首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The flash-induced electrochromic shift, measured by the amplitude of the rapid absorbance increase at 518 nanometers (ΔA518), was used to determine the amount of charge separation within photosystems II and I in spinach (Spinacia oleracea L.) leaves. The recovery time of the reaction centers was determined by comparing the amplitudes of ΔA518 induced by two flashes separated by a variable time interval. The recovery of the ΔA518 on the second flash revealed that 20% of the reaction centers exhibited a recovery half-time of 1.7 ± 0.3 seconds, which is 1000 times slower than normally active reaction centers. Measurements using isolated thylakoid membranes showed that photosystem I constituted 38% of the total number of reaction centers, and that the photosystem I reaction centers were nearly fully active, indicating that the slowly turning over reaction centers were due solely to photosystem II. The results demonstrate that in spinach leaves approximately 32% of the photosystem II complexes are effectively inactive, in that their contribution to energy conversion is negligible. Additional evidence for inactive photosystem II complexes in spinach leaves was provided by fluorescence induction measurements, used to monitor the oxidation kinetics of the primary quinone acceptor of photosystem II, QA, after a short flash. The measurements showed that in a fraction of the photosystem II complexes the oxidation of QA was slow, displaying a half-time of 1.5 ± 0.3 seconds. The kinetics of QA oxidation were virtually identical to the kinetics of the recovery of photosystem II determined from the electrochromic shift. The key difference between active and inactive photosystem II centers is that in the inactive centers the oxidation rate of QA is slow compared to active centers. Measurements of the electrochromic shift in detached leaves from several different species of plants revealed a significant fraction of slowly turning over reaction centers, raising the possibility that reaction centers that are inefficient in energy conversion may be a common feature in plants.  相似文献   

2.
Charge-transfer reactions to secondary electron donors (Z, M) and acceptors (QA, QB) in Photosystem II particles isolated from a thermophilic cyanobacterium Synechococcus sp. (Schatz, G.H. and Witt H.T. (1984) Photobiochem. Photobiophys. 7, 1–14) were analyzed by measurements of fluorescence yield and absorbance changes in the millisecond time domain induced by repetitive flashes. (1) The electron-transfer reaction QAQB → QAQB was found to occur with kinetic phases of 0.2 ± 0.1 ms and 1.5 ± 0.5 ms half-time. At 10 ms after flashes an equilibrium distribution of QAQB/QAQB of about 15/85 in oxygen-evolving and of about 25/75 in Tris-treated PS II particles was reached. (2) The absorbance difference spectra were determined for (QA - QA), (QB - QB), (Z+ - Z) and for (S4 - S0), the transition associated with oxygen evolution. In the ultraviolet region they show that these electron-acceptors and -donors are the same as in spinach PS II. In the visible region all the difference spectra contain major contributions by electrochromic bandshifts due to electrostatic interaction of the reduced acceptors or oxidized donors with nearby reaction center pigments. Upon electron transfer from QA to QB electrochromic bandshifts due to interaction with pheophytin a disappeared almost completely. Bandshifts observed in the (Z+ - Z) and (S4 - S0) spectra were attributed to chlorophyll a.  相似文献   

3.
Delayed fluorescence from isolated reaction centers of Rhodopseudomonas sphaeroides was measured to study the energetics of electron transfer from the bacteriochlorophyll complex (P-870, or P) to the primary and secondary quinones (QA and QB). The analysis was based on the assumption that electron transfer between P and Q reaches equilibrium quickly after flash excitation, and stays in equilibrium during the lifetime of the P+Q radical pair. Delayed fluorescence of 1Q reaction centers (reaction centers that contain only QA) has a lifetime of about 0.1 s, which corresponds to the decay of P+QA. 2Q reaction centers (which contain both QA and QB) have a much weaker delayed fluorescence, with a lifetime that corresponds to that of P+QB (about 1 s). In the presence of o-phenanthroline, the delayed fluorescence of 2Q reaction centers becomes similar in intensity and decay kinetics to that of 1Q reaction centers. From comparisons of the intensities of the delayed fluorescence from P+QA and P+QB, the standard free energy difference between P+QA and P+QB is calculated to be 78 ± 8 meV. From a comparison of the intensity of the delayed fluorescence with that of prompt fluorescence, we calculate that P+QA is 0.86 ± 0.02 eV below the excited singlet state of P in free energy, or about 0.52 eV above the ground state PQA. The temperature dependence of the delayed fluorescence indicates that P+QA is about 0.75 eV below the excited singlet state in enthalpy, or about 0.63 eV above the ground state.  相似文献   

