首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《MABS-AUSTIN》2013,5(1):204-218
Today, most approved therapeutic antibodies are provided as immunoglobulin G (IgG), whereas small recombinant antibody formats are required for in vitro antibody generation and engineering during drug development. Particularly, single chain (sc) antibody fragments like scFv or scFab are well suited for phage display and bacterial expression, but some have been found to lose affinity during conversion into IgG.

In this study, we compared the influence of the antibody format on affinity maturation of the CD30-specific scFv antibody fragment SH313-F9, with the overall objective being improvement of the IgG. The variable genes of SH313-F9 were randomly mutated and then cloned into libraries encoding different recombinant antibody formats, including scFv, Fab, scFabΔC, and FabΔC. All tested antibody formats except Fab allowed functional phage display of the parental antibody SH313-F9, and the corresponding mutated antibody gene libraries allowed isolation of candidates with enhanced CD30 binding. Moreover, scFv and scFabΔC antibody variants retained improved antigen binding after subcloning into the single gene encoded IgG-like formats scFv-Fc or scIgG, but lost affinity after conversion into IgGs. Only affinity maturation using the Fab-like FabΔC format, which does not contain the carboxy terminal cysteines, allowed successful selection of molecules with improved binding that was retained after conversion to IgG. Thus, affinity maturation of IgGs is dependent on the antibody format employed for selection and screening. In this study, only FabΔC resulted in the efficient selection of IgG candidates with higher affinity by combination of Fab-like conformation and improved phage display compared with Fab.  相似文献   

2.
Today, most approved therapeutic antibodies are provided as immunoglobulin G (IgG), whereas small recombinant antibody formats are required for in vitro antibody generation and engineering during drug development. Particularly, single chain (sc) antibody fragments like scFv or scFab are well suited for phage display and bacterial expression, but some have been found to lose affinity during conversion into IgG.   In this study, we compared the influence of the antibody format on affinity maturation of the CD30-specific scFv antibody fragment SH313-F9, with the overall objective being improvement of the IgG. The variable genes of SH313-F9 were randomly mutated and then cloned into libraries encoding different recombinant antibody formats, including scFv, Fab, scFabΔC, and FabΔC. All tested antibody formats except Fab allowed functional phage display of the parental antibody SH313-F9, and the corresponding mutated antibody gene libraries allowed isolation of candidates with enhanced CD30 binding. Moreover, scFv and scFabΔC antibody variants retained improved antigen binding after subcloning into the single gene encoded IgG-like formats scFv-Fc or scIgG, but lost affinity after conversion into IgGs. Only affinity maturation using the Fab-like FabΔC format, which does not contain the carboxy terminal cysteines, allowed successful selection of molecules with improved binding that was retained after conversion to IgG. Thus, affinity maturation of IgGs is dependent on the antibody format employed for selection and screening. In this study, only FabΔC resulted in the efficient selection of IgG candidates with higher affinity by combination of Fab-like conformation and improved phage display compared with Fab.  相似文献   

3.
CD44v6 is a cancer-associated antigen that mainly expresses in a subset of adenocarcinomas. Therefore, in this study, anti-human CD44v6 single-chain variable fragment (scFv) has been selected and characterized because it is the first step of primary importance towards the construction of a novel cancer-targeted agent for cancer diagnosis and therapy. In our study, anti-human CD44v6 scFv was selected from a human phage-displayed scFv library based on its ability to bind in vitro to CD44v6 antigen. Subsequently, immunofluorescent staining and Western blot analyses were performed to measure the binding characteristics of this scFv. In addition, flow cytometric analysis was done to verify its cancer-targeting ability in vitro. And a flow cytometry-based assay was used to determine its equilibrium dissociation constant (K D). Finally, one functional anti-CD44v6 scFv was selected and characterized. Nucleotide sequencing verified that it was an incomplete scFv gene but had a variable heavy chain (VH) alone. However, anti-CD44v6 scFv demonstrated cell-binding and antigen-binding activities by immunofluorescent staining and Western blot analyses. Furthermore, flow cytometric analysis proved that this scFv specifically targeted CD44v6-expressing cancer cells other than CD44v6 non-expressing normal cells or tumor cells in vitro. The K D of this scFv was calculated to be 7.85 ± 0.93 × 10−8 M. In summary, the selected human scFv against CD44v6 has specific binding activity and favorable binding affinity despite lacking a variable light chain (VL). Moreover, it can effectively and specifically target CD44v6-expressing cancer cells. All these characteristics make anti-CD44v6 scFv a promising agent for cancer detection and anti-cancer therapy.  相似文献   

