首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The target cell tropism of enveloped viruses is regulated by interactions between viral proteins and cellular receptors determining susceptibility at a host cell, tissue or species level. However, a number of additional cell-surface moieties can also bind viral envelope glycoproteins and could act as capture receptors, serving as attachment factors to concentrate virus particles on the cell surface, or to disseminate the virus infection to target organs or susceptible cells within the host. Here, we used Junín virus (JUNV) or JUNV glycoprotein complex (GPC)-pseudotyped particles to study their ability to be internalized by the human C-type lectins hDC- or hL-SIGN. Our results provide evidence that hDC- and hL-SIGN can mediate the entry of Junín virus into cells, and may play an important role in virus infection and dissemination in the host.  相似文献   

2.
To spread infection, enveloped viruses must bud from infected host cells. Recent research indicates that HIV and other enveloped RNA viruses bud by appropriating the cellular machinery that is normally used to create vesicles that bud into late endosomal compartments called multivesicular bodies. This new model of virus budding has many potential implications for cell biology and viral pathogenesis.  相似文献   

3.
Many host cell surface proteins, including viral receptors, are incorporated into enveloped viruses. To address the functional significance of these host proteins, murine leukemia viruses containing the cellular receptors for Rous sarcoma virus (Tva) or ecotropic murine leukemia virus (MCAT-1) were produced. These receptor-pseudotyped viruses efficiently infect cells expressing the cognate viral envelope glycoproteins, with titers of up to 105 infectious units per milliliter for the Tva pseudotypes. Receptor and viral glycoprotein specificity and functional requirements are maintained, suggesting that receptor pseudotype infection recapitulates events of normal viral entry. The ability of the Tva and MCAT-1 pseudotypes to infect cells efficiently suggests that, in contrast to human immunodeficiency virus type 1 entry, neither of these retroviral receptors requires a coreceptor for membrane fusion. In addition, the ability of receptor pseudotypes to target infected cells suggests that they may be useful therapeutic reagents for directing infection of viral vectors. Receptor-pseudotyped viruses may be useful for identifying new viral receptors or for defining functional requirements of known receptors. Moreover, this work suggests that the production of receptor pseudotypes in vivo could provide a mechanism for expanded viral tropism with potential effects on the pathogenesis and evolution of the virus.  相似文献   

4.
The acetylcholine receptor as a cellular receptor for rabies virus   总被引:3,自引:0,他引:3  
Characterization of specific host cell receptors for enveloped viruses is a difficult problem because many enveloped viruses bind to a variety of substrates which are not obviously related to tissue tropisms in the intact host. Viruses with a limited cellular tropism in infected animals present useful models for studying the mechanisms by which virus attachment regulates the disease process. Rabies virus is a rhabdovirus which exhibits a marked neuronotropism in infected animals. Limited data suggest that spread occurs by transsynaptic transfer of virus. The results of recent experiments at Yale suggest that viral antigen is localized very soon after injection at neuromuscular junctions, the motor nerve endings on muscle tissue. On cultured muscle cells, similar co-localization with the acetylcholine receptor is seen both before and after virus multiplication. Pretreatment of these cells with some ligands of the acetylcholine receptor results in reduced viral infection. These findings suggest that a neurotransmitter receptor or a closely associated molecule may serve as a specific host cell receptor for rabies virus and thus may be responsible for the tissue tropism exhibited by this virus. In addition to clarifying aspects of rabies virus pathogenesis, these studies have broad implications regarding the mechanism by which other viruses or viral immunizations might mediate autoimmune diseases such as myasthenia gravis.  相似文献   

5.
Virus–receptor interactions play a key regulatory role in viral host range, tissue tropism, and viral pathogenesis. Viruses utilize elegant strategies to attach to one or multiple receptors, overcome the plasma membrane barrier, enter, and access the necessary host cell machinery. The viral attachment protein can be viewed as the “key” that unlocks host cells by interacting with the “lock”—the receptor—on the cell surface, and these lock-and-key interactions are critical for viruses to successfully invade host cells. Many common themes have emerged in virus–receptor utilization within and across virus families demonstrating that viruses often target particular classes of molecules in order to mediate these events. Common viral receptors include sialylated glycans, cell adhesion molecules such as immunoglobulin superfamily members and integrins, and phosphatidylserine receptors. The redundancy in receptor usage suggests that viruses target particular receptors or “common locks” to take advantage of their cellular function and also suggests evolutionary conservation. Due to the importance of initial virus interactions with host cells in viral pathogenesis and the redundancy in viral receptor usage, exploitation of these strategies would be an attractive target for new antiviral therapeutics.  相似文献   

