首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The localization of collagen hydroxylysine galactosyl- and galactosyl-hydroxylysine glucosyltransferases in purified chick embryo bone microsomes was studied by differential solubilization with nonionic detergents. Brij-35 (polyoxyethylene 25-lauryl ether) which selectively releases intracisternal proteins, and Triton X-100, whose specificity varies with its concentration, were used in the presence or absence of high ionic strength NaCl. These methods were used previously to characterize prolyl hydroxylase as intracisternal and lysyl hydroxylase as mainly intramembranous. The distribution of both glycosyltransferases within microsomes was similar to that of lysyl hydroxylase; approximately 70-80% of their activities are intramembranous with the remainder intracisternal. Collagen hydroxylysine glucosyltransferase differed from prolyl and lysyl hydroxylase and the galactosyltransferase in that its activity in vitro was apparently inhibited by membrane vesicles, even in the presence of detergents at concentrations which permeabilize the membrane. Accurate measurement of its activity could be achieved only by its separation from vesicles after detergent treatment. The common location of the major portion of lysyl hydroxylase and the glycosyltransferase activities suggests that they may act as a multienzyme complex to preferentially modify certain lysyl residues in nascent procollagen chains as they traverse the membrane of the endoplasmic reticulum. Since these enzymes do not act on helical collagen, their physical separation from prolyl hydroxylase may ensure that modifications of lysine residues occur prior to formation of hydroxyproline, which stabilizes the helical form.  相似文献   

2.
Lysates of human skin fibroblasts harvested without the use of trypsin do not contain detectable proteolytic activity, but when trypsin is used, lysates may contain activity equal to 10 ng of trypsin/107 cells. The amount of cell lysate ordinarily examined for collagen prolyl and lysyl hydroxylase activity is sufficiently small that such amounts of trypsin have no observable effect on the unhydroxylated collagen substrate. Larger amounts of trypsin cause proteolysis of the unhydroxylated collagen substrate and a reduction of both prolyl and lysyl hydroxylation with lysyl hydroxylation more affected at low trypsin concentration than prolyl hydroxylation.  相似文献   

3.
Studies with confluent human skin fibroblasts maintained in 0.5% serum supplemented medium have given new insight into the regulatory influences of ascorbate. These include a reduction of prolyl hydroxylase activity, a stimulation of lysyl hydroxylase activity, and an acceleration of collagen production. The lack of parallel between prolyl hydroxylase activity and collagen production indicates that the rate of collagen synthesis is not controlled by the level of prolyl hydroxylase.  相似文献   

4.
The effect of hydralazine on several parameters of collagen biosynthesis has been studied in cultured human skin fibroblasts. Cells treated with hydralazine synthesized procollagen which was severely deficient in hydroxyproline and hydroxylysine, indicating inhibition of prolyl and lysyl hydroxylase reactions in the cell. Assays of prolyl and lysyl hydroxylase activities, however, revealed markedly increased levels in hydralazine-treated cells. The stimulatory effect of hydralazine could not be simulated in cell extracts, demonstrating its requirement for intact cells. The effect occurred slowly over a period of 96 h and was dependent on hydralazine concentration between 10 and 100 microM. This phenomenon was also observed in lysyl hydroxylase-deficient mutants. In both normal and mutant cells the relative magnitude of the hydralazine effect could be modified by ascorbic acid in the culture medium. Ascorbic acid increased the response of prolyl hydroxylase to hydralazine from 1.5- to 2-fold to 3- to 7-fold, whereas it decreased the response of lysyl hydroxylase to hydralazine from 4- to 8-fold to 2- to 3-fold. Total collagen synthesis was substantially reduced in hydralazine-treated cells; the time course and the dose-response relationship were similar to those observed for the hydroxylases. alpha, alpha'-Dipyridyl, an iron chelator, mimicked these effects of hydralazine. The studies suggest the existence in cultured cells of a compensatory mechanism for overproduction of these crucial enzymes in collagen biosynthesis, a mechanism which remains functional in cells derived from patients afflicted with hydroxylysine-deficient collagen disease.  相似文献   