4.
Absorption changes at 820 or 515 nm after a short laser flash were studied comparatively in untreated chloroplasts and in chloroplasts in which oxygen evolution is inhibited. In chloroplasts pre-treated with Tris, the primary donor of Photosystem II (P-680) is oxidized by the flash it is re-reduced in a biphasic manner with half-times of 6 microseconds (major phase) and 22 microseconds. After the second flash, the 6 microseconds phase is nearly absent and P-680+ decays with half-times of 130 microseconds (major phase) and 22 microseconds. Exogenous electron donors (MnCl2 or reduced phenylenediamine) have no direct influence on the kinetics of P-680+. In untreated chloroplasts the 6 and 22 microseconds phases are of very small amplitude, either at the 1st, 2nd or 3rd flash given after dark-adaptation. They are observed, however, after incubation with 10 mM hydroxylamine. These results are interpreted in terms of multiple pathways for the reduction of P-680+: a rapid reduction (less than 1 microseconds) by the physiological donor D1; a slower reduction (6 and 22 microseconds) by donor D'1, operative when O2 evolution is inhibited; a back-reaction (130 microseconds) when D'1 is oxidized by the pre-illumination in inhibited chloroplasts. In Tris-treated chloroplasts the donor system to P-680+ has the capacity to deliver only one electron. The absorption change at 515 nm (electrochromic absorption shift) has been measured in parallel. It is shown that the change linked to Photosystem II activity has nearly the same magnitude in untreated chloroplasts or in chloroplasts treated with hydroxylamine or with Tris (first and subsequent flashes). Thus we conclude that all the donors (P-680, D1, D'1) are located at the internal side of the thylakoid membrane.  相似文献   

5.
J.Michael Gould  S. Izawa 《BBA》1974,333(3):509-524
1. By using dibromothymoquinone as the electron acceptor, it is possible to isolate functionally that segment of the chloroplast electron transport chain which includes only Photosystem II and only one of the two energy conservation sites coupled to the complete chain (Coupling Site II, observed P/e2 = 0.3–0.4). A light-dependent, reversible proton translocation reaction is associated with the electron transport pathway: H2O → Photosystem II → dibromothymoquinone. We have studied the characteristics of this proton uptake reaction and its relationship to the electron transport and ATP formation associated with Coupling Site II.

2. The initial phase of H+ uptake, analyzed by a flash-yield technique, exhibits linear kinetics (0–3 s) with no sign of transient phenomena such as the very rapid initial uptake (“pH gush”) encountered in the overall Hill reaction with methylviologen. Thus the initial rate of H+ uptake obtained by the flash-yield method is in good agreement with the initial rate estimated from a pH change tracing obtained under continuous illumination.

3. Dibromothymoquinone reduction, observed as O2 evolution by a similar flash-yield technique, is also linear for at least the first 5 s, the rate of O2 evolution agreeing well with the steady-state rate observed under continuous illumination.

4. Such measurements of the initial rates of O2 evolution and H+ uptake yield an H+/e ratio close to 0.5 for the Photosystem II partial reaction regardless of pH from 6 to 8. (Parallel experiments for the methylviologen Hill reaction yield an H+/e ratio of 1.7 at pH 7.6.)

5. When dibromothymoquinone is being reduced, concurrent phosphorylation (or arsenylation) markedly lowers the extent of H+ uptake (by 40–60%). These data, unlike earlier data obtained using the overall Hill reaction, lend themselves to an unequivocal interpretation since phosphorylation does not alter the rate of electron transport in the Photosystem II partial reaction. ADP, Pi and hexokinase, when added individually, have no effect on proton uptake in this system.