6.
Measles virus (MeV), a member of the paramyxovirus family of enveloped RNA viruses and one of the most infectious viral pathogens identified, accounts for major pediatric morbidity and mortality worldwide although coordinated efforts to achieve global measles control are in place. Target cell entry is mediated by two viral envelope glycoproteins, the attachment (H) and fusion (F) proteins, which form a complex that achieves merger of the envelope with target cell membranes. Despite continually expanding knowledge of the entry strategies employed by enveloped viruses, our molecular insight into the organization of functional paramyxovirus fusion complexes and the mechanisms by which the receptor binding by the attachment protein triggers the required conformational rearrangements of the fusion protein remain incomplete. Recently reported crystal structures of the MeV attachment protein in complex with its cellular receptors CD46 or SLAM and newly developed functional assays have now illuminated some of the fundamental principles that govern cell entry by this archetype member of the paramyxovirus family. Here, we review these advances in our molecular understanding of MeV entry in the context of diverse entry strategies employed by other members of the paramyxovirus family.  相似文献   

7.
Viruses, despite being relatively simple in structure and composition, have evolved to exploit complex cellular processes for their replication in the host cell. After binding to their specific receptor on the cell surface, viruses (or viral genomes) have to enter cells to initiate a productive infection. Though the entry processes of many enveloped viruses is well understood, that of most non-enveloped viruses still remains unresolved. Recent studies have shown that compared to direct fusion at the plasma membrane, endocytosis is more often the preferred means of entry into the target cell. Receptor-mediated endocytic pathways such as the dynamin-dependent clathrin and caveolar pathways are well characterized as viral entry portals. However, many viruses are able to utilize multiple uptake pathways. Fluid phase uptake, though relatively non-specific in terms of its cargo, potentially aids viral infection by its ability to intersect with the endocytic pathway. In fact, many viruses despite using specialized pathways for entry are still able to generate productive infection via fluid phase uptake. Macropinocytosis, a major fluid uptake pathway found in epithelial cells and fibroblasts, is stimulated by growth factor receptors. Many viruses can induce these signaling cascades in cells leading to macropinocytosis. Though endocytic trafficking is utilized by both enveloped and non-enveloped viruses, key differences lie in the way membranes are traversed to deposit the viral genome at its site of replication. This review will discuss recent developments in the rapidly evolving field of viral entry.  相似文献   

8.
9.
10.
Welsch S  Müller B  Kräusslich HG 《FEBS letters》2007,581(11):2089-2097
Enveloped viruses exit their host cell by budding from a cellular membrane and thereby spread from one cell to another. Virus budding in general involves the distortion of a cellular membrane away from the cytoplasm, envelopment of the viral capsid by one or more lipid bilayers that are enriched in viral membrane glycoproteins, and a fission event that separates the enveloped virion from the cellular membrane. While it was initially thought that virus budding is always driven by viral transmembrane proteins interacting with the inner structural proteins, it is now clear that the driving force may be different depending on the virus. Research over the past years has shown that viral components specifically interact with host cell lipids and proteins, thereby adopting cellular functions and pathways to facilitate virus release. This review summarizes the current knowledge of the cellular membrane systems that serve as viral budding sites and of the viral and cellular factors involved in budding. One of the best studied cellular machineries required for virus egress is the ESCRT complex, which will be described in more detail.  相似文献   

