首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The polynucleotide helix d(T)n.d(A)n.d(T)n is the only deoxypolynucleotide triple helix for which a structure has been published, and it is generally assumed as the structural basis for studies of DNA triplexes. The helix has been assigned to an A-form conformation with C3'-endo sugar pucker by Arnott and Selsing [1974; cf. Arnott et al. (1976)]. We show here by infrared spectroscopy in D2O solution that the helix is instead B-form and that the sugar pucker is in the C2'-endo region. Distamycin A, which binds only to B-form and not to A-form helices, binds to the triple helix without displacement of the third strand, as demonstrated by CD spectroscopy and gel electrophoresis. Molecular modeling shows that a stereochemically satisfactory structure can be build using C2'-endo sugars and a displacement of the Watson-Crick base-pair center from the helix axis of 2.5 A. Helical constraints of rise per residue (h = 3.26 A) and residues per turn (n = 12) were taken from fiber diffraction experiments of Arnott and Selsing (1974). The conformational torsion angles are in the standard B-form range, and there are no short contacts. In contrast, we were unable to construct a stereochemically allowed model with A-form geometry and C3'-endo sugars. Arnott et al. (1976) observed that their model had short contacts (e.g., 2.3 A between the phosphate-dependent oxygen on the A strand and O2 in the Hoogsteen-paired thymine strand) which are generally known to be outside the allowed range.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The structure of the self-complementary octamer d(GTACGTAC) has been analyzed by a single crystal X-ray diffraction method at 2.25 A resolution. The crystallographic R factor was 0.184 for all 1233 reflections at this resolution. In spite of the alternating purine-pyrimidine sequence, d(GTACGTAC) adopts the A-form conformation rather than the left-handed Z-form. The average helix twist and the mean rise per base pair are 32.1 degrees and 3.18 A, respectively. The d(GTACGTAC) helix is characterized by a wide open major groove and small base-pair tilt (9.7 degrees). The partial unwinding of the helix is observed only at the central pyrimidine-purine C-G step, but not at the other pyrimidine-purine T-A steps. Based on this study and six other X-ray studies, we propose a hypothesis that the A-DNA's are always unwound approximately 10 degrees at the C-G steps. Significant differences in base-pair stacking modes are seen between the purine-pyrimidine step and the pyrimidine-purine step. All deoxyribose rings adopt the C3'-endo conformation. All backbone torsion angles fall into the range expected for the A-DNA form, except for the nucleotide G5, whose alpha and gamma torsion angles adopt the trans, trans conformation instead of the common gauche-, gauche+ conformation.  相似文献   

3.
The potentially Z-DNA-forming sequence d(GTGTACAC) crystallizes as A-DNA   总被引:6,自引:0,他引:6  
(GT)n/(CA)n sequences have stimulated much interest because of their frequent occurrence in eukaryotic DNA and their potential for forming the left-handed Z-DNA structure. We here report the X-ray crystal structure of a self-complementary octadeoxynucleotide, d(GTGTACAC), at 2.5 A resolution. The molecule adopts a right-handed double-helical conformation belonging to the A-DNA family. In this alternating purine-pyrimidine DNA minihelix the roll and twist angles show alternations qualitatively consistent with Calladine's rules. The average tilt angle of 9.3 degrees is between the values found in A-DNA (19 degrees) and B-DNA (-6 degrees) fibers. It is envisaged that such intermediate conformations may render diversity to genomic DNA. The base-pair tilt angles and the base-pair displacements from the helix axis are found to be correlated for the known A-DNA double-helical fragments.  相似文献   

