首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Chen L  Shi SD  Liu YQ  Gao QJ  Yi X  Liu KK  Liu H 《Carbohydrate research》2011,346(10):1250-1256
A novel 1,2-cis stereoselective synthesis of protected α-D-Gal-(1→2)-D-Glc fragments was developed. Methyl 2-O-acetyl-3-O-allyl-4,6-O-benzylidene-α-D-galactopyranosyl-(1→2)-3-O-benzoyl-4,6-O-benzylidene-α-D-glucopyranoside (13), methyl 2-O-acetyl-3-O-allyl-4,6-O-benzylidene-α-D-galactopyranosyl-(1→2)-3,4,6-tri-O-benzoyl-α-D-glucopyranoside (15), methyl 2-O-acetyl-3-O-allyl-4,6-O-benzylidene-α-D-galactopyranosyl-(1→2)-3-O-benzoyl-4,6-O-benzylidene-β-D-glucopyranoside (17), and methyl 2-O-acetyl-3-O-allyl-4,6-O-benzylidene-α-D-galactopyranosyl-(1→2)-3,4,6-tri-O-benzoyl-β-D-glucopyranoside (19) were favorably obtained by coupling a new donor, isopropyl 2-O-acetyl-3-O-allyl-4,6-O-benzylidene-1-thio-β-D-galactopyranoside (2), with acceptors, methyl 3-O-benzoyl-4,6-O-benzylidene-α-D-glucopyranoside (4), methyl 3,4,6-tri-O-benzoyl-α-D-glucopyranoside (5), methyl 3-O-benzoyl-4,6-O-benzylidene-β-D-glucopyranoside (8), and methyl 3,4,6-tri-O-benzoyl-β-D-glucopyranoside (12), respectively. By virtue of the concerted 1,2-cis α-directing action induced by the 3-O-allyl and 4,6-O-benzylidene groups in donor 2 with a C-2 acetyl group capable of neighboring-group participation, the couplings were achieved with a high degree of α selectivity. In particular, higher α/β stereoselective galactosylation (5.0:1.0) was noted in the case of the coupling of donor 2 with acceptor 12 having a β-CH(3) at C-1 and benzoyl groups at C-4 and C-6.  相似文献   

2.
To clarify the utility as a protective group of 3-O-allyl group on ring-opening polymerization of alpha-D-glucopyranose 1,2,4-orthopivalate derivatives, four orthopivalate derivatives, 3-O-allyl-6-O-pivaloyl- (1), 3-O-allyl-6-O-benzyl- (2), 3,6-di-O-allyl- (3), and 3-O-allyl-6-O-methyl-alpha-D-glucopyranose 1,2,4-orthopivalates (4), were selected as starting monomers and were polymerized under -30 degrees C in CH2Cl2 using BF3.Et2O as a catalyst. All the orthopivalate derivatives 1-4 were found to give stereoregular polysaccharides, (1-->4)-beta-D-glucopyranans. Thus, it was concluded that the allyl group as a protective group at 3-O position of glucose othropivalate is acceptable to yield stereoregular (1-->4)-beta-D-glucopyranans, cellulose derivatives.  相似文献   

