首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
A series of 4-chloro-2H-thiochromenes featuring nitrogen-containing side chains were designed, synthesized and tested in vitro for their antifungal activities. The results of preliminary antifungal tests showed that most target compounds exhibited good inhibitory activities against Candida albicans, Cryptococcus neoformans, Candida tropicalis. Notably, compounds 10e and 10y showed most potent activity in vitro against a variety of fungal pathogens with low MICs. Meanwhile, low cytotoxicity on mammalian cells has been observed for compounds 10e and 10y in the tested concentrations by the MTT assay. Therefore, the 4-chloro-2H-thiochromenes with nitrogen-containing groups provide new lead structures in the search for novel antifungal agents.  相似文献   

2.
Diversity-oriented synthesis of derivatives of natural products is an important approach for the discovery of novel drugs. In this paper, a series of novel 3,4-diaryl-1H-pyrazoles and 3,5-diaryl-1H-pyrazoles derivatives were synthesized through the one-pot reaction of flavones and isoflavones with the hydrazine hydrate and substituted hydrazine hydrate. Some of these novel compounds exhibited antifungal effects against Candida albicans SC5314, and displayed more potent inhibitory activities against the efflux-pump-deficient strain DSY654. In addition, compounds 25, 28 and 32a displayed outstanding reversal activity of azole resistance against clinical azole-resistant Candida albicans in combination with fluconazole (FLC), with FICI values ranging from 0.012 to 0.141. The preliminary structure-activity relationship (SAR) of these compounds was also discussed. In conclusion, this study provides several novel agents that displayed potent antifungal activities alone or together with fluconazole, which makes progress for development of antifungal drugs.  相似文献   

3.
To further enhance the anti-Aspergillus efficacy of our previously discovered antifungal lead compound 1, a series of benzoheterocycle analogues were designed, synthesized and evaluated for their in vitro antifungal activity. The most promising compounds 13s and 14a exhibited excellent antifungal activity against C. albicans, C. neoformans, A. fumigatus and fluconazole-resistant C. albicans strains, that was superior or comparable to those of the reference drugs fluconazole and voriconazole. GC–MS analyses suggested that the novel compound 13s might have a similar mechanism to fluconazole by inhibiting fungal lanosterol 14α-demethylase (CYP51). Furthermore, compounds 13s and 14a exhibited low inhibition profiles for various human cytochrome P450 isoforms as well as excellent blood plasma stability.  相似文献   

4.
To study the novel functionalized heterocyclic molecules with highly potential biological activity, two series of heterocyclic lactam derivatives containing the piperonyl moiety were designed and synthesized. The newly obtained compounds have been identified on the basis of analytical spectral data, including 1H NMR, 13C NMR, and ESI-MS. The target compounds were evaluated for their potential antifungal activities in vitro against twelve species of the plant pathogen fungi (Sclerotinia sclerotiorum, Rhizoctonia solani, Rap Sclerotinia stemrot, Fusarium graminearum, Phomopsis adianticola, Pestallozzia theae, Pestalotiopsis guepinii, Alternaria tenuis Nees, Monilinia fructicola, Colletotrichum gloeosporioides, Phytophthora capsici, Magnaporthe oryzae). Preliminary bioassays suggested that all prepared compounds I114 displayed broad-spectrum and moderate antifungal activities compared with the positive control hymexazol, especially for Sclerotinia sclerotiorum, Rap Sclerotinia stemrot, and Monilinia fructicola. In particular, the inhibition rate of compound I9 exhibited good inhibition activity reached 95.16% against Sclerotinia sclerotiorum, and compounds I5, I12 against Phytophthora capsici were 93.44%, 91.25%. Further studies revealed that compounds I5 (IC50 = 19.13 µM) and I12 (IC50 = 9.12 µM) exhibited obviously antifungal activities against Phytophthora capsici, which were better than that of commercial agricultural fungicide hymexazol (IC50 = 325.45 µM). Therefore, these target compounds could be further studied and explored as a lead skeleton for discovery of novel antifungal agents.  相似文献   

