首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Asian giant honey bee, Apis dorsata, often conducts seasonal, long-distance migrations in southern China, between a preferred tree (having more than one nest) and alternate sites. Although worker bees cannot make a round-trip journey, colonies re-utilize preferred trees after an absence of several months. We performed comb experiments in which bases and all abandoned combs were entirely scraped off trees and their sites covered with plastic, or comb was moved to trees of the same species. Swarms of giant honey bees investigated trees where combs were removed and continued to nest on the same trees. In contrast, placing combs in nets on previously used trees, or on nearby trees of the same species, did not attract more swarms. The same number of colonies that left them returned to previously occupied trees. Our findings suggest that direct olfactory or sensory contact with old comb bases might regulate nest establishment, but individual trees, lacking normal visual or chemical cues of old nests, are relocated using behavioral devices that remain to be elucidated. Received 12 February 2007; revised 5 June 2007; accepted 13 September 2007.  相似文献   

2.
Africanized honey bees (Apis mellifera, Hymenoptera: Apidae) in Brazil are tolerant of infestations with the exotic ectoparasitic mite, Varroa destructor (Mesostigmata: Varroidae), while the European honey bees used in apiculture throughout most of the world are severely affected. Africanized honey bees are normally kept in hives with both naturally built small width brood cells and with brood cells made from European-sized foundation, yet we know that comb cell size has an effect on varroa reproductive behavior. Three types (sizes) of brood combs were placed in each of six Africanized honey bee colonies: new (self-built) Africanized comb, new Italian comb (that the bees made from Italian-sized commercial foundation), and new Carniolan comb (built naturally by Carniolan bees). About 100 cells of each type were analyzed in each colony. The Africanized comb cells were significantly smaller in (inner) width (4.84 mm) than the European-sized comb cells (5.16 and 5.27 mm for Italian and Carniolan cells, respectively). The brood cell infestation rates (percentage cells infested) were significantly higher in the Carniolan-sized comb cells (19.3%) than in the Italian and Africanized cells (13.9 and 10.3%, respectively). The Carniolan-sized cells also had a significantly larger number of invading adult female mites per 100 brood cells (24.4) than did the Italian-sized cells (17.7) and the natural-sized Africanized worker brood cells (15.6). European-sized worker brood cells were always more infested than the Africanized worker brood cells in the same colony. There was a highly significant correlation (P<0.01) between cell width and the rate of infestation with varroa in four of the six colonies. The small width comb cells produced by Africanized honey bees may have a role in the ability of these bees to tolerate infestations by Varroa destructor, furthermore it appears that natural-sized comb cells are superior to over-sized comb cells for disease resistance.  相似文献   

3.
Earlier studies showed that Russian honey bees support slow growth of varroa mite population. We studied whether or not comb type influenced varroa reproduction in both Russian and Italian honey bees, and whether Russian bees produced comb which inhibited varroa reproduction. The major differences found in this study concerned honey bee type. Overall, the Russian honey bees had lower (2.44 ± 0.18%) levels of varroa infestation than Italian honey bees (7.20 ± 0.60%). This decreased infestation resulted in part from a reduced number of viable female offspring per foundress in the Russian (0.85 ± 0.04 female) compared to the Italian (1.23 ± 0.04 females) honey bee colonies. In addition, there was an effect by the comb built by the Russian honey bee colonies that reduced varroa reproduction. When comparing combs having Russian or Italian colony origins, Russian honey bee colonies had more non-reproducing foundress mites and fewer viable female offspring in Russian honey bee comb. This difference did not occur in Italian colonies. The age of comb in this study had mixed effects. Older comb produced similar responses for six of the seven varroa infestation parameters measured. In colonies of Italian honey bees, the older comb (2001 dark) had fewer (1.13 ± 0.07 females) viable female offspring per foundress than were found in the 2002 new (1.21 ± 0.06 females) and 1980s new (1.36 ± 0.08 females) combs. This difference did not occur with Russian honey bee colonies where the number of viable female offspring was low in all three types of combs. This study suggests that honey bee type largely influences growth of varroa mite population in a colony.  相似文献   