3.
4-methoxyphenyl glycosides of 2,3'-bis-alpha-L-arabinofuranosyl branched beta-D-(1-->6)-linked galactopyranosyl tetraose (16), 3',2'-bis-alpha-L-arabinofuranosyl branched beta-D-(1-->6)-linked galactopyranosyl hexaose (27), and a twentyose (42) consisting of beta-(1-->6)-linked D-galactopyranosyl pentadecaoligosaccharide backbone with alpha-L-arabinofuranosyl side chains alternately attached at C-2 and C-3 of the middle galactose residue of each consecutive beta-(1-->6)-linked galactotriose unit of the backbone, were synthesized with isopropyl 3-O-allyl-2,4-di-O-benzoyl-1-thio-beta-D-galactopyranoside (6), 2,3,4,6-tetra-O-benzoyl-alpha-D-galactopyranosyl trichloroacetimidate (7), 2,3,5-tri-O-benzoyl-alpha-L-arabinofuranosyl trichloroacetimidate (12), 6-O-acetyl-2,3,4-tri-O-benzoyl-alpha-D-galactopyranosyl trichloroacetimidate (17), 4-methoxyphenyl 2,3,4-tri-O-benzoyl-beta-D-galactopyranoside (19), and 2,6-di-O-acetyl-3,4-di-O-benzoyl-alpha-D-galactopyranosyl trichloroacetimidate (28) as the key synthons. Condensation of 6 with 7 gave the disaccharide donor 8, and subsequent condensation of 8 with 4-methoxyphenyl 2,3,4-tri-O-benzoyl-beta-D-galactopyranosyl-(1-->6)-2-O-acetyl-3,4-di-O-benzoyl-beta-D-galactopyranoside (9) followed by selective deacetylation afforded the tetrasaccharide acceptor 11. Coupling of 11 with 12 gave the pentasaccharide 13, its deallylation followed by coupling with 12, and debenzoylation gave the hexasaccharide 16 with beta-(1-->6)-linked galactopyranose backbone and 2- and 3'-linked alpha-L-arabinofuranose side chains. The octasaccharide 27 was similarly synthesized, while the twentyoside 42 was synthesized with tetrasaccharides 33 or 24 as the donors and 23, 36, 38, and 40 as the acceptors by consecutive couplings followed by deacylation.  相似文献   

4.
Chen L  Kong F 《Carbohydrate research》2002,337(15):1373-1380
A practical synthesis of beta-D-GlcA-(1-->3)-beta-D-Gal-(1-->3)-beta-D-Gal-(1-->4)-beta-D-Xyl-(1-->OMe) was achieved by coupling of methyl 2,3,4-tri-O-acetyl-alpha-D-glucopyranosyluronate trichloroacetimidate with a trisaccharide acceptor. The trisaccharide acceptor was obtained by condensation of 3-O-allyl-2,4,6-tri-O-benzoyl-beta-D-galactopyranosyl-(1-->3)-2,4,6-tri-O-benzoyl-alpha-D-galactopyranosyl trichloroacetimidate with methyl 2,3-di-O-benzoyl-beta-D-xylopyranoside, followed by deallylation. The beta-(1-->3)-linked disaccharide was prepared readily with p-methoxyphenyl 3-O-allyl-2,4,6-tri-O-benzoyl-beta-D-galactopyranoside as the key synthon. The alpha-(1-->3)-linkage was formed in considerable amount with galactose mono- and disaccharide trichloroacetimidate donors with C-2 neighboring group participation.  相似文献   

5.
Chen L  Zhao XE  Lai D  Song Z  Kong F 《Carbohydrate research》2006,341(9):1174-1180
A concise and practical synthesis of the antigenic globotriose, alpha-D-Gal-(1-->4)-beta-D-Gal-(1-->4)-beta-D-Glc (13), was achieved by coupling of a monosaccharide donor, 3-O-allyl-2-O-benzoyl-4,6-O-benzylidene-alpha-D-galactopyranosyl trichloroacetimidate (4) with a disaccharide acceptor, p-methoxyphenyl 2,3,6-tri-O-benzoyl-beta-D-galactopyranosyl-(1-->4)-2,3,6-tri-O-benzoyl-beta-D-glucopyranoside (8), followed by deprotection. In spite of the existence of a C-2-ester substituent capable of neighboring-group participation in the donor, the coupling gave exclusively the alpha-linkage in satisfactory yield. The acceptor 8 was readily obtained from selective 3-O-benzoylation of the galactosyl ring of p-methoxyphenyl 2,6-di-O-benzoyl-beta-D-galactopyranosyl-(1-->4)-2,3,6-tri-O-benzoyl-beta-D-glucopyranoside (7), which was prepared from p-methoxyphenyl beta-D-lactoside (5) via isopropylidenation, benzoylation, and deisopropylidenation. Donor 4 was obtained from p-methoxylphenyl 3-O-allyl-2,4,6-tri-O-benzoyl-beta-D-galactopyranoside (1) via selective 4,6-di-O-debenzoylation, oxidative removal of 1-O-MP, benzylidenation, and trichloroacetimidate formation.  相似文献   