6. The involvement of a proton uptake reaction with an H+/e ratio of 0.5 in the Photosystem II partial reaction H2O → Photosystem II → dibromothymoquinone strongly suggests that at least 50% of the protons produced by the oxidation of water are released to the inside of the thylakoid, thereby leading to an internal acidification. It is pointed out that the observed efficiencies for ATP formation (P/e2) and proton uptake (H+/e) associated with Coupling Site II can be most easily explained by the chemiosmotic hypothesis of energy coupling.  相似文献   


6.
Thomas Graan  Donald R. Ort 《BBA》1986,852(2-3):320-330
Quite different estimates of the number of Photosystem II centers present in thylakoid membranes are obtained depending on the technique used in making the determination. By using brief saturating light flashes and measuring the electron transport per flash, we have obtained two values for the number of functional centers. When the electrons produced reduce the intersystem plastoquinone pool, there are about 1.7 mmol of active Photosystem II centers per mol chlorophyll, whereas there are at least 3 mmol of active centers per mol chlorophyll when certain halogenated benzoquinones are being reduced. There are also at least 3 mmol of terbutryn binding sites per mol of chlorophyll when this tightly binding herbicide is employed as a specific inhibitor of Photosystem II. Thus only about 60% of the membrane's total complement of Photosystem II centers are able to transfer electrons to Photosystem I at appreciable rates. Many functional assays requiring significant rates of turnover sample only this more active pool, whereas herbicide-binding studies and measurements of changes in the Photosystem II electron donor Z and electron acceptor QA performed by other investigators reveal, in addition, a large population of Photosystem II reaction centers that normally have negligible turnover numbers. However, these normally inactive centers readily transfer electrons to the halogenated benzoquinones and are then counted among the active centers. Therefore, it can be concluded that all of herbicide-binding sites represent centers with operative water-oxidizing reactions. It can also be concluded that there are few, if any, centers capable of binding more than a single herbicide molecule.  相似文献   

7.
Analyses of chlorophyll fluorescence induction kinetics from DCMU-poisoned thylakoids were used to examine the contribution of the light-harvesting chlorophyll a/b protein complex (LHCP) to Photosystem II (PS II) heterogeneity. Thylakoids excited with 450 nm radiation exhibited fluorescence induction kinetics characteristic of major contributions from both PS II and PS IIβ centres. On excitation at 550 nm the major contribution was from PS IIβ centres, that from PS II centres was only minimal. Mg2+ depletion had negligible effect on the induction kinetics of thylakoids excited with 550 nm radiation, however, as expected, with 450 nm excitation a loss of the PS II component was observed. Thylakoids from a chlorophyll-b-less barley mutant exhibited similar induction kinetics with 450 and 550 nm excitation, which were characteristic of PS IIβ centres being the major contributors; the PS II contribution was minimal. The fluorescence induction kinetics of wheat thylakoids at two different developmental stages, which exhibited different amounts of thylakoid appression but similar chlorophyll a/b ratios and thus similar PS II:LHCP ratios, showed no appreciable differences in the relative contributions of PS II and PS IIβ centres. Mg2+ depletion had similar effects on the two thylakoid preparations. These data lead to the conclusion that it is the PS II:LHCP ratio, and probably not thylakoid appression, that is the major determinant of the relative contributions of PS II and PS IIβ to the fluorescence induction kinetics. PS II characteristics are produced by LHCP association with PS II, whereas PS IIβ characteristic can be generated by either disconnecting LHCP from PS II or by preferentially exciting PS II relative to LHCP.  相似文献   

8.
The kinetics of flash-induced electron transport were investigated in oxygen-evolving Photosystem II preparations, depleted of the 23 and 17 kDa polypeptides by washing with 2 M NaCl. After dark-adaptation and addition of the electron acceptor 2,5-dichloro-p-benzoquinone, in such preparations approx. 75% of the reaction centers still exhibited a period 4 oscillation in the absorbance changes of the oxygen-evolving complex at 350 nm. In comparison to the control preparations, three main effects of NaCl-washing could be observed: the half-time of the oxygen-evolving reaction was slowed down to about 5 ms, the misses and double hits parameters of the period 4 oscillation had changed, and the two-electron gating mechanism of the acceptor side could not be detected anymore. EPR-measurements on the oxidized secondary donor Z+ confirmed the slower kinetics of the oxygen-releasing reaction. These phenomena could not be restored by readdition of the released polypeptides nor by the addition of CaCl2, and are ascribed to deleterious action of the highly concentrated NaCl. Otherwise, the functional coupling of Photosystem II and the oxygen-evolving complex was intact in the majority of the reaction centers. Repetitive flash measurements, however, revealed P+Q recombination and a slow Z+ decay in a considerable fraction of the centers. The flash-number dependency of the recombination indicated that this reaction only appeared after prolonged illumination, and disappeared again after the addition of 20 mM CaCl2. These results are interpreted as a light-induced release of strongly bound Ca2+ in the salt-washed preparations, resulting in uncoupling of the oxygen-evolving system and the Photosystem II reaction center, which can be reversed by the addition of a relatively high concentration of Ca2+.  相似文献   