5.
The incidence of invasive fungal infections has dramatically increased for several decades. In order to discover novel antifungal agents with broad spectrum and anti-Aspergillus efficacy, a series of novel triazole derivatives containing 1,2,3-benzotriazin-4-one was designed and synthesized. Most of the compounds exhibited stronger in vitro antifungal activities against tested fungi than fluconazole. Moreover, 6m showed comparable antifungal activity against seven pathogenic strains as voriconazole and albaconazole, especially against Aspergillus fumigatus (MIC = 0.25 μg/ml), and displayed moderate antifungal activity against fluconazole-resistant strains of Candida albicans. A clear SAR study indicated that compounds with groups at the 7-position resulted in novel antifungal triazoles with more effectiveness and a broader-spectrum.  相似文献   

6.
In an attempt to find novel azole antifungal agents with improved activity and broader spectrum, computer modeling was used to design a series of new azoles with piperidin-4-one O-substituted oxime side chains. Molecular docking studies revealed that they formed hydrophobic and hydrogen-bonding interactions with lanosterol 14α-demethylase of Candida albicans (CACYP51). In vitro antifungal assay indicates that most of the synthesized compounds showed good activity against tested fungal pathogens. In comparison with fluconazole, itraconazole and voriconazole, several compounds (such as 10c, 10e, and 10i) show more potent antifungal activity and broader spectrum, suggesting that they are promising leads for the development of novel antifungal agents.  相似文献   

7.
Sixteen novel pyrazole carboxamides with diarylamines scaffold were designed, synthesized and characterized in detail via 1H NMR, 13C NMR and ESI-HRMS. Preliminary bioassays showed that some of the target compounds exhibited good antifungal activity against Rhizoctonia solani, Fusarium oxysporum, Phytophthora infestans and Fusarium graminearum. Among them, compound 1c exhibited the highest antifungal activities against R. solani in vitro with EC50 value of 0.005?mg/L, superior to the commercially available fungicide fluxapyroxad (EC50?=?0.033?mg/L). And compound 1c (IC50?=?0.034?mg/L) showed higher inhibition abilities against succinate dehydrogenase than fluxapyroxad (IC50?=?0.037?mg/L). This study suggests that compound 1c could be regarded as a potential succinate dehydrogenase inhibitor.  相似文献   

8.
A series of novel pyraclostrobin derivatives were designed and prepared as antifungal agents. Their antifungal activities were tested in vitro with five important phytopathogenic fungi, namely, Batrylis cinerea, Phytophthora capsici, Fusarium sulphureum, Gloeosporium pestis and Sclerotinia sclerotiorum using the mycelium growth inhibition method. Among these compounds, 5s displayed IC50 value of 0.57?μg/mL against Batrylis cinerea and 5k-II displayed IC50 value of 0.43?μg/mL against Sclerotinia sclerotiorum, which were close to that of the positive control pyraclostrobin (0.18?μg/mL and 0.15?μg/mL). Other compounds 5f, 5k-II, 5j, 5m and 5s also exhibited strong antifungal activity. Further enzymatic assay demonstrated compound 5s inhibited porcine bc1 complex with IC50 value of 0.95?μM. The statistical results from an integrated computational pipeline demonstrated the predicted total binding free energy for compound 5s is the highest. Consequently, compound 5s with the biphenyl-4-methoxyl side chain could serve as a new motif as inhibitors of bc1 complex and deserve to be further investigated.  相似文献   