5.
1. Subcellular fractions of freshly isolated matrix-free embryonic chick tendon and sternal cartilage cells have been characterized by chemical analysis, electron microscopy and the location of specific marker enzymes. These data indicate the fractions to be of a high degree of purity comparable with those obtained from other tissues, e.g. liver and kidney. 2. When homogenates were assayed for protocollagen prolyl hydroxylase and protocollagen lysyl hydroxylase activities, addition of Triton X-100 (0.1%, w/v) was found to stimulate enzyme activities by up to 60% suggesting that the enzymes were probably membrane-bound. 3. Assay of subcellular fractions obtained by differential centrifugation for protocollagen prolyl hydroxylase activity indicated the specific activity to be highest in the microsomal fraction. Similar results were obtained for protocollagen lysyl hydroxylase activity. 4. Submicrosomal fractions obtained by discontinuous sucrose-gradient centrifugation were assayed for the two enzymes and protocollagen prolyl hydroxylase and protocollagen lysyl hydroxylase were found to be associated almost exclusively with the rough endoplasmic reticulum fraction in both tendon and cartilage cells.  相似文献   

6.
Antibodies to pure lysyl hydroxylase from whole chick embryos were prepared in rabbits and used for immunological characterization of this enzyme of collagen biosynthesis. In double immunodiffusion a single precipitation line was seen between the antiserum and crude or pure chick-embryo lysyl hydroxylase. The antiserum effectively inhibited chick-embryo lysyl hydroxylase activity, whether measured with the biologically prepared protocollagen substrate or a synthetic peptide consisting of only 12 amino acids. This suggests that the antigenic determinant was located near the active site of the enzyme molecule. Essentially identical amounts of the antiserum were required for 40% inhibition of the same amount of lysyl hydroxylase activity units from different chick-embryo tissues synthesizing various genetically distinct collagen types. In double immunodiffusion a single precipitation line of complete identity was found between the antiserum and the purified enzyme from whole chick embryos and the crude enzymes from chick-embryo tendon, cartilage and kidneys. These results do not support the hypothesis that lysyl hydroxylase has collagen-type-specific or tissue-specific isoenzymes with markedly different specific activities or immunological properties. The antibodies to chick-embryo lysyl hydroxylase showed a considerable degree of species specificity when examined either by activity-inhibition assay or by double immuno-diffusion. Nevertheless, a distinct, although weak, cross-reactivity was found between the chick-embryo enzyme and those from all mammalian tissues tested. The antiserum showed no cross-reactivity against prolyl 3-hydroxylase, hydroxylysyl galactosyl-transferase or galactosylhydroxylysyl glucosyltransferase in activity-inhibition assays, whereas a distinct cross-reactivity was found against prolyl 4-hydroxylase. Furthermore, antiserum to pure prolyl 4-hydroxylase inhibited lysyl hydroxylase activity. These findings suggest that there are structural similarities between these two enzymes, possibly close to or at their active sites.  相似文献   

7.
Triamcinolone diacetate produced a dose dependent decrease in lysyl oxidase activity in the skin of new born rats when administered over a three day period. Maximum inhibition by this glucorticoid resulted in less than 10% of control lysyl oxidase activity. A similar though less dramatic effect was observed on skin prolyl hydroxylase activity. These results suggest that the antianabolic effect of glucocorticoids on collagen synthesis extend to enzymes involved in the intra- and extracellular modifications of collagen.  相似文献   

8.
It has been previously shown that dermis from subjects with hydroxylysine-deficient collagen contains approximately 5% of normal levels of hydroxylysine and sonicates of skin fibroblasts contain less than 15% of normal levels of collagen lysyl hydroxylase activity. However, cultures of dermal fibroblasts from two siblings with hydroxylysine-deficient collagen (Ehlers-Danlos Syndrome Type VI) compared to fibroblasts from normal subjects synthesize collagen containing approximately 50% of normal amounts of hydroxylysine. The lysyl hydroxylase deficient cultures synthesize both Type I and Type III collagen in the same proportion as control cultures. Both alpha 1(I) and alpha 2 chains are similarly reduced in hydroxylysine content. Collagen prolyl hydroxylation by normal collagen lysyl hydroxylation is the same with or without ascorbate supplementation. In mutant cells the rate of prolyl hydroxylation measured after release of inhibition by alpha, alpha'-dipyridyl is the same as in control cells. The rate of lysyl hydroxylation is reduced in mutant cells but only to approximately 50% of normal.  相似文献   

9.
It has been previously shown that dermis from subjects with hydroxylysine-deficient collagen contains approximately 5% of normal levels of hydroxylysine and sonicates of skin fibroblasts contain less than 15% of normal levels of collagen lysyl hydroxylase activity. However, cultures of dermal fibroblasts from two siblings with hydroxylysine-deficient collagen (Ehlers-Danlos Syndrome Type VI) compared to fibroblasts from normal subjects synthesize collagen containing approximately 50% of normal amounts of hydroxylysine. The lysyl hydroxylase deficient cultures synthesize both Type I and Type III collagen in the same proportion as control cultures. Both α1(I) and α2 chains are similarly reduced in hydroxylysine content. Collagen prolyl hydroxylation by normal and mutant cells is severely depressed without ascorbate but in all cultures collagen lysyl hydroxylation is the same with or without ascorbate supplementation. In mutant cells the rate of prolyl hydroxylation measured after release of inhibition by α,α′-dipyridyl is the same as in control cells. The rate of lysyl hydroxylation is reduced in mutant cells but only to approximately 50% of normal.  相似文献   