4.
Summary Upon entering a new home site a honeybee swarm is faced with the task of organizing the building activities of thousands of component bees so that several straight and parallel vertically oriented combs can be quickly and efficiently built. As a part of this organization process it is necessary for the bees to select and agree upon a planar orientation for the new combs.This paper presents evidence that memory of a previously used comb direction influences the building of the new set of combs. Swarms which have recently moved into bait-hives (empty boxes placed in trees to attract feral swarms) tend to maintain the previously used comb direction when removed and forced to build new combs, whereas swarms which have occupied the bait-hives for a longer period (over 9 days) do not.Recent swarms predictably alter their comb building direction within the influence of an applied earthstrength magnetic field, indicating that honey bees are able to use the earth's magnetic field as a reference at the commencement of comb construction in a new hive.  相似文献   

5.
The ectoparasitic mite, Varroa destructor, and the viruses that it transmits, kill the colonies of European honey bees (Apis mellifera) kept by beekeepers unless the bees are treated with miticides. Nevertheless, there exist populations of wild colonies of European honey bees that are persisting without being treated with miticides. We hypothesized that the persistence of these wild colonies is due in part to their habits of nesting in small cavities and swarming frequently. We tested this hypothesis by establishing two groups of colonies living either in small hives (42 L) without swarm-control treatments or in large hives (up to 168 L) with swarm-control treatments. We followed the colonies for two years and compared the two groups with respect to swarming frequency, Varroa infesttion rate, disease incidence, and colony survival. Colonies in small hives swarmed more often, had lower Varroa infestation rates, had less disease, and had higher survival compared to colonies in large hives. These results indicate that the smaller nest cavities and more frequent swarming of wild colonies contribute to their persistence without mite treatments.  相似文献   

6.
The proportion of honey-bees infected with Nosema apis (Zander) declines in summer as the old infected bees die, for they cease to transmit their infection to the newly emerged individuals during the flying season. N. apis spores survive the summer on combs contaminated with infected faeces during the preceding winter. Although bees clean the combs during the summer, all infected material is not removed, and even well-used brood comb, which has been repeatedly cleaned by bees, can carry infection. Only a few bees may contract infection in the autumn from these faeces, but they join the winter cluster and initiate the next outbreak of the disease. Transferring a colony on to clean comb early in the spring or summer removes the source of the disease, and it then disappears when all the old infected bees die.
Old broodless comb can be sterilized quite simply by fumigation for a few days with the vapours of formalin or glacial acetic acid. Acetic acid is preferable, because it does not poison any honey or pollen in the combs. Formaldehyde can safely be used only with empty combs.
The autumn is the best time for treating colonies chemotherapeutically, because the combs are then cleanest and the few bees which are infected can be cured during the winter. The drug can be incorporated in the syrup normally fed to colonies in autumn, and there is no risk of seriously contaminating subsequent honey crops. However, such treatment cannot eliminate the disease because sufficient spores remain on the combs for the disease to start again when the drug supplied in the winter stores is exhausted.  相似文献   

7.
Microbial communities (microbiomes) are associated with almost all metazoans, including the honey bee Apis mellifera. Honey bees are social insects, maintaining complex hive systems composed of a variety of integral components including bees, comb, propolis, honey, and stored pollen. Given that the different components within hives can be physically separated and are nutritionally variable, we hypothesize that unique microbial communities may occur within the different microenvironments of honey bee colonies. To explore this hypothesis and to provide further insights into the microbiome of honey bees, we use a hybrid of fatty acid methyl ester (FAME) and phospholipid-derived fatty acid (PLFA) analysis to produce broad, lipid-based microbial community profiles of stored pollen, adults, pupae, honey, empty comb, and propolis for 11 honey bee hives. Averaging component lipid profiles by hive, we show that, in decreasing order, lipid markers representing fungi, Gram-negative bacteria, and Gram-positive bacteria have the highest relative abundances within honey bee colonies. Our lipid profiles reveal the presence of viable microbial communities in each of the six hive components sampled, with overall microbial community richness varying from lowest to highest in honey, comb, pupae, pollen, adults and propolis, respectively. Finally, microbial community lipid profiles were more similar when compared by component than by hive, location, or sampling year. Specifically, we found that individual hive components typically exhibited several dominant lipids and that these dominant lipids differ between components. Principal component and two-way clustering analyses both support significant grouping of lipids by hive component. Our findings indicate that in addition to the microbial communities present in individual workers, honey bee hives have resident microbial communities associated with different colony components.  相似文献   