9.
In continuation of our efforts to develop new compounds with antimicrobial properties we describe design, synthesis, molecular docking study and evaluation of antimicrobial activity of seventeen novel 2-{[5-(adamantan-1-yl)-1,3,4-thiadiazol-2-yl]-imino}-5-arylidene-1,3-thiazolidin-4-ones. All compounds showed antibacterial activity against eight Gram positive and Gram negative bacterial species. Twelve out of seventeen compounds were more potent than streptomycin and all compounds exhibited higher potency than ampicillin. Compounds were also tested against three resistant bacterial strains: MRSA, P. aeruginosa and E. coli. The best antibacterial potential against ATCC and resistant strains was observed for compound 8 (2-{[5-(adamantan-1-yl)-1,3,4-thiadiazol-2-yl]-imino}-5-(4-nitrobenzylidene)-1,3thiazolidin-4-one). The most sensitive bacterium appeared to be S. typhimirium, followed by B. cereus while L. monocitogenes and M. flavus were the most resistant. Compounds were also tested for their antifungal activity against eight fungal species. All compounds exhibited antifungal activity better than the reference drugs bifonazole and ketokonazole (3-115 times). It was found that compound 8 appeared again to be the most potent. Molecular docking studies on E. coli MurB, MurA as well as C. albicans CYP 51 and dihydrofolate reductase were used for the prediction of mechanism of antibacterial and antifungal activities confirming the experimental results.  相似文献   

10.
A series of benzotriazole-azo-phenol/aniline derivatives were prepared and evaluated for their antifungal activities against six phytopathogenic fungi such as Fusarium graminearum, Fusarium solani, Alternaria alternate, Valsa mali, Botrytis cinerea, and Curvularia lunata. Among them, compounds IIf, IIn, and IIr showed a broad-spectrum of potent antifungal activities. Especially some compounds displayed 3.5–10.8 folds more potent activities than carbendazim against A. alternata and C. lunata. Notably, compounds IIc, IIm, and IIr exhibited good protective and therapeutic effects against B. cinerea at 200?μg/mL. Their structure-activity relationships were also discussed.  相似文献   

11.
A series of 3,6-disubstituted imidazo[1,2-b]pyridazine derivatives have been synthesized and characterized with spectroscopic analyses. The antifungal activities of these compounds against nine phytopathogenic fungi were evaluated by the mycelium growth rate method. The in vitro antifungal bioassays indicated that most of compounds displayed excellent and broad-spectrum antifungal activities. Especially, compounds 4a, 4c, 4d, 4l and 4r exhibited 1.9–25.5 fold more potent than the commercially available fungicide hymexazol against Corn Curvalaria Leaf Spot (CL), Alternaria alternate (AA), Pyricularia oryzae (PO) and Alternaria brassicae (AB) strains. Structure-activity relationship analysis showed that the enhanced antifungal activity is significantly affected by the substituents on the benzene ring and pyridazine ring.  相似文献   

12.
A series of novel 2,3-dihydro-4H-1-benzoselenin-4-one (thio)semicarbazone derivatives were designed and synthesized by using molecular hybridization approach. All the target compounds were characterized by HRMS and NMR and evaluated in vitro antifungal activity against five pathogenic strains. In comparison with precursor selenochroman-4-ones, the hybrid molecules in this study showed significant improvement in antifungal activities. Notably, compound B8 showed significant antifungal activity against other strains excluding Aspergillus fumigatus (0.25 μg/mL on Candida albicans, 2 μg/mL on Cryptococcus neoformans, 8 μg/mL on Candida zeylanoides and 2 μg/mL on fluconazole-sensitive strains of Candida albicans). Moreover, compounds B8, B9 and C2 also displayed most potent activities against four fluconazole-resistance strains. Especially the MIC values of the hybrid molecule B8 against fluconazole-resistant strains were in the range of 0.5–2 μg/mL. Therefore, the molecular hybridization approach in this study provided new ideas for the development of antifungal drug.  相似文献   