10.
Changes in the regulation of collagen post-translational modification in transformed cells were studied in three established human sarcoma cell lines and in chick-embryo fibroblasts freshly transformed by Rous sarcoma virus. The collagens synthesized by all but one of these and by all the control human and chick-embryo cell lines were almost exclusively of types I and/or III. The relative rate of collagen synthesis and the amounts of prolyl hydroxylase activity and immunoreactive protein were markedly low in all the transformed human cell lines. The other enzymes studied, lysyl hydroxylase, hydroxylysyl galactosyltransferase and galactosylhydroxylysyl glucosyltransferase, never showed as large a decrease in activity as did prolyl hydroxylase, suggesting a more efficient regulation of the last enzyme than of the three others. The chick-embryo fibroblasts freshly transformed by Rous sarcoma virus differed from the human sarcoma cells in that prolyl hydroxylase activity was distinctly increased, whereas the decreases in immunoreactive prolyl hydroxylase protein and the three other enzyme activities were very similar to those in the simian-virus-40-transformed human fibroblasts. It seems possible that this increased prolyl hydroxylase activity is only a temporary phenomenon occurring shortly after the transformation, and may be followed by a decrease in activity later. The newly synthesized collagens of all the transformed cells that produced almost exclusively collagen types I and/or III had high extents of lysyl hydroxylation, and there was also an increase in the ratio of glycosylated to non-glycosylated hydroxylysine. The data suggest that one critical factor affecting modification is the rate of collagen synthesis, which affects the ratio of enzyme to substrate in the cell.  相似文献   

11.
Collagen is the most abundant protein in the human body and thereby a structural protein of considerable biotechnological interest. The complex maturation process of collagen, including essential post-translational modifications such as prolyl and lysyl hydroxylation, has precluded large-scale production of recombinant collagen featuring the biophysical properties of endogenous collagen. The characterization of new prolyl and lysyl hydroxylase genes encoded by the giant virus mimivirus reveals a method for production of hydroxylated collagen. The coexpression of a human collagen type III construct together with mimivirus prolyl and lysyl hydroxylases in Escherichia coli yielded up to 90 mg of hydroxylated collagen per liter culture. The respective levels of prolyl and lysyl hydroxylation reaching 25 % and 26 % were similar to the hydroxylation levels of native human collagen type III. The distribution of hydroxyproline and hydroxylysine along recombinant collagen was also similar to that of native collagen as determined by mass spectrometric analysis of tryptic peptides. The triple helix signature of recombinant hydroxylated collagen was confirmed by circular dichroism, which also showed that hydroxylation increased the thermal stability of the recombinant collagen construct. Recombinant hydroxylated collagen produced in E. coli supported the growth of human umbilical endothelial cells, underlining the biocompatibility of the recombinant protein as extracellular matrix. The high yield of recombinant protein expression and the extensive level of prolyl and lysyl hydroxylation achieved indicate that recombinant hydroxylated collagen can be produced at large scale for biomaterials engineering in the context of biomedical applications.  相似文献   

12.
Concomitant hydroxylation of proline and lysine residues in protocollagen was studied using purified enzymes. The data suggest that prolyl 4-hydroxylase (prolyl-glycyl-peptide, 2-oxoglutarate: oxygen oxidoreductase (4-hydroxylating), EC 1.14.11.2) and lysyl hydroxylase (peptidyllysine, 2-oxoglutarate; oxygen 5-oxidoreductase, EC 1.14.11.4) are competing for the protocollagen substrate, this competition resulting in an inhibition of the lysyl hydroxylase but not of the prolyl 4-hydroxylase reaction. When the same protocollagen was used for these hydroxylases, the affinity of prolyl 4-hydroxylase to the protocollagen substrate was about 2-fold higher than that of lysyl hydroxylase. Hydroxylation of lysine residues in protocollagen had no effect on the affinity of prolyl 4-hydroxylase, whereas hydroxylation of proline residues decreased the affinity of lysyl hydroxylase to one-half of the value determined before the hydroxylation. When enzyme preparations containing different ratios of lysyl hydroxylase activity to prolyl 4-hydroxylase activity were used to hydroxylase protocollagen substrate, it was found that in the case of a low ratio the hydroxylation of lysine residues seemed to proceed only after a short lag period. Accordingly, it seems probable that most proline residues are hydroxylated to 4-hydroxyproline residues before hydroxylation of lysine residues if the prolyl 4-hydroxylase and lysyl hydroxylase are present as free enzymes competing for the same protocollagen substrate.  相似文献   