4.
Hud NV  Plavec J 《Biopolymers》2003,69(1):144-158
The fine structure of the DNA double helix and a number of its physical properties depend upon nucleotide sequence. This includes minor groove width, the propensity to undergo the B-form to A-form transition, sequence-directed curvature, and cation localization. Despite the multitude of studies conducted on DNA, it is still difficult to appreciate how these fundamental properties are linked to each other at the level of nucleotide sequence. We demonstrate that several sequence-dependent properties of DNA can be attributed, at least in part, to the sequence-specific localization of cations in the major and minor grooves. We also show that effects of cation localization on DNA structure are easier to understand if we divide all DNA sequences into three principal groups: A-tracts, G-tracts, and generic DNA. The A-tract group of sequences has a peculiar helical structure (i.e., B*-form) with an unusually narrow minor groove and high base-pair propeller twist. Both experimental and theoretical studies have provided evidence that the B*-form helical structure of A-tracts requires cations to be localized in the minor groove. G-tracts, on the other hand, have a propensity to undergo the B-form to A-form transition with increasing ionic strength. This property of G-tracts is directly connected to the observation that cations are preferentially localized in the major groove of G-tract sequences. Generic DNA, which represents the vast majority of DNA sequences, has a more balanced occupation of the major and minor grooves by cations than A-tracts or G-tracts and is thereby stabilized in the canonical B-form helix. Thus, DNA secondary structure can be viewed as a tug of war between the major and minor grooves for cations, with A-tracts and G-tracts each having one groove that dominates the other for cation localization. Finally, the sequence-directed curvature caused by A-tracts and G-tracts can, in both cases, be explained by the cation-dependent mismatch of A-tract and G-tract helical structures with the canonical B-form helix of generic DNA (i.e., a cation-dependent junction model).  相似文献   

5.
The solution structure of the alternating pyrimidine-purine DNA duplex [d(GCGTATACGC)]2 has been determined using two-dimensional nuclear magnetic resonance techniques and distance geometry methods. Backbone distance constraints derived from experimental nuclear Overhauser enhancement and J-coupling torsion angle constraints were required to adequately define the conformation of the inter-residue backbone linkages and to avoid underwinding of the duplex. The distance geometry structures were further refined by back-calculation of the two-dimensional nuclear Overhauser enhancement spectra to correct spin-diffusion distance errors. Fifteen final structures for [d(GCGTATACGC)]2 were generated from the refined experimental distance bounds. These structures all exhibit fully wound B-form geometry with small penalty values (< 1.5 A) against the distance bounds and small pair-wise root-mean-square deviation values (typically 0.6 A to 1.5 A). The final structures exhibit positive base-pair inclination with respect to the helix axis, a marked alternation in rise and twist, and are shorter and wider than classical fiber B-form DNA. The purines were found to adopt a sugar pucker close to the C-2'-endo conformation while pyrimidine sugars exhibited significantly lower pseudorotation phase angles in the C-1'-exo to C-2'-endo range. The minor groove cross-strand steric clashes at pyrimidine-purine steps that would exist in pure B-DNA are attenuated by an increased rise at these steps (and an increased roll angle at TpA steps). Concomitantly the backbone torsion angles of the pyrimidine moieties have larger gamma values, larger epsilon values, and smaller zeta values than the purines. The structures generated by distance geometry methods were also compared with those obtained from restrained molecular dynamics with empirical force-field potentials. The results indicate that the nuclear magnetic resonance/distance geometry approach alone is capable of elucidating most of the salient structural features of double-stranded helical nucleic acids in solution without resorting to empirical energy potentials and without using any structural assumptions from crystallographic data.  相似文献   

6.
Crystallographic study of one turn of G/C-rich B-DNA   总被引:15,自引:0,他引:15  
The DNA decamer d(CCAGGCCTGG) has been studied by X-ray crystallography. At a nominal resolution of 1.6 A, the structure was refined to R = 16.9% using stereochemical restraints. The oligodeoxyribonucleotide forms a straight B-DNA double helix with crystallographic dyad symmetry and ten base-pairs per turn. In the crystal lattice, DNA fragments stack end-to-end along the c-axis to form continuous double helices. The overall helical structure and, notably, the groove dimensions of the decamer are more similar to standard, fiber diffraction-determined B-DNA than A-tract DNA. A unique stacking geometry is observed at the CA/TG base-pair step, where an increased rotation about the helix axis and a sliding motion of the base-pairs along their long axes leads to a superposition of the base rings with neighboring carbonyl and amino functions. Three-center (bifurcated) hydrogen bonds are possible at the CC/GG base-pair steps of the decamer. In their common sequence elements, d(CCAGGCCTGG) and the related G.A mismatch decamer d(CCAAGATTGG) show very similar three-dimensional structures, except that d(CCAGGCCTGG) appears to have a less regularly hydrated minor groove. The paucity of minor groove hydration in the center of the decamer may be a general feature of G/C-rich DNA and explain its relative instability in the B-form of DNA.  相似文献   