8.
Thirty-two colonies of bees with varying populations were established in 1·2-m3 boxes for 24 days. At the end of this time, the bees were killed, and the comb structure, design, and placement were examined to obtain information about the initiation of bee nests. The analysis of variance of three dimensions of the comb (height, width, and length) showed no statistical differences when all thirty-two colonies were considered as a group.Comb built by queenless bees differed from any described in the literature. We think it is comb characteristically built by queenless bees that is neither worker nor drone in size but intermediate.The occurrence of multiple clusters building comb with and without queen in the same box is recorded but unexplained at present.An explanation is offered for the curl appearing in the lower edges of straight combs.  相似文献   

9.
The efficacy of drone brood removal for the management of Varroa destructor Anderson & Trueman in colonies of the honey bee, A. mellifera L., was evaluated. Colonies were treated with CheckMite+ in the fall of 2002. The following spring, quantities of bees and brood were equalized, but colonies were not retreated. The brood nest of each colony consisted of 18 full-depth worker combs and two full-depth drone combs. Each worker comb had <12.9 cm2 of drone cells. Standard management practices were used throughout the season. Colonies were randomly assigned to one of two groups. In the control group, drone combs remained in place throughout the season. In the treatment group, drone combs were removed on 16 June, 16 July, 16 August, and 16 September and replaced with empty drone combs (16 June) or with drone combs removed on the previous replacement date. In the early fall, the average mite-to-bee ratio in the control group was significantly greater than the corresponding ratio in the treatment group. Drone brood removal did not adversely affect colony health as measured by the size of the worker population or by honey production. Fall worker populations were similar in the two groups. Honey production in treatment colonies was greater than or similar to production in control colonies. These data demonstrate that drone brood removal can serve as a valuable component in an integrated pest management program for V. destructor and may reduce the need for other treatments on a colony-by-colony basis.  相似文献   

10.
Nosema ceranae and pesticide exposure can contribute to honey bee health decline. Bees reared from brood comb containing high or low levels of pesticide residues were placed in two common colony environments. One colony was inoculated weekly with N. ceranae spores in sugar syrup and the other colony received sugar syrup only. Worker honey bees were sampled weekly from the treatment and control colonies and analyzed for Nosema spore levels. Regardless of the colony environment (spores+syrup added or syrup only added), a higher proportion of bees reared from the high pesticide residue brood comb became infected with N. ceranae, and at a younger age, compared to those reared in low residue brood combs. These data suggest that developmental exposure to pesticides in brood comb increases the susceptibility of bees to N. ceranae infection.  相似文献   

11.
Wu JY  Anelli CM  Sheppard WS 《PloS one》2011,6(2):e14720

Background

Numerous surveys reveal high levels of pesticide residue contamination in honey bee comb. We conducted studies to examine possible direct and indirect effects of pesticide exposure from contaminated brood comb on developing worker bees and adult worker lifespan.

Methodology/Principal Findings

Worker bees were reared in brood comb containing high levels of known pesticide residues (treatment) or in relatively uncontaminated brood comb (control). Delayed development was observed in bees reared in treatment combs containing high levels of pesticides particularly in the early stages (day 4 and 8) of worker bee development. Adult longevity was reduced by 4 days in bees exposed to pesticide residues in contaminated brood comb during development. Pesticide residue migration from comb containing high pesticide residues caused contamination of control comb after multiple brood cycles and provided insight on how quickly residues move through wax. Higher brood mortality and delayed adult emergence occurred after multiple brood cycles in contaminated control combs. In contrast, survivability increased in bees reared in treatment comb after multiple brood cycles when pesticide residues had been reduced in treatment combs due to residue migration into uncontaminated control combs, supporting comb replacement efforts. Chemical analysis after the experiment confirmed the migration of pesticide residues from treatment combs into previously uncontaminated control comb.