6.
Trapping of 3-methylcholanthrene (MC) radical cation by nucleophilic compounds occurs specifically at the 1-carbon atom. With the purpose of providing more evidence for the hypothesis that the critical mechanism of activation of MC is one-electron oxidation, the carcinogenicity of MC was compared to that of 1-hydroxy-3-methylcholanthrene (MC-1-OH), 3-methylcholanthrene-1-one (MC-1-one), 2-hydroxy-3-methylcholanthrene (MC-2-OH), 3-methylcholanthrene-2-one (MC-2-one) and 3-methylcholanthrylene (MCL) by repeated application on mouse skin. Seven-week-old female Swiss mice in 6 groups of 30 were treated on the back with 0.2 mumol of compound in acetone twice weekly for 20 weeks. In addition, the metabolism of MC and its derivatives was studied using mouse skin homogenates. The compounds tested were classified according to carcinogenicity in 4 groups: MC and MC-2-OH, the strongest carcinogens; MC-2-one and MCL, weaker than MC and MC-2-OH; MC-1-OH, the weakest carcinogen; and MC-1-one, non-carcinogenic. These results support the hypothesis that one-electron oxidation for MC, MC-2-OH and MC-1-one might be the critical mechanism of carcinogenic activation, with C-1 the binding site to cellular nucleophiles. The carcinogenic effect of MC-1-OH is speculated to be the formation of an ester bearing a good leaving group, which might be the ultimate alkylating compound in the in vivo reaction. The lack of carcinogenic activity for MC-1-one may be attributed to absence of nucleophilic trapping at C-1 via the radical cation pathway as well as the inability of mouse skin to reduce MC-1-one to the carcinogenic MC-1-OH.  相似文献   

7.
The n.m.r. spectrum of abscisic acid (ABA) formed from [1,2-13C2]acetate by the fungus Cercospora rosicola shows 13C-13C coupling between C-6' (41.7 p.p.m.; 36 Hz) and the downfield 6'-methyl group (6'-Me) (24.3 p.p.m, 36 Hz). This 6'-Me, therefore, is derived from C-3' of mevalonate [Bennett, Norman & Maier (1981) Phytochemistry 20, 2343-2344]. An i.n.e.p.t. (insensitive nuclei enhanced by polarization transfer) pulse sequence demonstrated that the downfield 13C signal is produced by the 6'-Me that gives rise to the upfield 1H 6'-Me signal (23.1 d). The absolute configuration of this, the equatorial 6'-Me group, was determined as 6'-pro-R by decoupling and n.O.e. (nuclear-Overhauser-enhancement) experiments at 300 MHz using ABA, ABA in which the axial 6'-pro-S 5'-hydrogen atom had been exchanged with 2H in NaO2H and the 1',4'-cis- and 1',4'-trans-diols formed from these samples. The configuration at C-1' and at C-6' are now compatible with a chair-folded intermediate during cyclization, as proposed for beta- and epsilon-rings of carotenoids. ABA in solution exists, as in the crystalline form, with the ring in a pseudo-chair conformation. The side chain is axial and the C-3 Me and the C-5 hydrogen atoms are predominantly cis(Z).  相似文献   

8.
Liu C  Baumann H 《Carbohydrate research》2002,337(14):1297-1307
A new regioselective synthesis of 6-amino-6-deoxycellulose with a DS 1.0 (degree of substitution) at C-6, and its 6-N-sulfonated and its 6-N-carboxymethylated derivatives, without using protecting groups is described in this paper. The reaction conditions were optimized for preparing cellulose tosylate with full tosylation at C-6 and partial tosylation at C-2 and C-3. The nucleophilic substitution (S(N)) reaction of the tosyl group by NaN(3) at low temperature of 50 degrees C in Me(2)SO was achieved completely at C-6, whereas the tosyl groups at C-2 and C-3 were not displaced. In contrast to this, at 100 degrees C the tosyl groups at C-6, and also those at C-2 and C-3, were replaced by azido groups. This regioselective reaction that depends on temperature makes it possible to reach a selective and quantitative S(N) reaction at C-6 at low temperatures. In the subsequent reduction step with LiAlH(4), the azido group at C-6 was reduced to the amino group, and the tosyl groups at C-2 and C-3 were simultaneously completely removed. Also reported is a temperature-dependent, regioselective and complete iodination by nucleophilic substitution of the tosyl group at C-6 at 60 degrees C. At higher temperatures from 75 to 130 degrees C, substitution is also observed to occur at C-2. The selective iodination at 60 degrees C was employed to confirm the complete tosylation at C-6 of cellulose. The reaction products were identified by four different independent quantitative methods, namely 13C NMR, elemental analysis, ESCA, and fluorescence spectroscopy. 6-N-Sulfonated and 6-N-carboxymethylated cellulose derivatives were also synthesized. The new derivatives are potent candidates for structure-function studies, e.g., studies in relation to regioselectively 2-N-sulfonated and 2-N-carboxymethylated chitosan derivatives.  相似文献   