7.
One-dimensional nuclear Overhauser effect (NOE) in nuclear magnetic resonance spectroscopy along with stereochemically sound model building was employed to derive the structure of the hybrid poly(rA).poly(dT) in solution. Extremely strong NOE was observed at AH2' when AH8 was presaturated; strong NOEs were observed at TH2'TH2' when TH6 was presaturated; in addition the observed NOEs at TH2' and TH2' were nearly equal when TH6 was presaturated. There was no NOE transfer to AH3' from AH8 ruling out the possibility of (C-3'-endo, low anti chi approximately equal to 200 degrees to 220 degrees) conformation for the A residues. The observed NOE data suggest that the nucleotidyl units in both rA and dT strands have equivalent conformations: C-2'-endo/C-1'-exo, anti chi approximately equal to 240 degrees to 260 degrees. Such a nucleotide geometry for rA/dT is consistent with a right-handed B-DNA model for poly(rA).poly(dT) in solution in which the rA and dT strands are conformationally equivalent. Molecular models were generated for poly(rA).poly(dT) in the B-form based upon the geometrical constraints as obtained from the NOE data. Incorporation of (C-2'-endo pucker, chi congruent to 240 degrees to 260 degrees) into the classical B-form resulted in severe close contacts in the rA chain. By introducing base-displacement, tilt and twist along with concomitant changes in the backbone torsion angles, we were able to generate a B-form for the hybrid poly(rA).poly(dT) fully consistent with the observed NOE data. In the derived model the sugar pucker is C-1'-exo, a minor variant of C-2'-endo and the sugar base torsion is 243 degrees, the remaining torsion angles being: epsilon = 198 degrees, xi = 260 degrees, alpha = 286 degrees, beta = 161 degrees and gamma = 72 degrees; this structure is free of any steric compression and indicates that it is not necessary to switch to C-3'-endo pucker for rA residues in order to accommodate the 2'-OH group. The structure that we have proposed for the polynucleotide RNA-DNA hybrid in solution is in complete agreement with that proposed for a hexamer hybrid in solution from NOE data and is inconsistent with the heteronomous model proposed for the fibrous state.  相似文献   

8.
1) Energy calculations have shown that poly (8,2'-S-cycloadenylic aicd) can form left-handed helices owing to the high anti conformation. 2) Two favorable left-handed helices are characterized by axial translation per residue (Z=4.3 and 3.6A) and by rotations per residue (theta= 40 degrees and -25 degrees). 3) The proposed helical models might be stable in aqueous solution and is well explicable of the optical property of this compound.  相似文献   

9.
The solution structure of a rather unusual B-form duplex [d(ATGAGCGAATA)]2 has been determined using two-dimensional nuclear magnetic resonance (2D-NMR) and distance geometry methods. This sequence forms a stable ten base-pair B-form duplex with 3' overhangs and two pairs of adjacent G:A mismatches paired via a sheared hydrogen-bonding scheme. All non-exchangeable protons, including the stereo-specific H-5'S/H-5'R of the 3G and 7G residues, were assigned by 2D-NMR. The phosphorus spectrum was assigned using heteronuclear correlation with H-3' and H-4' reasonances. The complete assignments reveal several unusual nuclear Overhauser enhancements (NOEs) and unusual chemical shifts for the neighboring G:A mismatch pairs and their adjacent nucleotides. Inter-proton distances were derived from time-dependent NOEs and used to generate initial structures, which were further refined by iterative back-calculation of the two-dimensional nuclear Overhauser enhancement spectra; 22 final structures were calculated from the refined distance bounds. All these final structures exhibit fully wound helical structures with small penalty values against the refined distance bounds and small pair-wise root-mean-square deviation values (typically 0.5 A to 0.9 A). The two helical strands exchange base stacking at both of the two G:A mismatch sites, resulting in base stacking down each side rather than down each strand of the twisted duplex. Very large twist angles (77 degrees) were found at the G:A mismatch steps. All the final structures were found to have BII phosphate conformations at the adjacent G:A mismatch sites, consistent with observed downfield 31P chemical shifts and Monte-Carlo conformational search results. Our results support the hypothesis that 31P chemical shifts are related to backbone torsion angles. These BII phosphate conformations in the adjacent G:A mismatch step suggest that hydrogen bonding of the G:A pair G-NH2 to a nearby phosphate oxygen atom is unlikely. The unusual structure of the duplex may be stabilized by strong interstrand base stacking as well as intrastrand stacking, as indicated by excellent base overlap within the mismatch stacks.  相似文献   