9.
Bundle sheath strands free of mesophyll contamination were isolated from 3–4-week-old leaves of maize (Zea mays L.). Patterns of electron flow in the preparations were studied in the presence of physiological substrates. Relative electron flow rates were estimated from the flash-induced electrochromic band shift changes (P-518) and cytochrome f turnover. Induction of chlorophyll fluorescence was also measured. Little Photosystem II activity was found to be present, the principal pathway of electron flow being Photosystem I-driven cyclic electron transfer. The latter was activated through reductive poising by NADPH, generated via malate decarboxylation or (less efficiently) from dihydroxyacetone phosphate. The actions of these electron donors and of oxygen, nitrite and methyl viologen as electron acceptors in redox poising the Photosystem I-driven cycle were investigated and are discussed in relation to the regulation of photosynthesis in the bundle sheath.  相似文献   

10.
Time-resolved spectroscopic techniques, including optical flash photolysis and electron spin resonance spectroscopy, have been utilized to monitor electron-transport activity in Photosystem II subchloroplast particles. These studies have indicated that in the presence of 100 microM linolenic acid (1) a high initial fluorescence yield (Fi) is observed upon steady-state illumination of the dark-adapted sample; (2) flash-induced absorption transients (t greater than 10 mus) in the region of 820 nm, attributed to P-680+, are first slowed, then abolished; and (3) electron spin resonance Signal IIs and Signal IIf (Z+) are not detectable. Upon reversal of linolenic acid inhibition by washing with bovine serum albumin, optical and electron spin resonance transients originating from the photooxidation of P-680 are restored. Similarly, the variable component of fluorescence is recovered with an accompanying restoration of Signal IIs and Signal IIf. The data indicate that linolenic acid affects two inhibition sites in Photosystem II: one located between pheophytin and QA on the reducing side, and the other between electron donor Z and P-680 on the oxidizing side. Since both sites are associated with bound quinone molecules, we suggest that linolenic acid interacts at the level of quinone binding proteins in Photosystem II.  相似文献   

11.
Stable light-induced absorbance changes in chloroplasts at −196 °C were measured across the visible spectrum from 370 to 730 nm in an effort to find previously undiscovered absorbance changes that could be related to the primary photochemical activity of Photosystem I or Photosystem II. A Photosystem I mediated absorbance increase of a band at 690 nm and a Photosystem II mediated absorbance increase of a band at 683 nm were found. The 690-nm change accompanied the oxidation of P700 and the 683-nm increase accompanied the reduction of C-550. No Soret band was detected for P700.

A specific effort was made to measure the difference spectrum for the photooxidation of P680 under conditions (chloroplasts frozen to −196 °C in the presence of ferricyanide) where a stable, Photosystem II mediated EPR signal, attributed to P680+ has been reported. The difference spectra, however, did not show that P680+ was stable at −196 °C under any conditions tested. Absorbance measurements induced by saturating flashes at −196 °C (in the presence or absence of ferricyanide) indicated that all of the P680+ formed by the flash was reduced in the dark either by a secondary electron donor or by a backreaction with the primary electron acceptor. We conclude that P680+ is not stable in the dark at −196 °C: if the normal secondary donor at −196 °C is oxidized by ferricyanide prior to freezing, P680+ will oxidize other substances.  相似文献   


12.
David B. Knaff  Richard Malkin 《BBA》1974,347(3):395-403
The primary reaction of Photosystem II has been studied over the temperature range from −196 to −20 °C. The photooxidation of the reaction-center chlorophyll (P680) was followed by the free-radical electron paramagnetic resonance signal of P680+, and the photoreduction of the Photosystem II primary electron acceptor was monitored by the C-550 absorbance change.

At temperatures below −100 °C, the primary reaction of Photosystem II is irreversible. However, at temperatures between −100 and −20 °C a back reaction that is insensitive to 3-(3′,4′-dichlorophenyl)-1,1′-dimethylurea (DCMU) occurs between P680+ and the reduced acceptor.