9.
The specificity of acceptor binding to the active site of dextransucrase was studied by using alpha-methyl-D-glucopyranoside analogs modified at C-2, C-3, and C-4 positions by (a) inversion of the hydroxyl group and (b) replacement of the hydroxyl group with hydrogen. 2-Deoxy-alpha-methyl-D-glucopyranoside was synthesized from 2-deoxyglucose; 3- and 4-deoxy-alpha-methyl-D-glucopyranosides were synthesized from alpha-methyl-D-glucopyranoside; and alpha-methyl-D-allopyranoside was synthesized from D-glucose. The analogs were incubated with [14C]sucrose and dextransucrase, and the products were separated by thin-layer chromatography and quantitated by liquid scintillation spectrometry. Structures of the acceptor products were determined by methylation analyses and optical rotation. The relative effectiveness of the acceptor analogs in decreasing order were 2-deoxy, 2-inverted, 3-deoxy, 3-inverted, 4-inverted, and 4-deoxy. The enzyme transfers D-glucopyranose to the C-6 hydroxyl of analogs modified at C-2 and C-3, to the C-4 hydroxyl of 4-inverted, and to the C-3 hydroxyl of 4-deoxy analogs of alpha-methyl-D-glucopyranoside. The data indicate that the hydroxyl group at C-2 is not as important for acceptor binding as the hydroxyl groups at C-3 and C-4. The hydroxyl group at C-4 is particularly important as it determines the binding orientation of the alpha-methyl-D-glucopyranoside ring.  相似文献   

10.
Flavanone (1) and 6-hydroxyflavanone (2) were subjected to transformation by means of Aspergillus niger strains (one wild and three UV mutants). For both substrates the biotransformation resulted in reduction of the carbonyl group (products 5 and 7) and dehydrogenation at C-2 and C-3 (3 and 8). Additionally, for flavanone (1) reduction of C-4 together with hydroxylation at C-7 (6) and dehydrogenation at C-2, C-3 along with hydroxylation at C-3 (4) were observed.  相似文献   

11.
Three water-soluble methylcelluloses (MCs) were prepared through homogeneous reaction in NaOH/urea aqueous solution, using dimethyl sulfate as a methylation reagent. The microstructure of the MC samples was characterized by IR, GC/MS, NMR, while dilute solution properties were measured by SEC–LLS, DLS and viscometer. The total degrees of substitution (DS) of the MC samples were 1.09, 1.42 and 1.56, respectively. However, we found that the relative DS value varies with the position of the hydroxyl group, i.e., C-2 > C-3 ≈ C-6, indicating the difference of reaction activity of different hydroxyl groups. In aqueous solution, MC has a trendency to form aggregates and hard to form actual solution, even at low concentration and low temperature, which was confirmed by the SEC–LLS and DLS result that isolated MC chains and large aggregates coexisted in the dilute aqueous solution. MC aqueous solutions showed two-stage temperature dependence of hydrodynamic radius. In the first stage, i.e., the temperature ranges from 20 to 65 °C, the hydrodynamic radius of MC displayed bimodal distribution, corresponding to the single chains and large aggregates. While in the second stage, i.e., the temperature higher than 70 °C, only large aggregates appeared. The results also proved that the microstructure of MC had a great influence on its physical properties.  相似文献   