13.
The incorporation of DL-3,4-dehydro[14C]proline into collagen and total protein of 3T3 cells occurred at approximately one-fifth the rate observed for L-[14C]proline. Addition of L-3,4-dehydroproline to the culture medium inhibited markedly the incorporation of [14C]glycine and L-[3H]lysine into the collagen of 3T3 cells, but there was only slight inhibition of the incorporation of the radiolabeled amino acids into total cellular proteins, indicating that the action of L-3,4-dehydroproline is specific for collagen. When 1 mM L-3,4-dehydroproline was added to the culture medium the [14C]hydroxyproline content was reduced 40% in the cell layer and 70% in the medium. The D isomer of 3,4-dehydroproline did not inhibit [14C]hydroxyproline formation. These findings indicate that L-3,4-dehydroline reduced the hydroxylation of the susceptible prolyl residues in the collagen molecule and the secretion of collagen from the cell. The reduction in the hydroxyproline content is probably related in part to a reduction in the activity of prolyl hydroxylase; when various mammalian cell cultures were exposed to 0.2 mM L-3,4-dehydroproline, the specific activity of prolyl hydroxylase was reduced markedly, while that of lysyl hydroproline, the specific activity of prolyl hydroxylase was reduced markedly, while that of lysyl hydroxylase was not affected. Under these conditions, cell growth and lactic dehydrogenase required protein synthesis. Removal of L-3,4-dehydroproline from the growth medium resulted in a time-dependent increase in the specific activity of prolyl hydroxylase.  相似文献   

14.
Resolution of the heavy microsomal fraction of lung tissue by Ficoll density gradient centrifugation yielded a rough endoplasmic reticulum microsomal fraction containing the highest specific activity of detergent-released lysyl hydroxylase. This same microsomal fraction was previously shown to contain the highest specific activity of detergent-released prolyl hydroxylase activity. When hydroxylation was inhibited during the biosynthesis of collagen, this microsomal fraction contained lysine-rich, hydroxylysine-deficient, collagenase-digestible substrate that could be hydroxylated in the absence of detergent. The results indicate coordinate localization of both prolyl and lysyl hydroxylation reactions within the cisternae of the rough endoplasmic reticulum.  相似文献   

15.
The activity of procollagen prolyl hydroxylase was measured in fibrotic liver obtained from mice with hepatosplenic schistosomiasis, an animal model of the most prevalent form of human liver fibrosis. Measurable activity of prolyl hydroxylase in fibrotic liver supernatants was 47-fold higher than that of normal liver. The effect of prolyl hydroxylase inhibition on collagen synthesis in fibrotic liver slices was studied, using 8,9-dihydroxy-7-methyl benzo[b]quinolizinium bromide (GPA 1734). This compound was shown in other systems to inhibit prolyl and lysyl hydroxylations by iron chelation at concentrations which did not affect total protein synthesis. The formation of nondialyzable labelled hydroxyproline was inhibited by GPA 1734, 40, 70 and 95% at 30, 50 and 100 micrometer, respectively. Incorporation of proline into total liver protein was unaffected at 30 and 50 micrometer, but was inhibited 20% at 100 micrometer GPA 1734. Underhydroxylated collagen synthesized by liver slices with GPA 1734 was extracted with neutral salt solution and was subsequently hydroxylated with partially-purified prolyl hydroxylase to the same extent as control material synthesized in the absence of GPA 1734.  相似文献   

16.
The relationship between the changes in the four enzyme activities catalysing intracellular post-translational modifications in collagen biosynthesis were studied in rat liver as a function of age and in experimental hepatic injury induced by the administration of dimethylnitrosamine. During aging, relatively large changes were found in prolyl hydroxylase and lysyl hydroxylase activities, whereas only minor changes took place in collagen galactosyltransferase and collagen glucosyltransferase activities. In hepatic injury, the two hydroxylase activities increased earlier and to a larger extent than did the two glycosyltransferase activities, and the largest was found in lysyl hydroxylase activity. The data support previous suggestions that changes in the rate of collagen biosynthesis in the liver cannot be explained simply by a change in the number of collagen-producing cells, but regulation of the enzyme activities existed, so that the two hydroxylase activities altered considerably more than did the two collagen glycosyltransferase activities.  相似文献   

