrated for the first time that the important adaptor protein 14-3-3 zeta is common to the secretome of ascitic MO/MA and the ascites of advanced EOC patients.  相似文献   

5.
Autocrine based selections from intracellular combinatorial antibody and peptide libraries have proven to be a powerful method for selection of agonists and identification of new therapeutic targets. However, success requires a case-by-case construction of a robust selection system which is a process that can be time consuming and expensive. Here we report a general system that takes advantage of the chemical rate acceleration caused by approximation of a membrane tethered ligand and its receptor. The system uses an artificial signal transduction and is, thus, agnostic to the endogenous signal transduction of the receptor–ligand system. This method allows analysis of receptor–ligand interactions and selection of molecules from large libraries that interact with receptors when they are in their natural milieu.  相似文献   

6.
Until recently endothelial nitric oxide synthase (eNOS) has been associated exclusively with physiological functions, particularly in the cardiovascular system. However, increasing evidence has been accumulated that supports the concept for a role of eNOS in pathophysiology. In particular, detection of eNOS protein and activity in human monocytes/macrophages suggest an immunomodulatory role of this enzyme. Here, we review data that promote the hypothesis that by enhancing TNFalpha production, eNOS activity should be regarded as a novel pro-inflammatory parameter in human monocytes/macrophages.  相似文献   

7.
Inflammation characterized by the expression and release of cytokines and chemokines is implicated in the development and progression of atherosclerosis. Oxidatively modified low density lipoproteins, central to the formation of atherosclerotic plaques, have been reported to signal through Toll-like receptors (TLRs), TLR4 and TLR2, in concert with scavenger receptors to regulate the inflammatory microenvironment in atherosclerosis. This study evaluates the role of low density lipoproteins (LDL) and oxidatively modified LDL (oxmLDL) in the expression and release of proinflammatory mediators IκBζ, IL-6, IL-1β, TNFα, and IL-8 in human monocytes and macrophages. Although standard LDL preparations induced IκBζ along with IL-6 and IL-8 production, this inflammatory effect was eliminated when LDL was isolated under endotoxin-restricted conditions. However, when added with TLR4 and TLR2 ligands, this low endotoxin preparation of oxmLDL suppressed the expression and release of IL-1β, IL-6, and TNFα but surprisingly spared IL-8 production. The suppressive effect of oxmLDL was specific to monocytes as it did not inhibit LPS-induced proinflammatory cytokines in human macrophages. Thus, TLR ligand contamination of LDL/oxmLDL preparations can complicate interpretations of inflammatory responses to these modified lipoproteins. In contrast to providing a proinflammatory function, oxmLDL suppresses the expression and release of selected proinflammatory mediators.  相似文献   

8.
In this study, we visualized the effect of tumor microenvironments on radiation-induced tumor cell kinetics. For this purpose, we utilized a multicellular spheroid model, with a diameter of ∼500 μm, consisting of HeLa cells expressing the fluorescent ubiquitination-based cell-cycle indicator (Fucci). In live spheroids, a confocal laser scanning microscope allowed us to clearly monitor cell kinetics at depths of up to 60 μm. Surprisingly, a remarkable prolongation of G2 arrest was observed in the outer region of the spheroid relative to monolayer-cultured cells. Scale, an aqueous reagent that renders tissues optically transparent, allowed visualization deeper inside spheroids. About 16 h after irradiation, a red fluorescent cell fraction, presumably a quiescent G0 cell fraction, became distinct from the outer fraction consisting of proliferating cells, most of which exhibited green fluorescence indicative of G2 arrest. Thereafter, the red cell fraction began to emit green fluorescence and remained in prolonged G2 arrest. Thus, for the first time, we visualized the prolongation of radiation-induced G2 arrest in spheroids and the differences in cell kinetics between the outer and inner fractions.  相似文献   

9.
This article reviews the evidence for macrophages playing an important role in the regulation of tumor angiogenesis. Findings in mouse models show that macrophages promote angiogenesis in tumors both by producing excessive amounts of proangiogenic factors and by physically assisting sprouting blood vessels to augment the complexity of the intra-tumoral vascular network. Recent studies however suggest that macrophages may be dispensable for the initiation of angiogenesis in tumors. Rather, these cells express proangiogenic programs that enhance the complexity of the tumor-associated vasculature, leading to aberrant, plethoric and dysfunctional angiogenesis. Gene expression and cell depletion studies further indicate that tumor-associated macrophages (TAMs) comprise phenotypically and functionally distinct subsets. This may reflect “education” of the macrophage phenotype by signals in some areas of the tumor microenvironment and/or TAM subsets derived from distinct macrophage precursors. Among the better characterized TAM subsets are the proangiogenic (TIE2+) and the angiostatic/inflammatory (CD11c+) macrophages, which coexist in tumors. Such antagonizing TAM subsets occupy distinct niches in the tumor microenvironment and are present at ratios that vary according to the tumor type and grade. Specifically targeting TAMs or reprogramming them from a proangiogenic to an angiostatic function may “normalize” the tumor vasculature and improve the efficacy of various anticancer therapies, including radiotherapy, chemotherapy and vascular-disrupting agents.  相似文献   