12.
A method is described for the preparation of two types of multi-labeled 6 beta-hydroxycortisol containing either five deuterium atoms at C-19 methyl and C-1 methylene or four 13C atoms at C-1, C-2, C-4, and C-19 in addition to the five deuterium atoms for use as analytical internal standards for gas chromatography-mass spectrometry (GC-MS). BMD derivatives of [1,1,19,19,19-2H(5)]cortisone and [1,2,4,19-13C(4),1,1,19,19,19-2H(5)]cortisone (cortisone-2H(5)-BMD and cortisone-13C(4),2H(5)-BMD) were first synthesized via indan synthon method starting from optical active 11-oxoindanylpropionic acid and labeled isopropenyl anion ([1,1,3,3,3-2H(5)]- or [1,3-13C(2),1,1,3,3,3-2H(5)]isopropenyl anion). The labeled isopropenyl anion was prepared from commercially available [1,1,1,3,3,3-2H(6)]- or [1,3-13C(2),1,1,1,3,3,3-2H(6)]acetone. Ultraviolet (UV) irradiated autoxidation at C-6 position of 3-ethyl-3,5-dienol ether derivatives of the labeled cortisone-BMDs gave 6 beta-hydroxy-[1,1,19,19,19-2H(5)]cortisone-BMD and 6 beta-hydroxy-[1,2,4,19-13C(4),1,1,19,19,19-2H(5)]cortisone-BMD, respectively, as a mixture of 6 beta- and 6 alpha-epimers in a ratio of 4:1. Separation of 6 beta- and 6 alpha-epimers by thin-layer chromatography (TLC) and subsequent hydrolysis of the BMD group at C-17 gave pure labeled 6 beta-hydroxycortisone. After protecting the keto group at C-3 of the labeled 6 beta-hydroxycortisone-BMD as semicarbazone, reduction of 11-keto group with NaBH(4) and subsequent removal of the C-3 and C-17 protecting groups gave 6beta-hydroxy-[1,1,19,19,19-2H(5)]cortisol (6 beta-hydroxycortisol-2H(5)) and 6 beta-hydroxy-[1,2,4,19-13C(4),1,1,19,19,19-2H(5)]cortisol (6 beta-hydroxycortisol-13C(4),2H(5)), respectively, as a mixture of 6 beta- and 6 alpha-epimers (6 beta:6 alpha=4.4:1). The isotopic compositions of 6 beta-hydroxycortisol-2H(5) and 6 beta-hydroxycortisol-13C(4),2H(5) were 90.9 and 92.1 at.%, respectively. Furthermore, 6 beta-hydroxy-[1 alpha,16,16,17 alpha-2H(4)]testosterone was synthesized by the UV irradiated autoxidation at C-6 position of 3-ethyl-3,5-dienol ether derivative of deuterium-labeled testosterone ([1 alpha,16,16,17 alpha-2H(4)]testosterone) obtained by using catalytic deuteration and hydrogen-deuterium exchange reactions.  相似文献   

13.
Regiospecific oxidation of the primary hydroxyl groups in lacquer polysaccharide (LPL, Mw 6.85 x 10(4)) and its NaIO4 oxidation derivatives (LPLde) to C-6 carboxy groups was achieved with NaOCl in the presence of Tempo and NaBr. Sulfate groups were incorporated into the oxidated polysaccharides using Py.SO3 complex as a reagent. Reactivity of polysaccharide hydroxyl group was C-6 > C-2 > C-4. Sulfate groups were mainly linked to the second hydroxy at C-2 in the products. The results of APTT assay showed after incorporation of carboxyl groups into lacquer polysaccharides, the intrinsic coagulation pathway was promoted, and all sulfated polysaccharides had very weak anticoagulant activity within the scope of studied DS (0.39-1.11). These indicated that carboxyl groups and sulfate groups had the synergistic action. At the same time, the anticoagulant activity increased very slowly with the DS in the second hydroxy. This indicated that 6-O-SO3- in the side chains took an important role in the anticoagulant activity.  相似文献   