10.
Poly(dA).poly(dT), but not B-form DNA, is specifically recognized by experimentally induced anti-kinetoplast or anti-poly(dA).poly(dT) immunoglobulins. Antibody binding is completely competed by poly(dA).poly(dT) and poly(dA).poly(dU) but not by other single- or double-stranded DNA sequences in a right-handed B-form. Antibody interaction with poly(dA).poly(dT) depends on immunoglobulin concentration, incubation time and temperature, and is sensitive to elevated ionic strengths. Similar conformations, for example, (dA)4-6 X (dT)4-6, in the kinetoplast DNA of the parasite Leishmania tarentolae are also immunogenic and induce specific anti-poly(dA).poly(dT) antibodies. These antibody probes specifically recognize nuclear and kinetoplast DNA in fixed flagellated kinetoplastid cells as evidenced by immunofluorescence microscopy. Anti-poly(dA).poly(dT) immunofluorescence is DNase-sensitive and competed by poly(dA).poly(dT), but not other classical double-stranded B-DNAs. Thus, these unique cellular B'-DNA helices are immunogenic and structurally similar to synthetic poly(dA).poly(dT) helices in solution.  相似文献   

11.
Using the AMBER software package (Weiner and Kollman 1981) substantially modified for electrostatic contributions, the structural energies of the double-stranded oligonucleotides dA12·dT12 and d(GCTCGAAAAA)4·d(TTTTTCGAGC)4 were minimized. Using various starting structures for the molecule dA12·dT12, one final structure is obtained which possesses the experimentally determined properties of poly(dA)·poly(dT). This structure is an A-form-B-form-hybrid structure similar to that of Arnott et al. (1983). The dA-strand is similar to an A-form while the dT-strand is similar to normal B-form. This structure and separately optimized B-form sequence stretches were used to construct the double-stranded fragment d(GCTCGAAAAA)4 which again was optimized. This sequence, when imbedded in a DNA fragment as contiguous repeats, shows a gel migration anomaly which has been interpreted as stable curvature of the DNA (Diekmann 1986). The calculated structure of this sequence indeed has a curved helix axis and is discussed as a model for curved DNA. A theoretical formalism is presented which allows one to calculate the structural parameters of any nucleic acid double helix in two different geometrical representations. This formalism is used to determine the parameters of the base-pair orientations of the curved structure in terms of wedge as well as cylindrical parameters. In the structural model presented here, the curvature of the helix axis results from an alternation of two different DNA structures in which the base-pairs possess different angles with the helix axis (cylinder tilt). Resulting from geometric restraints, a negative cylinder tilt angle correlates strongly with the closing of the minor groove (wedge roll). The blocks with different structure are not exactly coincident with the dA5-blocks and the B-DNA stretches. Within the dA5 block, base-pair tilt and wedge roll adopt large values which proceed into the 3 flanking B-DNA sequence by about one base-pair. These properties of the structure calculated here are discussed in terms of different models explaining DNA curvature.  相似文献   

12.
A restrained least-squares refinement of the solution structure of the self-complementary B DNA hexamer 5'd(C-G-T-A-C-G)2 is presented. The structure is refined on the basis of 190 inter-proton distances determined by pre-steady-state nuclear Overhauser enhancement measurements. Two refinements were carried out starting from two initial B DNA structures differing by an overall root-mean-square (r.m.s.) difference of 0.32 A. In both cases, the final r.m.s. difference between the experimental and calculated inter-proton distances was 0.12 A compared to 0.61 A and 0.58 A for the two initial structures. The difference between the two refined structures is small, with an overall r.m.s. difference of 0.16 A, and represents the error in the refined co-ordinates. The refined structures have a B-type conformation with local structural variations in backbone and glycosidic bond torsion angles, and base-pair propellor twist, base roll, base tilt and local helical twist angles.  相似文献   