13.
In continuation of our program to discover new potential antifungal agents, a series of amide and imine derivatives containing a kakuol moiety were synthesized and characterized by the spectroscopic analysis. By using the mycelium growth rate method, the target compounds were evaluated systematically for antifungal activities in vitro against four plant pathogenic fungi, and structure–activity relationships (SAR) were derived. Compounds 7d, 7e, 7h, 7i and 7r showed obvious inhibitory activity against the corresponding tested fungi at 50 μg/mL. Especially, compounds 7e and 7r displayed more potent antifungal activity against B. cinerea than that of thiabendazole (a positive control). Moreover, compound 7e also exhibited good activity against A. alternata with EC50 values of 11.0 µg/mL, and the value was slightly superior to that of thiabendazole (EC50 = 14.9 µg/mL). SAR analysis showed that the ether group was a highly sensitive structural moiety to the activity and the type as well as position of substituents on benzene ring could make some effects on the activity.  相似文献   

14.
Three novel series of s-triazine derivatives, including thirty-five new compounds 2a-d, 3a-3p, 4b-d, 5b-d, 6d-6d, and 7a-7f were synthesized comprising a diversity of substituents based on the structure of Astrazeneca arylaminotriazine DNA gyrase B inhibitor. The antimicrobial activity was determined for all compounds against Staphylococcus aureus, Escherichia coli and Candida albicans using the two-fold serial dilution technique and against reference standards Ampicillin for the antibacterial screening and Clotrimazole regarding the antifungal evaluation. The tested compounds showed strong to moderate antibacterial inhibitory action and weak antifungal activity. Compounds 3j and 6b were the most potent antibacterial agents against the tested strains and multi-drug resistant (MDR) clinical isolates of Klebsiella pneumoniae and methicillin resistant Staphylococcus aureus (MRSA1) with minimal toxicity in comparison to the reference drugs. In silico molecular properties calculations and molecular docking study for 3j and 6b revealed that both compounds could be considered as promising antibacterial DNA gyrase B inhibitors.  相似文献   

15.
The design, synthesis, in vitro evaluation, and conformational study of nitrosopyrimidine derivatives acting as antifungal agents are reported. Different compounds structurally related with 4,6-bis(alkyl or arylamino)-5-nitrosopyrimidines were evaluated. Some of these nitrosopyrimidines have displayed a significant antifungal activity against human pathogenic strains. In this paper, we report a new group of nitrosopyrimidines acting as antifungal agents. Among them, compounds 2a, 2b and 15, the latter obtained from a molecular modeling study, exhibited antifungal activity against Candida albicans, Candida tropicalis and Cryptococcus neoformans. We have performed a conformational and electronic analysis on these compounds by using quantum mechanics calculations in conjunction with Molecular Electrostatic Potentials (MEP) obtained from B3LYP/6–31G(d) calculations. Our experimental and theoretical results have led us to identify a topographical template which may provide a guide for the design of new nitrosopyrimidines with antifungal effects.  相似文献   

16.
A series of aryl fluorosulfate analogues (137) were synthesized and tested for in vitro antibacterial and antifungal studies, and validated by docking studies. The compounds 9, 12, 14, 19, 25, 26, 35, 36 and 37 exhibited superior antibacterial potency against tested bacterial strains, while compounds 2, 4, 5, 15, 35, 36 and 37 were found to have better antifungal activity against tested fungal strains, compared to standard antibiotic gentamicin and ketoconazole respectively. Among all the synthesized 37 analogs, compounds 25, 26, 35, 36 and 37 displayed excellent anti-biofilm property against Staphylococcus aureus. The structure–activity relationship (SAR) revealed that the antimicrobial activity depends upon the presence of –OSO2F group and slender effect of different substituent’s on the phenyl rings. The electron donating (OCH3) groups in analogs increase the antibacterial activity, and interestingly the electron withdrawing (Cl, NO2, F and Br) groups increase the antifungal activity (except compound 35, 36 and 37). The mechanism of potent compounds showed membrane damage on bacteria confirmed by SEM. Compounds 35, 36 and 37 exhibited highest glide g-scores in molecular docking studies and validated the biocidal property.  相似文献   