The amount of reduced acceptor and P680+ present under steady-state illumination at temperatures between −100 and −20 °C is small unless high light intensity is used to overcome the competing back reaction. The amount of reduced acceptor present at low light intensity can be increased by adjusting the oxidation-reduction potential so that P680+ is reduced by a secondary electron donor (cytochrome b559) before P680+ can reoxidize the reduced primary acceptor. The photooxidation of cytochrome b559 and the accompanying photoreduction of C-550 are inhibited by DCMU. The inhibition of C-550 photoreduction by DCMU, the dependence of P680 photooxidation and C-550 photoreduction on light intensity, and the effect of the availability of reduced cytochrome b559 on C-550 photoreduction are unique to the temperature range where the Photosystem II primary reaction is reversible and are not observed at lower temperatures.  相似文献   


13.
Herman Kramer  Paul Mathis   《BBA》1980,593(2):319-329
The formation of the triplet state of carotenoids (detected by an absorption peak at 515 nm) and the photo-oxidation of the primary donor of Photosystem II, P-680 (detected by an absorption increase at 820 nm) have been measured by flash absorption spectroscopy in chloroplasts in which the oxygen evolution was inhibited by treatment with Tris. The amount of each transient form has been followed versus excitation flash intensity (at 590 or 694 nm). At low excitation energy the quantum yield of triplet formation (with the Photosystem II reaction center in the state Q) is about 30% that of P-680 photo-oxidation. The yield of carotenoid triplet formation is higher in the state Q than in the state Q, in nearly the same proportion as chlorophyll a fluorescence. It is concluded that, for excited chlorophyll a, the relative rates of intersystem crossing to the triplet state and of fluorescence emission are the same in vivo as in organic solvent. At high flash intensity the signal of P-680+ completely saturates, whereas that of carotenoid triplet continues to increase.

The rate of triplet-triplet energy transfer from chlorophyll a to carotenoids has been derived from the rise time of the absorption change at 515 nm, in chloroplasts and in several light-harvesting pigment-protein complexes. In all cases the rate is very high, around 8 · 107 s−1 at 294 K. It is about 2–3 times slower at 5 K. The transitory formation of chlorophyll triplet has been verified in two pigment-protein complexes, at 5 K.  相似文献   


14.
Pierre Stif  Paul Mathis  Tore Vnngrd 《BBA》1984,767(3):404-414
Electron transport has been studied by flash absorption and EPR spectroscopies at 10–30 K in Photosystem I particles prepared with digitonin under different redox conditions. In the presence of ascorbate, an irreversible charge separation is progressively induced at 10 K between P-700 and iron-sulfur center A by successive laser flashes, up to a maximum which corresponds to about two-thirds of the reaction centers. In these centers, heterogeneity of the rate for center A reduction is also shown. In the other third of reaction centers, the charge separation is reversible and relaxes with a t1/2 ≈ 120 μs. When the iron-sulfur centers A and B are prereduced, the 120 μs relaxation becomes the dominant process (70–80% of the reaction centers), while a slow component (t1/2 = 50–400 ms) reflecting the recombination between P-700+ and center X occurs in a minority of reaction centers (10–15%). Flash absorption and EPR experiments show that the partner of P-700+ in the 120 μs recombination is neither X nor a chlorophyll but more probably the acceptor A1 as defined by Bonnerjea and Evans (Bonnerjea, J. and Evans, M.C.W. (1982) FEBS Lett. 148, 313–316). The role of center X in low-temperature electron flow is also discussed.  相似文献   