10.
Here, we report that activation of different types of tissue macrophages, including microglia, by lipopolysaccharide (LPS) or GM-CSF stimulation correlates with the quantitative redistribution of NADPH oxidase (cyt b(558)) from the plasma membrane to an intracellular stimulus-responsive storage compartment. Cryo-immunogold labeling of gp91(phox) and CeCl(3) cytochemistry showed the presence of gp91(phox) and oxidant production in numerous small (<100 nm) vesicles. Cell homogenization and sucrose gradient centrifugation in combination with transferrin-HRP/DAB ablation showed that more than half of cyt b(558) is present in fractions devoid of endosomal markers, which is supported by morphological evidence to show that the cyt b(558)-containing compartment is distinct from endosomes or biosynthetic organelles. Streptolysin-O-mediated guanosine 5'-3-O-(thio)triphosphate loading of Ra2 microglia caused exocytosis of a major complement of cyt b(558) under conditions where lysosomes or endosomes were not mobilized. We establish phagocytic particles and soluble mediators ATP, TNFα, and CD40L as physiological inducers of cyt b(558) exocytosis to the cell surface, and by shRNA knockdown, we identify Rab27A/B as positive or negative regulators of vesicular mobilization to the phagosome or the cell surface, respectively. Exocytosis was followed by clathrin-dependent internalization of cyt b(558), which could be blocked by a dominant negative mutant of the clathrin-coated pit-associated protein Eps15. Re-internalized cyt b(558) did not reach lysosomes but associated with recycling endosomes and undefined vesicular elements. In conclusion, cyt b(558) depends on clathrin for internalization, and in activated macrophages NADPH oxidase occupies a Rab27A/B-regulated secretory compartment, which allows rapid agonist-induced redistribution of superoxide production in the cell.  相似文献   

11.
12.
Summary The endogenous tumor-associated macrophage content and recruitment of labeled peritoneal exudate cells into experimental murine B16 melanoma metastases has been examined at different stages in the progressive growth of metastatic lesions. The recruitment of thioglycollate-elicited peritoneal exudate cells and peritoneal exudate cells activated in vitro with muramyl dipeptide was studied. Tumor-associated macrophages and labeled peritoneal exudate cells were identified in paraffin sections by specific histochemical staining and their density in individual metastases measured morphometrically. The density of tumor-associated macrophages and exogenously recruited peritoneal exudate cells was high in very small lesions but decreased rapidly as a function of enlargement of metastases, MD:An; where MD is macrophage density, A is the cross-sectional area of the lesion and n is a negative number. No significant difference was observed in the recruitment of activated and nonactivated peritoneal exudate cells. These results suggest that decreased recrutiment of macrophages from the circulation may explain the decrease in the density of tumor-associated macrophages as metastases grow and indicate that macrophage activation is not accompanied by enhanced localization and/or uptake of macrophages into metastases.  相似文献   

13.
Dendritic cell inhibitory receptor 3 (DCIR3, Clec4a3) and dendritic cell inhibitory receptor 4 (DCIR4, Clec4a1) are C-type lectin receptors that belong to mouse dendritic cell immunoreceptor (DCIR) family. We recently showed that DCIR3 and DCIR4 are co-expressed on inflammatory and patrolling monocytes. In this study, we investigated the expression of DCIR3 and DCIR4 on tissue-resident macrophages. We found that spleen red pulp macrophages, liver Kupffer cells, large and small peritoneal macrophages and small intestinal macrophages expressed both DCIR3 and DCIR4. By contrast, lung alveolar macrophages expressed DCIR3 but not DCIR4 and brain microglia expressed neither DCIR3 nor DCIR4. Considerable part of tissue-resident macrophages are derived from embryonic precursors. We, therefore, examined the expression of DCIR3 and DCIR4 on the embryonic precursors. Yolk-sac macrophages from embryonic day (E) 8.5 embryos expressed both DCIR3 and DCIR4, while DCIR3 and DCIR4 were expressed on subpopulations of fetal liver monocytes from E14.5 embryos. Our results, together with previous data, indicate that the expression of DCIR3 and DCIR4 is widely shared by mononuclear phagocytes, including monocytes and macrophages, and that the expression of DCIR3 and DCIR4 on the embryonic precursors are not always retained by their progenies, suggesting that expression of DCIR3 and DCIR4 on tissue-resident macrophages might be regulated by environment of the tissues where the embryonic precursors differentiate into macrophages.  相似文献   