14.
The structural requirements for binding to the glucose/sorbose-transport system in the human erythrocyte were explored by measuring the inhibition constants, K(i), for specifically substituted analogues of d-glucose when l-sorbose was the penetrating sugar. Derivatives in which a hydroxyl group in the d-gluco configuration was inverted, or replaced by a hydrogen atom, at C-1, C-2, C-3, C-4 or C-6 of the d-glucose molecule, all bound to the carrier, confirming that no single hydroxyl group is essential for binding to the carrier. The binding and transport of 1-deoxy-d-glucose confirmed that the sugars bind in the pyranose form. The relative inhibition constants of d-glucose and its deoxy, epimeric and fluorinated analogues are consistent with the combination of beta-d-glucopyranose with the carrier by hydrogen bonds at C-1, C-3, probably C-4, and possibly C-6 of the sugar. Both polar and non-polar substituents at C-6 enhance the affinity of d-glucose derivatives relative to d-xylose, and d-galactose derivatives relative to l-arabinose, and it is suggested that the carrier region around C-6 of the sugar may contain both hydrophobic and polar binding groups. The spatial requirements at C-1, C-2, C-3, C-4 and C-6 were explored by comparing the relative binding of d-glucose and its halogeno and O-alkyl substituents. The carrier protein closely approaches the sugar except at C-3 in the d-gluco configuration, C-4 and C-6. d-Glucal was a good inhibitor, showing that a strict chair form is not essential for binding. 3-O-(2',3'-Epoxypropyl)-d-glucose, a potential substrate-directed alkylating agent, bound to the carrier, but did not inactivate it.  相似文献   

15.
Specificity of chicken liver carbohydrate binding protein   总被引:2,自引:0,他引:2  
T B Kuhlenschmidt  Y C Lee 《Biochemistry》1984,23(16):3569-3575
Chicken hepatic lectin was isolated with affinity chromatography by using neoglycoproteins of bovine serum albumin (BSA) to which n moles of glycosides has been attached by amidination (Glycn-AI-BSA) [Lee, Y. C., Stowell, C. P., & Krantz, M. J. (1976) Biochemistry 15, 3956-3963] attached to Sepharose 4B. The same protein could be isolated from Man-, GlcNAc-, and Glc-AI-BSA-Sepharose columns and was identical with the protein previously reported [Kawasaki, T., & Ashwell, G. (1977) J. Biol. Chem. 252, 6536-6543]. The sugar specificity for binding to the isolated chicken hepatic lectin examined with Glycn-AI-BSA showed the order of potency for binding Glycn-AI-BSA to be D-GlcNAc greater than D-Glc, D-Man, L-Fuc greater than D-Gal, and the estimated Ki's for binding GlcNAc36-AI-BSA, Glc37-AI-BSA, Man33-AI-BSA, and L-Fuc28-AI-BSA were (6-20) X 10(-11), (2-3) X 10(-8), (3-9) X 10(-8), and 5 X 10(-8) M, respectively. The binding requirements of the binding protein were studied with a wide variety of Glycn-BSA's with different sugars and aglyconic linkages, as well as simple sugars and glycosides. It was concluded that (1) GlcNAc is the most potent sugar for binding, (2) the requirement for C-2 substituents is flexible, (3) an equatorial OH group at C-3 and C-4 must be present, (4) the 5-CH2OH group is not required for binding, (5) the lectin cannot accommodate a negative charge at C-6, and (6) D-Man and L-Fuc bind equally well.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The hydrogen bond systems of cellulose and its derivatives are one of the most important factors regarding their physical- and chemical properties such as solubility, crystallinity, gel formation, and resistance to enzymatic degradation. In this paper, it was attempted to clarify the intra- and intermolecular hydrogen bond formation in regioselectively functionalized 3-mono-O-methyl cellulose (3MC). First, the 3MC was synthesized and the cast film thereof was characterized in comparison to 2,3-di-O-methyl cellulose, 6-mono-O-methyl cellulose, and 2,3,6-tri-O-methyl cellulose by means of wide angle X-ray diffraction (WAXD) and (13)C cross polarization/magic angle spinning NMR spectroscopy. Second, the hydrogen bonds in the 3MC film were analyzed by means of FTIR spectroscopy in combination with a curve fitting method. After deconvolution, the resulting two main bands (Fig. 3) indicated that instead of intramolecular hydrogen bonds between position OH-3 and O-5 another intramolecular hydrogen bond between OH-2 and OH-6 may exist. The large deconvoluted band at 3340cm(-1) referred to strong interchain hydrogen bonds involving the hydroxyl groups at C-6. The crystallinity of 54% calculated from the WAXD supports also the dependency of the usually observed crystallization in cellulose of the hydroxyl groups at C-6 to engage in interchain hydrogen bonding.  相似文献   