15.
J. P. Dekker  E. J. Boekema  H. T. Witt  M. R  gner 《BBA》1988,936(3):307-318
Highly active, monomeric and dimeric Photosystem II complexes were purified from the thermophilic cyanobacterium Synechococcus sp. by two sucrose density gradients, and the size, shape and mass of these complexes have been estimated (Rögner, M., Dekker, J.P., Boekema, E.J. and Witt, H.T. (1987) FEBS Lett. 219, 207–311). (1) Further purification could be obtained by ion-exchange chromatography, by which the 300 kDa monomer could be separated into a highly active, O2-evolving fraction, and a fraction without O2-evolving capacity, which has lost its extrinsic 34 kDa protein. Both showed very high reaction center activities as measured by the photoreduction of the primary quinone acceptor, QA, at 320 nm, being up to one reaction center per 31 Chl a molecules. (2) Tris-treatment yielded homogeneous 300 kDa particles which had lost their extrinsic 34 kDa polypeptide. Electron microscopy of this complex revealed very similar dimensions compared to the oxygen-evolving 300 kDa particle, except that the smallest dimension was decreased from about 6.5 nm to about 5.8 nm. This difference is attributed to the missing extrinsic 33 kDa protein, and the smallest dimension is attributed to the distance across the membrane. (3) Experiments are presented, allowing an estimation for the contribution of detergent to the other dimensions being about 2 × 1.5 nm for dodecyl β- -maltoside. This leads to dimensions, corrected for detergent size, of 12.3 × 7.5 nm for the monomeric form of PS II and 12 × 15.5 nm for the dimeric form. (4) From some extracts a 35 kDa, chlorophyll-binding complex could be isolated which lacks the characteristic absorbance changes of QA and of Chl aII (P-680) and is therefore supposed to be a light-harvesting complex of cyanobacteria. (5) A model for the in vivo organization of PS II in cyanobacteria is discussed.  相似文献   

16.
Photosystem II complexes of higher plants are structurally and functionally heterogeneous. While the only clearly defined structural difference is that Photosystem II reaction centers are served by two distinct antenna sizes, several types of functional heterogeneity have been demonstrated. Among these is the observation that in dark-adapted leaves of spinach and pea, over 30% of the Photosystem II reaction centers are unable to reduce plastoquinone to plastoquinol at physiologically meaningful rates. Several lines of evidence show that the impaired reaction centers are effectively inactive, because the rate of oxidation of the primary quinone acceptor, QA, is 1000 times slower than in normally active reaction centers. However, there are conflicting opinions and data over whether inactive Photosystem II complexes are capable of oxidizing water in the presence of certain artificial electron acceptors. In the present study we investigated whether inactive Photosystem II complexes have a functional water oxidizing system in spinach thylakoid membranes by measuring the flash yield of water oxidation products as a function of flash intensity. At low flash energies (less that 10% saturation), selected to minimize double turnovers of reaction centers, we found that in the presence of the artificial quinone acceptor, dichlorobenzoquinone (DCBQ), the yield of proton release was enhanced 20±2% over that observed in the presence of dimethylbenzoquinone (DMBQ). We argue that the extra proton release is from the normally inactive Photosystem II reaction centers that have been activated in the presence of DCBQ, demonstrating their capacity to oxidize water in repetitive flashes, as concluded by Graan and Ort (Biochim Biophys Acta (1986) 852: 320–330). The light saturation curves indicate that the effective antenna size of inactive reaction centers is 55±12% the size of active Photosystem II centers. Comparison of the light saturation dependence of steady state oxygen evolution in the presence of DCBQ or DMBQ support the conclusion that inactive Photosystem II complexes have a functional water oxidation system.Abbreviations DCBQ 2,6-dichloro-p-benzoquinone - DMBQ 2,5-dimethyl-p-benzoquinone - Fo initial fluorescence level using dark-adapted thylakoids - Inactive reaction centers reaction centers inactive in plastoquinone reduction - PS II Photosystem II - QA primary quinone acceptor of Photosystem II - QB secondary quinone acceptor of Photosystem II Department of Plant Biology, University of IllinoisDepartment of Physiology & Biophysics, University of Illinois  相似文献   

17.
The room-temperature EPR characteristics of Photosystem II reaction center preparations from spinach, pokeweed and Chlamydomonas reinhardii have been investigated. In all preparations a light-induced increase in EPR Signal II, which arises from the oxidized form of a donor to P-680+, is observed. Spin quantitation, with potassium nitrosodisulfonate as a spin standard, demonstrates that the Signal II species, Z?, is present in approx. 60% of the reaction centers. In response to a flash, the increase in Signal II spin concentration is complete within the 98 μs response time of our instrument. The decay of Z? is dependent on the composition of the particle suspension medium and is accelerated by addition of either reducing agents or lipophilic anions in a process which is first order in these reagents. Comparison of these results with optical data reported previously (Diner, B.A. and Bowes, J.M. (1981) in Proceedings of the 5th International Congress on Photosynthesis (Akoyunoglou, G., ed.), Vol. 3, pp. 875–883, Balaban, Philadelphia), supports the identification of Z with the P-680+ donor, D1. From the polypeptide composition of the particles used in this study, we conclude that Z is an integral component of the reaction center and use this conclusion to construct a model for the organization of Photosystem II.  相似文献   