14.
Maturation of macrophages is influenced by the composition of surrounding microenvironment. Expression of CMKLR1, the receptor for chemerin, is potentially associated with the differentiation status of macrophages. In this study, CMKLR1 was determined on peritoneal and tumor-infiltrating macrophages. CMKLR1 expression was found to be associated with the fibroblast-assisted maturation of J744A.1 monocyte/macrophage cells in the co-cultures established to model tumor microenvironment, whereas the presence of tumor cells was able to upregulate CMKLR1 expression independent of macrophage maturation. In addition, macrophages cultured with tumor cells or in tumor cell-conditioned media responded to recombinant chemerin(17-156) peptide and increased the expression of proinflammatory IL-1β, TNF-α and IL-12 p40 cytokines. The native form of chemerin (prochemerin) supplied by fibroblasts did not induce a functional response. These observations may indicate a potential role for chemerin and CMKLR1 in the regulation of inflammatory responses in the tumor microenvironment.  相似文献   

15.
One of the most important problems in vaccine development consists in understanding receptor–ligand interactions between Class II Major Histocompatibility Complex molecules (MHC II) and antigenic peptides involved in inducing an appropriate immune response. In this study, we used X-ray crystallography structural data provided by the HLA-DRβ1*0301–CLIP peptide interaction to compare native non-immunogenic and specifically-modified immunogenic peptides derived from the malarial SALSA protein, by analyzing molecular electrostatic potential surfaces on the most important regions of the peptide binding groove (Pockets 1, 4, 6 and 9). Important differences were found on the electrostatic potential induced by these peptides, particularly in MHC II conserved residues: Qα9, Sα53, Nα62, Nα69, Yβ30, Yβ60, Wβ61, Qβ70, Kβ71 and Vβ86, the same ones involved in establishing hydrogen bonds between Class II molecule-peptide and the recognition by T cell receptor, it correlating well with the change in their immunological properties.The results clearly suggest that modifications done on the electrostatic potential of these amino acids could favor the induction of different immune responses and therefore, their identification could allow modifying peptides a priori and in silico, so as to render them into immunogenic and protection-inducers and hence suitable components of a chemically-synthesized, multi-antigenic, minimal subunit based vaccine.  相似文献   

16.
Monocytes/macrophages are key players throughout atheroma development. The aim of this study was to determine the role of macrophages in lesion formation in heart valves in hyperlipidemia. We examined whether systemic depletion of monocytes/macrophages had a beneficial or adverse effect on the development of lesions in hyperlipemic hamsters injected twice weekly (for 2 months) with clodronate-encapsulated liposomes (H+Lclod), a treatment that selectively induces significant monocyte apoptosis. Hyperlipemic hamsters were employed as controls, as were hyperlipemic hamsters treated with plain liposomes. We assayed serum cholesterol (CH) and triglycerides (TG), the lipid and collagen contents and the size of the valve lesions, the matrix metalloproteinases (MMPs) in the serum and vessel wall, apolipoprotein E (ApoE), interleukin-1β (IL-1β), and superoxide anion production. In comparison with controls, H+Lclod hamsters exhibited: (1) increased lipid and collagen accumulation within the lesions, (2) decreased activity of MMP-9 and MMP-2 in sera and aortic homogenates, (3) decreased serum CH and TG and decreased expression of ApoE in sera and liver, (4) reduced expression of IL-1β in aorta and liver homogenates, and (5) no change in the level of superoxide anion in the aorta. Thus, initially, the presence of the macrophages is beneficial in valvular lesion formation. Depletion of monocytes/macrophages is a two-edged sword having a beneficial effect by decreasing the expression of IL-1β and MMP activities but an adverse effect by inducing a significant increase in the lipid and collagen content and expansion of valvular lesions. This work was supported by the Romanian Academy and a grant from the Romanian Ministry of Education and Research, National Program VIASAN (grant no. 330).  相似文献   