13.
Molecular structure of an A-DNA decamer d(ACCGGCCGGT)   总被引:3,自引:0,他引:3  
The molecular structure of the DNA decamer d(ACCGGCCGGT) has been solved and refined by single-crystal X-ray-diffraction analysis at 0.20 nm to a final R-factor of 18.0%. The decamer crystallizes as an A-DNA double helical fragment with unit-cell dimensions of a = b = 3.923 nm and c = 7.80 nm in the space group P6(1)22. The overall conformation of this A-DNA decamer is very similar to that of the fiber model for A-DNA which has a large average base-pair tilt and hence a wide and shallow minor groove. This structure is in contrast to that of several A-DNA octamers in which the molecules all have low base-pair-tilt angles (8-12 degrees) resulting in an appearance intermediate between B-DNA and A-DNA. The average helical parameters of this decamer are typical of A-DNA with 10.9 base pairs/turn of helix, an average helical twist angle of 33.1 degrees, and a base-pair-tilt angle of 18.2 degrees. However, the CpG step in this molecule has a low local-twist angle of 24.5 degrees, similar to that seen in other A-DNA oligomers, and therefore appears to be an intrinsic stacking pattern for this step. The molecules pack in the crystal using a recurring binding motif, namely, the terminal base pair of one helix abuts the surface of the shallow minor groove of another helix. In addition, the GC base pairs have large propeller-twist angles, unlike those found most other A-DNA structures.  相似文献   

14.
15.
16.
Electron micrographs of deoxyhemoglobin S fiber cross sections provide an end-on view of the fiber whose appearance is sensitive to small changes in orientation. We have developed a procedure to exploit this sensitivity in order to determine the hand of these particles. In a sickle hemoglobin fiber the hemoglobin molecules form long pitch helical strands which twist about the particle axis with a pitch of about 3000 A. Tilting a 400-A-thick cross section by a few degrees aligns one of the long pitch helices so that it is nearly parallel to the direction of view. When a strand of hemoglobin molecules in a fiber is aligned in this manner it appears as a strongly contrasted bright spot. It is this spot, rather than the fiber axis, which appears to be the apparent center of rotation of the cross section. The direction of the displacement of the spot from the particle axis depends upon the particle hand and tilt direction. We have used this property to determine that sickle hemoglobin fibers are right-handed particles. This method may be applicable to other particles with long pitch helices as well.  相似文献   

17.
The peptide N-Ac-dehydro-Phe-L-Val-OH (C16H20N2O4) was synthesized by the usual workup procedure. The peptide crystallizes from its solution in acetonitrile at 4 degrees in hexagonal space group P6(5) with a = b = 11.874(2)A, c = 21.856(9) A, V = 2668(1) A3, Z = 6, dm = 1.151(3) g cm-3, dc = 1.136(4) g cm-3, CuK alpha = 1.5418 A, mu = 0.641 mm-1, F(000) = 972, T = 293 K. The structure was solved by direct methods and refined by least-squares procedure to an R value of 0.074 for 1922 observed reflections. In the dehydro-residue, the C1 alpha-C1 beta distance is 1.35(1) A while the bond angle C1 alpha-C1 beta-C1 gamma is 131.2(9) degrees. The backbone torsion angles are: omega 0 = 172(1) degrees, phi 1 = -60(2) degrees, psi 1 = -31(2) degrees, omega 1 = -179(1) degrees, phi 2 = 59(2) degrees. These values suggest that the peptide tends to adopt an alternating right-handed and left-handed helical conformation. The side chain torsion angles are: chi 1(1) = -6(2) degrees, chi 1(2.1) = -1(2) degrees, chi 1(2.2) = -178(2) degrees, chi 2(1.1) = 63(2) degrees and chi 2(1.2) = -173(1) degrees. These values show that the side chain of dehydro-Phe is planar whereas the valyl side chain adopts a sterically most preferred conformation. The molecules, linked by intermolecular hydrogen bonds and van der Waals forces, are arranged in helices along the c-axis. The helices are held side-by-side by van der Waals contacts.  相似文献   