18.
The fluorescence induction and other fluorescence properties of spinach chloroplasts at room temperature were probed utilizing two 30-ps wide laser pulses (530 nm) spaced Δt (s) apart in time (Δt = 5–110 ns). The energy of the first pulse (P1) was varied (1012–1016 photons · cm−2), while the energy of the second (probe) pulse (P2) was held constant (5 · 1013 photons · cm−2). A gated (10 ns) optical multichannel analyzer-spectrograph system allowed for the detection of the fluorescence generated either by P1 alone, or by P2 alone (preceded by P1). The dominant effect observed for the fluorescence yield generated by P1 alone is the usual singlet-singlet exciton annihilation which gives rise to a decrease in the yield at high energies. However, when the fluorescence yield of dark-adapted chloroplasts is measured utilizing P2 (preceded by pulse P1) an increase in this yield is observed. The magnitude of this increase depends on Δt, and is characterized by a time constant of 28 ± 4 ns. This rise in the fluorescence yield is attributed to a reduction of the oxidized (by P1) reaction center P-680+ by a primary donor. At high pulse energies (P1 = 4 · 1014 photons · cm−2) the magnitude of this fluorescence induction is diminished by another quenching effect which is attributed to triplet excited states generated by intense P1 pulses. Assuming that the P1 pulse energy dependence of the fluorescence yield rise reflects the closing of the reaction centers, it is estimated that about 3–4 photon hits per reaction center are required to close completely the reaction centers, and that there are 185–210 chlorophyll molecules per Photosystem II reaction center.  相似文献   

19.
Chlorophyll fluorescence induction (Chl-F) was investigated in Photosystem II (PSII)-enriched membranes, which predominantly include active (QB reducing) PSII reaction centres (RCs) and lack Photosystem I (PSI). The Chl-F curve of these preparations show a polyphasic rise from F0, the minimal fluorescence, to FP, the maximal fluorescence, with several intermediate transitions. Analyses of these transitions revealed three exponential rise components with lifetimes of 18 ms, 400 ms and 800 ms. The 18 ms component was assigned to the photoaccumulation of reduced QA. The two slowest components, of 400 ms and 800 ms, were assigned to QB reduction (QB and QB=) and further QB= protonation (till QBH2), respectively. These assignments were based on the observation of specific quenching of the phases by DCMU or by different oxidized, reduced and protonated quinones. The work is done in low light conditions which are saturating to avoid photoinhibition or PSII inactivation effects. The results suggest that the Chl-F curve observed in PSII-enriched membranes can be attributed to the sequential steps till the photoaccumulation (reduction and protonation) of plastoquinone (PQ) by PSII. These results are in good agreement with the molecular models that show a correspondence between Chl-F and PQ reduction steps, like the models that propose and explain the O-J-I-P transients.  相似文献   

20.
Bruce A. Diner  René Delosme 《BBA》1983,722(3):443-451
Redox titration of the electrochromic carotenoid band shift, detected at 50 μs after a saturating actinic flash, in spinach chloroplasts, shows that only one electron acceptor in Photosystem II participates in a transmembrane primary electron transfer. This species, the primary quinone acceptor, Q, shows only one midpoint potential (Em,7.5) of approx. 0 V and is undoubtedly equivalent to the fluorescence quencher, QH. A second titration wave is observed at low potential (Em,7.5 ? ? 240 mV) and at greater than 3 ms after a saturating actinic flash. This wave has an action spectrum different from that of Photosystem II centers containing Q and could arise from a secondary but not primary electron transfer. A low-potential fluorescence quencher is observed in chloroplasts which largely disappears in a single saturating flash at ? 185 mV and which does not participate in a transmembrane electron transfer. This low-potential quencher (probably equivalent to fluorescence quencher, QL) and Q are altogether different species. Redox titration of C550 shows that if electron acceptor Qβ is indeed characterized by an Em,7 of + 120 mV, then this acceptor does not give rise to a C550 signal upon reduction and does not participate in a transmembrane electron transfer. This titration also shows that C550 is not associated with QL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号