11.
Virus entry into cells is typically initiated by binding of virally encoded envelope proteins to specific cell surface receptors. Studying infectivity of lentivirus pseudotypes lacking envelope binding, we still observed high infectivity for some cell types. On further investigation, we discovered that this infectivity is conferred by the soluble bovine protein S in fetal calf serum, or Gas6, its human homolog. Gas6 enhances native infectivity of pseudotypes of multiple viral envelope proteins. Gas6 mediates binding of the virus to target cells by bridging virion envelope phosphatidylserine to Axl, a TAM receptor tyrosine kinase on target cells. Phagocytic clearance of apoptotic cells is known to involve bridging by Gas6. Replication of vaccinia virus, which was previously reported to use apoptotic mimicry to enter cells, is also enhanced by Gas6. These results reveal an alternative molecular mechanism of viral entry that can broaden host range and enhance infectivity of enveloped viruses.  相似文献   

12.
膜融合是有包膜病毒入侵靶细胞的关键步骤,低pH、受体结合、二者兼具或其他尚未界定的机制均可触发病毒融合蛋白的构象重排,介导病毒包膜与靶细胞膜或内体膜间的融合。组氨酸(histidine,His)残基是唯一一个质子化状态变化(pKa~6~7)接近于病毒融合阈值(~pH6)的氨基酸,参与多种低pH依赖的病毒融合蛋白构象转变及膜融合,对其可能作用机制的阐述将有助于抗病毒药物的研制与发展。  相似文献   

13.
The entry of enveloped viruses into its host cells is a crucial step for the propagation of viral infection. The envelope glycoprotein complex controls viral tropism and promotes the membrane fusion process. The surface glycoproteins of enveloped viruses are synthesized as inactive precursors and sorted through the constitutive secretory pathway of the infected cells. To be infectious, most of the viruses require viral envelope glycoprotein maturation by host cell endoproteases. In spite of the strong variability of primary sequences observed within different viral envelope glycoproteins, the endoproteolytical cleavage occurs mainly in a highly conserved domain at the carboxy terminus of the basic consensus sequence (Arg-X-Lys/Arg-Arg downward arrow). The same consensus sequence is recognized by the kexin/subtilisin-like serine proteinases (so called convertases) in many cellular substrates such as prohormones, proprotein of receptors, plasma proteins, growth factors and bacterial toxins. Therefore, several groups of investigators have evaluated the implication of convertases in viral envelope glycoprotein cleavage. Using the vaccinia virus overexpression system, furin was first shown to mediate the proteolytic maturation of both human immunodeficiency virus (HIV-1) and influenza virus envelope glycoproteins. In vitro studies demonstrated that purified convertases directly and specifically cleave viral envelope glycoproteins. Although these studies suggested the participation of several enzymes belonging to the convertases family, recent data suggest that other protease families may also participate in the HIV envelope glycoprotein processing. Their role in the physiological maturation process is still hypothetical and the molecular mechanism of the cleavage is not well documented. Crystallization of the hemagglutinin precursor (HA0) of influenza virus allowed further understanding of the molecular interaction between viral precursors and the cellular endoproteases. Furthermore, relationships between differential pathogenicity of influenza strains and their susceptibility to cleavage are molecularly funded. Here we review the most recent data and recent insights demonstrating the crucial role played by this activation step in virus infectivity. We discuss the cellular endoproteases that are implicated in HIV gp160 endoproteolytical maturation into gp120 and gp41.  相似文献   

14.
Rab proteins and their effectors facilitate vesicular transport by tethering donor vesicles to their respective target membranes. By using gene trap insertional mutagenesis, we identified Rab9, which mediates late-endosome-to-trans-Golgi-network trafficking, among several candidate host genes whose disruption allowed the survival of Marburg virus-infected cells, suggesting that Rab9 is utilized in Marburg replication. Although Rab9 has not been implicated in human immunodeficiency virus (HIV) replication, previous reports suggested that the late endosome is an initiation site for HIV assembly and that TIP47-dependent trafficking out of the late endosome to the trans-Golgi network facilitates the sorting of HIV Env into virions budding at the plasma membrane. We examined the role of Rab9 in the life cycles of HIV and several unrelated viruses, using small interfering RNA (siRNA) to silence Rab9 expression before viral infection. Silencing Rab9 expression dramatically inhibited HIV replication, as did silencing the host genes encoding TIP47, p40, and PIKfyve, which also facilitate late-endosome-to-trans-Golgi vesicular transport. In addition, silencing studies revealed that HIV replication was dependent on the expression of Rab11A, which mediates trans-Golgi-to-plasma-membrane transport, and that increased HIV Gag was sequestered in a CD63+ endocytic compartment in a cell line stably expressing Rab9 siRNA. Replication of the enveloped Ebola, Marburg, and measles viruses was inhibited with Rab9 siRNA, although the non-enveloped reovirus was insensitive to Rab9 silencing. These results suggest that Rab9 is an important cellular target for inhibiting diverse viruses and help to define a late-endosome-to-plasma-membrane vesicular transport pathway important in viral assembly.  相似文献   