17.
In the present study we investigated the inhibition of interleukin-2(IL-2)-induced lymphokine-activated killer (LAK) activity in rat splenocyte cultures in relation to the presence of 2-mercaptoethanol and macrophages/monocytes. The presence of 2-mercaptoethanol is necessary for induction of LAK activity in rat splenocyte cultures. Removal of macrophages/monocytes from rat splenocytes by plastic or nylon-wool adherence, or iron ingestion resulted in LAK induction by IL-2 in the absence of 2-mercaptoethanol. The effect of macrophages/monocytes on LAK activity was also studied in transwell co-cultures. In the absence of 2-mercaptoethanol, the induction of LAK activity was very low in macrophage/monocyte-depleted splenocytes with macrophages/monocytes in the upper compartment of a transwell culture. In contrast, in the presence of 2-mercaptoethanol a high level of LAK activity was induced in these transwell cultures, showing that 2-mercaptoethanol abolished the LAK-inhibiting capacity of macrophages/monocytes. In addition, established LAK activity was strongly inhibited when, after LAK induction, splenocytes were cultured with supernatant of unfractionated splenocytes, which were cultured with IL-2 but in the absence of 2-mercaptoethanol. Addition of 2-mercaptoethanol abrogated the inhibiting effect of the supernatant completely. These experiments demonstrate that rat macrophages/monocytes produce 2-mercaptoethanolsensitive soluble LAK-inhibiting factors. Ultrafiltration of conditioned culture medium of macrophages/monocytes revealed the presence of LAK-inhibiting factors larger than 10 kDa. We concluded that 2-mercaptoethanol-sensitive soluble factors produced by macrophages/monocytes determine the level of LAK induction in rat splenocyte cultures.  相似文献   

18.
The LAIR-1 receptor is expressed on a majority of mononuclear leukocytes. It is used as a biomarker when testing synovial fluid for evidence of rheumatoid arthritis (RA). The primary objective of this study was to measure T cell- and monocyte/macrophage-specific LAIR-1 expression in RA patients and compare this to LAIR-1 expression in osteoarthritis (OA) patients and healthy individuals. LAIR-1 expression was significantly decreased in circulating CD4+ T cells in RA patients compared to both OA patients and healthy individuals. In contrast, LAIR-1 is high in CD14+ monocytes and local CD68+ macrophages in synovial tissues from RA patients. Upon stimulation with TNF-α, LAIR-1 expression decreased in T-helper (Th)1 and Th2 CD4+ T cells from healthy donors. These results indicate that LAIR-1 may exert different functions on T cells and monocytes/macrophages and suggest that LAIR-1 may be a novel therapeutic target for the treatment of RA.  相似文献   

19.
Mycobacterium tuberculosis surface proteins involved in target cell invasion may be identified as a strategy for developing subunit-based, chemically-synthesized vaccines. The Rv0227c protein was thus selected to assess its role in the invasion and infection of Mycobacterium tuberculosis target cells. Results revealed Rv0227c localization on mycobacterial surface by immunoelectron microscopy and Western blot. Receptor–ligand assays using 20-mer, non-overlapping peptides covering the complete Rv0227c protein sequence revealed three high activity binding peptides for U937 phagocytic cells and seven for A549 cells. Peptide 16944 significantly inhibited mycobacterial entry to both cell lines while 16943 and 16949 only managed to inhibit entrance to U937 cells and 16951 to A549 cells. The Jnet bioinformatics tool predicted secondary structure elements for the complete protein, agreeing with elements determined for such chemically-synthesized peptides. It was thus concluded that high activity binding peptides which were able to inhibit mycobacterial entry to target cells are of great importance when selecting peptide candidates for inclusion in an anti-tuberculosis vaccine.  相似文献   

20.
Zhao T  Hou M  Xia M  Wang Q  Zhu H  Xiao Y  Tang Z  Ma J  Ling W 《Cellular immunology》2005,238(1):19-30
Several lines of evidence have supported a link between obesity and inflammation. The present study investigated the capacity of leptin and globular adiponectin to affect tumor necrosis factor alpha (TNF-alpha) production in murine peritoneal macrophages. Leptin stimulated TNF-alpha production at mRNA as well as protein levels in a dose- and time-dependent manner. Intracellular cAMP concentration was increased and protein kinase A (PKA) was activated with the treatment of leptin, subsequently downstream MAPK signal proteins, ERK1/2 and p38, were phosphorylated. Specific inhibitors for the signal proteins, Rp cAMPS, H89, PD98059, and U0126, or SB203580, suppressed the signaling pathway and TNF-alpha expression. Although gAd partially increased cAMP concentration and PKA activity, it directly reduced leptin-induced ERK1/2 and p38 MAPK phosphorylation thus inhibiting TNF-alpha production. In conclusion, leptin promotes inflammation by stimulating TNF-alpha production, which is mediated by cAMP-PKA-ERK1/2 and p38 MAPK pathways. gAd inhibited leptin-induced TNF-alpha production through suppressing phosphorylation of ERK1/2 and p38 pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号