17.
In the present study, fifteen novel 3-(6-methoxy-3,4-dihydroquinolin-1(2H)-yl)-1-(piperazin-1-yl)propan-1-one (6a-o) derivatives were designed as inhibitor of HIV-1 RT using ligand based drug design approach and in-silico evaluated for drug-likeness properties. Designed compounds were synthesized, characterized and in-vitro evaluated for RT inhibitory activity against wild HIV-1 RT strain. Among the tested compounds, four compounds (6a, 6b, 6j and 6o) exhibited significant inhibition of HIV-1 RT (IC50  10 μg/ml). All synthesized compounds were also evaluated for anti-HIV-1 activity as well as cytotoxicity on T lymphocytes, in which compounds 6b and 6l exhibited significant anti-HIV activity (EC50 values 4.72 and 5.45 μg/ml respectively) with good safety index.Four compounds (6a, 6b, 6j and 6o) found significantly active against HIV-1 RT in the in-vitro assay were in-silico evaluated against two mutant RT strains as well as one wild strain. Further, titled compounds were evaluated for in-vitro antibacterial (Escherichia coli, Pseudomonas putida, Staphylococcus aureus and Bacillus cereus) and antifungal (Candida albicans and Aspergillus niger) activities.  相似文献   

18.
To further explore the structure activity relationships (SARs) of our previously discovered antifungal lead compound (1), a series of biphenyl imidazole analogues were designed, synthesized and evaluated for their in vitro antifungal activity. Many of the synthesized compounds showed excellent activity against Candida albicans and Candida tropicalis. Among these compounds, 2-F substituted analogue 12m displayed the most remarkable in vitro activity against C. albicans, C. neoformans, A. fumigatus and fluconazole-resistant C. alb. strains, which is superior or comparable to the activity of the reference drugs fluconazole and itraconazole. Notably, the compound 12m exhibited low inhibition profiles for various human cytochrome P450 isoforms and showed low toxicity to mammalian A549 cells and U87 cells. The SARs and binding mode established in this study will be useful for further lead optimization.  相似文献   

19.
A series of γ-lactam analogs containing 1,3-benzodioxole moiety were designed, and these derivatives were synthesized from the lead compound of lactam via a structural diversity-oriented synthesis, their structures were confirmed by 1HNMR,13CNMR, ESI-MS spectrum. Their antifungal activities were evaluated against four serious and typically crop-threatening agricultural fungi, including Rhizoctonia solani, Alternaria tenuis Nees, Gloeosporium theae-sinensis, and Fusarium graminearum. Some of these derivatives exhibited activity against Alternaria tenuis Nees higher than that of commercial fungicides carbendazim, such as compounds 7a, 7b, and 7i, compared with the blank control, some of these derivatives showed good antifungal activities against Gloeosporium theae-sinensis and Fusarium graminearum. The systematic study provides evidences for further structural modification and application of lactam analogues as antifungal agents for agriculture.  相似文献   

20.
A series of novel 10-((1H-indol-3-yl)methylene)-7-aryl-7,10-dihydro-5H-benzo[h]thiazolo[2,3-b]quinazolin-9(6H)-ones (8at) have been synthesized in good yields by the reaction of benzo[h]quinazoline-2(1H)-thiones (4af) with 2-chloro-N-phenylacetamide (5) followed by Knoevenagel condensation with various indole-3-carbaldehydes (7ad) under conventional method. All the synthesized compounds were characterized by spectral studies and screened for their in vitro anticancer and antimicrobial activities. Compound 8c has exhibited excellent activity against MCF-7 (breast cancer cell line) than the standard drug Doxorubicin. Compound 8d against both the cancer cell lines, 8q against MCF-7 and 8c, 8h against HepG2 have also shown good activity. Remaining compounds have shown moderate activity against both the cell lines. Antimicrobial activity revealed that, the compound 8q and 8t against Staphylococcus aureus and 8i, 8k, 8l, 8q & 8t against Klebsiella pneumoniae have shown equipotent activity on comparing with the standard drug Streptomycin. Remaining compounds have shown significant antibacterial and comparable antifungal activities against all the tested microorganisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号