Conclusions/Significance

This study is the first to demonstrate sub-lethal effects on worker honey bees from pesticide residue exposure from contaminated brood comb. Sub-lethal effects, including delayed larval development and adult emergence or shortened adult longevity, can have indirect effects on the colony such as premature shifts in hive roles and foraging activity. In addition, longer development time for bees may provide a reproductive advantage for parasitic Varroa destructor mites. The impact of delayed development in bees on Varroa mite fecundity should be examined further.  相似文献   

12.
Within colony transmission of Paenibacillus larvae spores was studied by giving spore-contaminated honey comb or comb containing 100 larvae killed by American foulbrood to five experimental colonies respectively. We registered the impact of the two treatments on P. larvae spore loads in adult bees and honey and on larval mortality by culturing for spores in samples of adult bees and honey, respectively, and by measuring larval survival. The results demonstrate a direct effect of treatment on spore levels in adult bees and honey as well as on larval mortality. Colonies treated with dead larvae showed immediate high spore levels in adult bee samples, while the colonies treated with contaminated honey showed a comparable spore load but the effect was delayed until the bees started to utilize the honey at the end of the flight season. During the winter there was a build up of spores in the adult bees, which may increase the risk for infection in spring. The results confirm that contaminated honey can act as an environmental reservoir of P. larvae spores and suggest that less spores may be needed in honey, compared to in diseased brood, to produce clinically diseased colonies. The spore load in adult bee samples was significantly related to larval mortality but the spore load of honey samples was not.  相似文献   

13.
Little is known about the natural history of wild honey bee (Apis mellifera) colonies in the Eastern Cape Province of South Africa. The goal of this research was to examine nest site characteristics of honey bee (A. m. capensis/A. m. scutellata hybrid) colonies sampled from a variety of habitats (nature reserves, livestock farms, and an urban setting) in the Eastern Cape. We also determined how nest site location related to various colony strength parameters. In general, colonies not nesting in ground cavities tended to nest in locations >6 m high when nesting in cliffs and buildings and >2 m high when nesting in trees. Colonies typically nested in cavities whose entrances faced a southeasterly direction and were ~40 L in volume. We sampled a subset of colonies to determine the relationship between nest type and the following colony strength parameters: total area of comb in the colony, the volume of stored honey, pollen, and brood, adult bee population, the weight per adult bee, and the bee/nest cavity volume ratio. In general, colonies nesting in cliffs tended to be stronger than those nesting in the ground or trees. Our findings provide new insights into the nesting biology of honey bees in the Eastern Cape, South Africa, perhaps leading to the formation of conservation recommendations for honey bees in this region.  相似文献   

14.
DNA sequences from three mitochondrial (rrnL, cox2, nad2) and one nuclear gene (itpr) from all 9 known honey bee species (Apis), a 10th possible species, Apis dorsata binghami, and three outgroup species (Bombus terrestris, Melipona bicolor and Trigona fimbriata) were used to infer Apis phylogenetic relationships using Bayesian analysis. The dwarf honey bees were confirmed as basal, and the giant and cavity-nesting species to be monophyletic. All nodes were strongly supported except that grouping Apis cerana with A. nigrocincta. Two thousand post-burnin trees from the phylogenetic analysis were used in a Bayesian comparative analysis to explore the evolution of dance type, nest structure, comb structure and dance sound within Apis. The ancestral honey bee species was inferred with high support to have nested in the open, and to have more likely than not had a silent vertical waggle dance and a single comb. The common ancestor of the giant and cavity-dwelling bees is strongly inferred to have had a buzzing vertical directional dance. All pairwise combinations of characters showed strong association, but the multiple comparisons problem reduces the ability to infer associations between states between characters. Nevertheless, a buzzing dance is significantly associated with cavity-nesting, several vertical combs, and dancing vertically, a horizontal dance is significantly associated with a nest with a single comb wrapped around the support, and open nesting with a single pendant comb and a silent waggle dance.  相似文献   

15.
The food hoarding by groups of fifty bees kept in small cages and provided with sugar syrup was studied. Less food was stored in a new comb than in an old one, whether the old comb had been used for storing food or rearing brood, and there was less in drone than in worker combs. The presence of light, larvae and the odour of honey discouraged storage of syrup, but the presence of a queen encouraged it. The amount stored also varied with the environmental temperature, the age of the bees concerned and with their previous physiological and behavioural experience including food deprivation and length of confinement. Increased food in honeystomachs sometimes compensated for less stored in combs.  相似文献   