17.
The synthesis of 13,14-seco steroids starting from easily available (13S)-13-iodo-6beta-methoxy-3alpha,5-cyclo-13,14-seco-5alpha-androsta-14,17-dione is described. The C-17 ketone was converted regioselectively into its oxime with simultaneous stereoselective deiodination at C-13. The remaining C-14 carbonyl group was then reduced stereoselectively with Ca(BH4)2. The configurations at the relevant stereocenters of the thus obtained hydroxy oxime were determined by X-ray analysis. Successful regeneration of the C-17 carbonyl group was achieved by treatment of the corresponding oxime acetate with TiCl3.  相似文献   

18.
Several 1-O-sulfonyl derivatives of d-mannopyranose having a nonparticipating benzyl ether group at C-2 and ester functions at C-6 and C-4 were synthesized from the corresponding d-mannopyranosyl chloride derivatives with silver sulfonates in acetonitrile. The reaction of 1-O-sulfonyl-d-mannopyranose compounds with methanol in various solvents at room temperature gave high yields of glycosides with low degrees of stercoselectivity. On the other hand, 1-O-suffonyl-d-mannopyranose derivatives having an acyl participating-group at O-2 and benzyl ethers at C-3, C-4, and C-6 gave high yields and high stereoselectivity of α-d-mannopyranosides with primary and secondary alcohols in several solvents. Model studies were carried out to determine the best combination of 2-O-acyl group, solvent, time, temperature, and 1-O-sufonyl group to give high yields with high stereoselectivity. The method has been used to prepare in good yields more complex glycosides, including perbenzylated methy 2-O-(α-d-mannopyranosyl)-α-d-mannopyranoside.  相似文献   

19.
Nitroimidazoles exhibit high microbicidal activity, but mutagenic, genotoxic and cytotoxic properties have been attributed to the presence of the nitro group. However, we synthesised nitroimidazoles with activity against the trypomastigotes of Trypanosoma cruzi, but that were not genotoxic. Herein, nitroimidazoles (11-19) bearing different substituent groups were investigated for their potential induction of genotoxicity (comet assay) and mutagenicity (Salmonella/Microsome assay) and the correlations of these effects with their trypanocidal effect and with megazol were investigated. The compounds were designed to analyse the role played by the position of the nitro group in the imidazole nucleus (C-4 or C-5) and the presence of oxidisable groups at N-1 as an anion receptor group and the role of a methyl group at C-2. Nitroimidazoles bearing NO2 at C-4 and CH3 at C-2 were not genotoxic compared to those bearing NO2 at C-5. However, when there was a CH3 at C-2, the position of the NO2 group had no influence on the genotoxic activity. Fluorinated compounds exhibited higher genotoxicity regardless of the presence of CH3 at C-2 or NO2 at C-4 or C-5. However, in compounds 11 (2-CH3; 4-NO2; N-CH2OHCH2Cl) and 12 (2-CH3; 4-NO2; N-CH2OHCH2F), the fluorine atom had no influence on genotoxicity. This study contributes to the future search for new and safer prototypes and provide.  相似文献   

20.
A series of new generation taxoids bearing a bulky group on different positions such as C-2, C-5, C-7, C-9, C-10 or C-14 were obtained by chemical modifications and biotransformation of taxuyunnanine C (1) and its analogs, 4, 5, and 10. Compounds 3, 5, 6, 8, and 9a showed significant activity toward calcein accumulation in MDR 2780AD cells. The most effective compound 9a with a cinnamoyloxy group at C-14 and a hydroxyl group at C-10 was actually efficient for the cellular accumulation of the anticancer agent, vincristine, in MDR 2780AD cells. The enhancing effects of 6 and 9a for taxol, adriamycin, and vincristine were at the same levels as those of verapamil toward MDR 2780AD cells. Thus, compounds 6 and 9a can modulate the multidrug resistance of cancer cells. The cytotoxicity (IC(50)) of the compounds was examined against human normal cell line, WI-38, and cancer model cell lines, VA-13 and HepG2. Since compounds 6 and 8 had no cytotoxicity, they were expected to be lead compounds of MDR cancer reversal agents. On the contrary, compounds 3, 5, and 9a showed cell growth inhibitory activity toward VA-13 and/or HepG2 as well as accumulation activity of calcein and/or vincristine in MDR 2780AD and they were expected to be lead compounds of new-type anticancer agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号