17.
Collagen lysyl and prolyl hydroxylase activities were measured in cultured fibroblasts from a child with clinical features of Ehlers-Danlos syndrome. Lysyl-to-prolyl hydroxylase activity ratios in cells from the proband, mother, father, and control were .24, .86, .52, and 1.00, respectively, providing a biochemical diagnosis of Ehlers-Danlos syndrome type VI and indicating an autosomal recessive mode of inheritance in this family. Prenatal assessment of lysyl hydroxylase deficiency was requested and accomplished for the first time during a subsequent pregnancy in the family. A series of control cultures established lysyl hydroxylase activity to be similar in cultured amniotic fluid cells (AF and F cells) and in cultured dermal fibroblasts. Cultured F and AF cells from the monitored pregnancy had enzyme activity similar to controls, indicating that the fetus should not be affected by lysyl hydroxylase deficiency. This finding was confirmed by demonstration of normal lysyl hydroxylase activity in fibroblasts cultured from the newborn baby. These studies show that cells cultured from second trimester amniotic fluid have collagen lysyl hydroxylase activity similar to that in dermal fibroblasts, making prenatal diagnosis of lysyl hydroxylase deficiency possible.  相似文献   

18.
Lysyl hydroxylase is the enzyme catalyzing the formation of hydroxylysyl residues in collagens. Large differences in the extent of hydroxylysyl residues are found among collagen types. Three lysyl hydroxylase isoenzymes (LH1, LH2, LH3) have recently been characterized from human and mouse tissues. Nothing is known about the distribution of these isoforms within cells or whether they exhibit collagen type specificity. We measured mRNA levels of the three isoforms, as well as the mRNAs of the main collagen types I, III, IV, and V and the alpha subunit of prolyl 4-hydroxylase, another enzyme involved in collagen biosynthesis, in different human cell lines. Large variations were found in mRNA expression of LH1 and LH2 but not LH3. Immunoblotting was utilized to confirm the results of Northern hybridization. The levels of mRNA of LH1, LH2, and the alpha subunit of prolyl 4-hydroxylase showed significant correlations with each other. The LH3 mRNA levels did not correlate with those of LH1, LH2, or the alpa subunit of prolyl 4-hydroxylase, clearly indicating a difference in the regulation of LH3. No correlation was observed between LH isoforms and individual collagen types, indicating a lack of collagen type specificity for lysyl hydroxylase isoforms. Our observations suggest that LH1, LH2, and the alpha subunit of prolyl 4-hydroxylase are coregulated together with total collagen synthesis but not with the specific collagen types and indicate that LH3 behaves differently from LH1 and LH2, implying a difference in their substrates. These observations set the basis for further studies to define the functions of lysyl hydroxylase isoforms.  相似文献   

19.
Normal and Ehlers-Danlos syndrome type VI human skin and cornea fibroblasts were assayed for lysyl hydroxylase activity using two different collagen types as substrates. The enzyme from normal fibroblasts hydroxylated type I collagen more readily than type IV collagen. In the diseased cells the enzyme activity was significantly reduced, and the residual activity was preferentially directed towards type IV collagen. This suggests the existence of isoenzymes of lysyl hydroxylase or an alteration in the Ehlers-Danlos syndrome type VI that affects the binding of type I collagen more than that of type IV collagen.  相似文献   

20.
The activity of procollagen prolyl hydroxylase was measured in fibrotic liver obtained from mice with hepatosplenic schistosomiasis, an animal model of the most prevalent form of human liver fibrosis. Measurable activity of prolyl hydroxylase in fibrotic liver supernatants was 47-fold higher than that of normal liver.The effect of prolyl hydroxylase inhibition on collagen synthesis in fibrotic liver slices was studied, using 8,9-dihydroxy-7-methyl benzo[b]quinolizinium bromide (GPA 1734). This compound was shown in other systems to inhibit prolyl and lysyl hydroxylations by iron chelation at concentrations which did not affect total protein synthesis. The formation of nondialyzable labelled hydroxyproline was inhibited by GPA 1734, 40, 70 and 95% at 30, 50 and 100 μM, respectively. Incorporation of proline into total liver protein was unaffected at 30 and 50 μM, but was inhibited 20% at 100μM GPA 1734. Underhydroxylated collagen synthesized by liver slices with GPA 1734 was extracted with neutral salt solution and was subsequently hydroxylated with partially-purified prolyl hydroxylase to the same extent as control material synthesized in the absence of GPA 1734.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号