16.
Chemical signals influence the selection of potential nest cavities by honey bee reproductive swarms. Attractants for swarms include the odors of old dark honey bee brood combs, odors from noncomb hive materials and propolis, and Nasonov pheromone, the odor released from the Nasonov glands of worker bees. Based on crossover and choice test experiments, swarms were shown to prefer, among otherwise identical cavities, those cavities containing Nasonov pheromone over cavities with only comb or other hive odors, cavities containing old comb over those with only noncomb odors or propolis, and cavities containing noncomb odors or propolis over those without bee or hive odor. Synergy between odors was not observed; that is, comb and/or noncomb hive odors did not enhance the attractiveness of Nasonov pheromone. The data support a model based on a hierarchy of olfactory attractants used by honey bee swarms, in order of highest to lowest: Nasonov pheromone, comb odor, noncomb and propolis odors, and, finally, absence of bee- or hive-produced odor.  相似文献   

17.
Feral European Honey Bee (Apis mellifera) has been identified as a potential nest competitor for Australian hollow nesting species, but few studies have investigated the impact of feral honey bee competition on Threatened species. Our study used data from Glossy Black‐cockatoo (Calyptorhynchus lathami halmaturinus) nests on Kangaroo Island, monitored and managed over an 11‐year period, and found 12% of nests became occupied by feral honey bees during that period. Our results indicate that feral honey bees were less likely to occupy nest boxes made of PVC (5%) compared with wooden nest boxes (24%) or natural hollows in Eucalyptus trees (14%). The removal of feral honey bee hives from nests is a priority for long‐term conservation of glossy black‐cockatoos on Kangaroo Island. We recommend that PVC nest boxes are chosen for future nesting habitat restoration, due to the more frequent use of wooden nest boxes by feral honey bees.  相似文献   

18.
Honey bee colonies are subject to numerous pathogens and parasites. Interaction among multiple pathogens and parasites is the proposed cause for Colony Collapse Disorder (CCD), a syndrome characterized by worker bees abandoning their hive. Here we provide the first documentation that the phorid fly Apocephalus borealis, previously known to parasitize bumble bees, also infects and eventually kills honey bees and may pose an emerging threat to North American apiculture. Parasitized honey bees show hive abandonment behavior, leaving their hives at night and dying shortly thereafter. On average, seven days later up to 13 phorid larvae emerge from each dead bee and pupate away from the bee. Using DNA barcoding, we confirmed that phorids that emerged from honey bees and bumble bees were the same species. Microarray analyses of honey bees from infected hives revealed that these bees are often infected with deformed wing virus and Nosema ceranae. Larvae and adult phorids also tested positive for these pathogens, implicating the fly as a potential vector or reservoir of these honey bee pathogens. Phorid parasitism may affect hive viability since 77% of sites sampled in the San Francisco Bay Area were infected by the fly and microarray analyses detected phorids in commercial hives in South Dakota and California's Central Valley. Understanding details of phorid infection may shed light on similar hive abandonment behaviors seen in CCD.  相似文献   

19.
A study on the relationship between the age of comb and the activity of the hybrid Carniolan honey bee colonies in collecting pollen activity, worker brood production, colony strength, and honey yield was conducted. In comparison to colonies with combs aged 4-years, colonies with combs aged 1, 2 and 3-years significantly exceeded in the number returning workers, number returning workers with pollen loads, rate of storing pollen, rate of worker brood production, and size of colony population. Colonies with combs aged 1, 2 and 3-years produced significantly more honey than colonies with combs aged 4-years (5.25, 4.90 and 4.65 kg/colony vs. 4.45 kg/colony, respectively). It can be concluded that the foraging rate, gathering and storing pollen, brood production, colony population size, and honey yield significantly depended on the age of combs. Beekeepers can replace old combs with new ones to increase brood and honey production.  相似文献   

20.
Successful honeybee foragers perform dances on the surface of the comb where they interact with nectar receivers and dance followers. We have recorded the sites at which dances take place in large ten-frame hives and in two-frame observation hives. We find that dancing bees are most commonly found on particular combs in large hives and in particular areas on the combs in the observation hives. Although the site where dances take place may change from day to day, dancers will keep to the same site during the foraging period in any one day. Furthermore, if an established dance site is artificially relocated in the hive during the day, dancers seek these sites out before commencing their dances. We conclude that the dance sites are labelled in some way and so promote the congregation of both dancers and dance followers at the same site. Accepted: 27 November 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号