15.
New World bats have recently been discovered to harbor influenza A virus (FLUAV)-related viruses, termed bat-associated influenza A-like viruses (batFLUAV). The internal proteins of batFLUAV are functional in mammalian cells. In contrast, no biological functionality could be demonstrated for the surface proteins, hemagglutinin (HA)-like (HAL) and neuraminidase (NA)-like (NAL), and these proteins need to be replaced by their human counterparts to allow spread of batFLUAV in human cells. Here, we employed rhabdoviral vectors to study the role of HAL and NAL in viral entry. Vectors pseudotyped with batFLUAV-HAL and -NAL were able to enter bat cells but not cells from other mammalian species. Host cell entry was mediated by HAL and was dependent on prior proteolytic activation of HAL and endosomal low pH. In contrast, sialic acids were dispensable for HAL-driven entry. Finally, the type II transmembrane serine protease TMPRSS2 was able to activate HAL for cell entry indicating that batFLUAV can utilize human proteases for HAL activation. Collectively, these results identify viral and cellular factors governing host cell entry driven by batFLUAV surface proteins. They suggest that the absence of a functional receptor precludes entry of batFLUAV into human cells while other prerequisites for entry, HAL activation and protonation, are met in target cells of human origin.  相似文献   

16.
Viruses are multivalent particles that attach to cells through one or more bonds between viral attachment proteins (VAP) and specific cellular receptors. Three modes of virus binding are presented that can explain the diversity in binding data observed among viruses. They are based on multivalency of attachment and spatial versus receptor saturation effects which are easily distinguished based upon simple criteria. Mode 1 involves only monovalent virus/receptor binding. Modes 2 and 3 involve multivalent bonds between the virus and cell; however, in mode 3 space on the cell surface becomes saturated before receptors. A model is developed for viral attachment that accounts for nonspecific binding, receptor/virus interactions, and spatial saturation effects. The model can describe each mode in different limits and can be applied to virus binding data to extract key physical information such as receptor number and affinity. These values are used to postulate the type of VAP/receptor interaction involved and to predict binding at different parameter values. For the mode 2 binding of Adenovirus 2, the model predicts a receptor number of 4-15 x 10(3) on HeLa cells and an affinity of 2-6 x 10(7) M-1 which closely approximate experimental estimates. For the binding of three, broad-host-range, enveloped viruses, Semliki Forest virus, Vesicular Stomatitis virus, and the baculovirus, Autographa californica nuclear polyhedrosis virus, the model predicts receptor numbers of 10(5) or greater and affinities in the range of 10(4) to 10(5) M-1. These values are indicative of a VAP/oligosaccharide interaction which has been documented for a number of other viruses. Experimental evidence is presented that is the first to demonstrate that baculovirus binding is mediated by a cell surface receptor.  相似文献   