18.
Structural conformation of triple-helical poly(dT)-poly(dA)-poly(dT) has been a very controversial issue recently. Earlier investigations, based on fiber diffraction data and molecular modeling, indicated an A-form conformation with C'3-endo sugar pucker. On the other hand, Raman, solution infrared spectral, and NMR studies show a B-form structure with C'2-endo sugars. In accordance with these experimental results, a theoretical model with B-form, C'2-endo sugars was proposed in 1993. In the present work we investigate the dynamics and stability of the two conformations within the effective local field approach applied to the normal mode calculations for the system. The presence of counterions was explicitly taken into account. Stable equilibrium positions for the counterions were calculated by analyzing the normal mode dynamics and free energy of the system. The breathing modes of the triple helix are shifted to higher frequencies over those of the double helix by 4-16 cm-1. The characteristic marker band for the B conformation at 835 cm-1 is split up into two marker bands at 830 and 835 cm-1. A detailed comparison of the normal modes and the free energies indicates that the B-form structure, with C'2-endo sugar pucker, is more stable than the A-form structure. The normal modes and the corresponding dipole moments are found to be in close agreement with recent spectroscopic findings.  相似文献   

19.
S P Edmondson 《Biopolymers》1987,26(11):1941-1956
Model helices for poly[d(A)]-poly[d(T)] in solution were constructed based on the base orientations determined by linear dichroism [LD; S. P. Edmondson & W. C. Johnson, Jr. (1985) Biopolymers 24 , 824–841] and refined by molecular mechanical energy minimization. The results demonstrate that poly[d(A)]-poly[d(T)] can form energetically stable conformations with the base orientations measured by LD. Further, only one of the four possible base-pair orientations that are consistent with the LD results is feasible. Models with negative base tilts had large potential energies, indicating that the LD results do not reflect base motions. The LD models of poly[d(A)]-poly[d(T)] are stabilized mainly by intrastrand base-stacking interactions, particularly for the adenine strand.  相似文献   

20.
The compound Rp-d[Gp(S)CpGp(S)CpGp(S)C], an analogue of the deoxyoligomer d(G-C)3, crystallizes in space group P2(1)2(1)2(1) with a = 34.90 A, b = 39.15 A and c = 20.64 A. The structure, which is not isomorphous with any previously determined deoxyoligonucleotide, was refined to an R factor of 14.5% at a resolution of 2.17 A, with 72 solvent molecules located. The two strands of the asymmetric unit form a right-handed double helix, which is a new example of a B-DNA conformation and brings to light an important and overlooked component of flexibility of the double helix. This flexibility is manifest in the alternation of the backbone conformation between two states, defined by the adjacent torsion angles epsilon and zeta, trans . gauche-(BI) and gauche-. trans (BII). BI is characteristic of classical of B-DNA and has an average C(1') to C(1') separation of 4.5 A. The corresponding separation for BII is 5.3 A. Each state is associated with a distinct phosphate orientation where the plane of the PO2 (or POS) group is alternately near horizontal or vertical with respect to the helix axis. The BI and BII conformations are out of phase on the two strands. As a consequence, on one strand purine-pyrimidine stacking is better than pyrimidine-purine, while the converse holds for the other strand. At each base-pair step, good and bad stacking alternate across the helix axis. The pattern of alternation is regular in the context of a fundamental dinucleotide repeat. Re-examination of the B-DNA dodecamer d(C-G-C-G-A-A-T-T-C-G-C-G) shows that the C-G-C-G regions contain the BI and BII conformations, and the associated dual phosphate orientation and asymmetric base stacking. Different mechanisms are used in the two structures to avoid clashes between guanine residues on opposite strands, a combination of lateral slide, tilt and helical twist in the present structure, and base roll, tilt and longitudinal slide (Calladine rules) in the dodecamer. The flexibility of the phosphate orientations demonstrated in this structure is important, since it offers a structural basis for protein-nucleic acid recognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号