17.
Sialic acid-containing compounds play a key role in the initial steps of the paramyxovirus life cycle. As enveloped viruses, their entry into the host cell consists of two main events: binding to the host cell and membrane fusion. Virus adsorption occurs at the surface of the host cell with the recognition of specific receptor molecules located at the cell membrane by specific viral attachment proteins. The viral attachment protein present in some paramyxoviruses (Respirovirus, Rubulavirus and Avulavirus) is the HN glycoprotein, which binds to cellular sialic acid-containing molecules and exhibits sialidase and fusion promotion activities. Gangliosides of the gangliotetraose series bearing the sialic acid N-acetylneuraminic (Neu5Ac) on the terminal galactose attached in α2-3 linkage, such as GD1a, GT1b, and GQ1b, and neolacto-series gangliosides are the major receptors for Sendai virus. Much less is known about the receptors for other paramyxoviruses than for Sendai virus. Human parainfluenza viruses 1 and 3 preferentially recognize oligosaccharides containing N-acetyllactosaminoglycan branches with terminal Neu5Acα2-3Gal. In the case of Newcastle disease virus, has been reported the absence of a specific pattern of the gangliosides that interact with the virus. Additionally, several works have described the use of sialylated glycoproteins as paramyxovirus receptors. Accordingly, the design of specific sialic acid analogs to inhibit the sialidase and/or receptor binding activity of viral attachment proteins is an important antiviral strategy. In spite of all these data, the exact nature of paramyxovirus receptors, apart from their sialylated nature, and the mechanism(s) of viral attachment to the cell surface are poorly understood. The authors would like to dedicate this review to Prof. José A. Cabezas, recently retired who, as well being our mentor and colleague, introduced us into the fascinating field of sialic acid-containing glycoconjugates and viral sialidases at a time when just a very small number of scientists were paying attention to this important field of research. Also, he has been for us a continuous source of inspiration and friendship to us. The ganglioside nomenclature of Svennerholm [1] is used.  相似文献   

18.
被膜蛋白糖基化在HIV感染中的作用   总被引:1,自引:1,他引:0  
在HIV感染过程中,病毒被膜蛋白糖基化起着重要作用。它使病毒粒子具有高度糖基化的表面,帮助HIV逃避人体免疫细胞识别和攻击。在病毒入侵时,被膜糖蛋白与宿主细胞表面的受体结合,并进行一系列构象变化,使病毒粒子顺利地与宿主细胞膜融合。介绍近年来对被膜蛋白糖基化过程与HIV成熟、感染和逃避免疫应答等方面分子水平作用机理的深入了解,这些作用机理将会有助于艾滋病疫苗的研制和以“糖链为靶”药物的开发。  相似文献   

19.
Our main objective of this study was to determine how Human Immunodeficiency Virus (HIV) avoids induction of the antiviral Type I Interferon (IFN) system. To limit viral infection, the innate immune system produces important antiviral cytokines such as the IFN. IFN set up a critical roadblock to virus infection by limiting further replication of a virus. Usually, IFN production is induced by the recognition of viral nucleic acids by innate immune receptors and subsequent downstream signaling. However, the importance of IFN in the defense against viruses has lead most pathogenic viruses to evolve strategies to inhibit host IFN induction or responses allowing for increased pathogenicity and persistence of the virus. While the adaptive immune responses to HIV infection have been extensively studied, less is known about the balance between induction and inhibition of innate immune defenses, including the antiviral IFN response, by HIV infection. Here we show that HIV infection of T cells does not induce significant IFN production even IFN I Interferon production. To explain this paradox, we screened HIV proteins and found that two HIV encoded proteins, Vpu and Nef, strongly antagonize IFN induction, with expression of these proteins leading to loss of expression of the innate immune viral RNA sensing adaptor protein, IPS-1 (IFN-β promoter stimulator-1). We hypothesize that with lower levels of IPS-1 present, infected cells are defective in mounting antiviral responses allowing HIV to replicate without the normal antiviral actions of the host IFN response. Using cell lines as well as primary human derived cells, we show that HIV targeting of IPS-1 is key to limiting IFN induction. These findings describe how HIV infection modulates IFN induction providing insight into the mechanisms by which HIV establishes infection and persistence in a host.  相似文献   

20.
Coronaviruses represent a large family of enveloped RNA viruses that infect a large spectrum of animals. In humans, the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) is responsible for the current COVID-19 pandemic and is genetically related to SARS-CoV and Middle East respiratory syndrome-related coronavirus (MERS-CoV), which caused outbreaks in 2002 and 2012, respectively. All viruses described to date entirely rely on the protein synthesis machinery of the host cells to produce proteins required for their replication and spread. As such, virus often need to control the cellular translational apparatus to avoid the first line of the cellular defense intended to limit the viral propagation. Thus, coronaviruses have developed remarkable strategies to hijack the host translational machinery in order to favor viral protein production. In this review, we will describe some of these strategies and will highlight the role of viral proteins and RNAs in this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号