4.
5S is a mouse monoclonal IgG1 that binds to the ‘a’ epitope of the Hepatitis B surface antigen (HBsAg) and tested positive in an in vitro test for virus neutralization. We have earlier reported the generation of humanized single chain variable fragment (scFv) from the same. In this article we report the generation of a recombinant Fab molecule by fusing humanized variable domains of 5S with the constant domains of human IgG1. The humanized Fab expressed in E. coli and subsequently purified, retained a high binding affinity (KD = 3.63 nmol/L) to HBsAg and bound to the same epitope of HBsAg as the parent molecule. The humanized Fab also maintained antigen binding in the presence of various destabilizing agents like 3 M NaCl, 30% DMSO, 8 M urea, and extreme pH. This high affinity humanized Fab provides a basis for the development of therapeutic molecules that can be safely utilized for the prophylaxis and treatment for Hepatitis B infection.  相似文献   

5.
Diallyl disulfide (DADS), the main active component of the cancer fighting allyl sulfides found in garlic, has shown potential as a therapeutic agent in various cancers. Previous studies showed DADS induction of HL‐60 cell differentiation involves down‐regulation of calreticulin (CRT). Here, we investigated the mechanism of DADS‐induced differentiation of human leukaemia cells and the potential involvement of CRT and CCAAT enhancer binding protein‐α (C/EBPα). We explored the expression of CRT and C/EBPα in clinical samples (20 healthy people and 19 acute myeloid leukaemia patients) and found that CRT and C/EBPα expressions were inversely correlated. DADS induction of differentiation of HL‐60 cells resulted in down‐regulated CRT expression and elevated C/EBPα expression. In severe combined immunodeficiency mice injected with HL‐60 cells, DADS inhibited the growth of tumour tissue and decreased CRT levels and increased C/EBPα in vivo. We also found that DADS‐mediated down‐regulation of CRT and up‐regulation of C/EBPα involved enhancement of reactive oxidative species. RNA immunoprecipitation revealed that CRT bound C/EBPα mRNA, indicating its regulation of C/EBPα mRNA degradation by binding the UG‐rich element in the 3′ untranslated region of C/EBPα. In conclusion, the present study demonstrates the C/EBPα expression was correlated with CRT expression in vitro and in vivo and the molecular mechanism of DADS‐induced leukaemic cell differentiation.  相似文献   

6.
Cytotoxic T lymphocyte antigen 4 (CTLA4) and programmed cell death protein 1 (PD‐1) are immune checkpoint proteins expressed in T cells. Although CTLA4 expression was found in multiple tumours including non‐small cell lung cancer (NSCLC) tissues and cells, its function in tumour cells is unknown. Recently, PD‐1 was found to be expressed in melanoma cells and to promote tumorigenesis. We found that CTLA4 was expressed in a subset of NSCLC cell lines and in a subgroup of cancer cells within the lung cancer tissues. We further found that in NSCLC cells, anti‐CTLA4 antibody can induce PD‐L1 expression, which is mediated by CTLA4 and the EGFR pathway involving phosphorylation of MEK and ERK. In CTLA4 knockout cells, EGFR knockout cells or in the presence of an EGFR tyrosine kinase inhibitor, anti‐CTLA4 antibody was not able to induce PD‐L1 expression in NSCLC cells. Moreover, anti‐CTLA4 antibody promoted NSCLC cell proliferation in vitro and tumour growth in vivo in the absence of adaptive immunity. These results suggest that tumour cell‐intrinsic CTLA4 can regulate PD‐L1 expression and cell proliferation, and that anti‐CTLA4 antibody, by binding to the tumour cell‐intrinsic CTLA4, may result in the activation of the EGFR pathway in cancer cells.  相似文献   

7.
The zinc finger E‐box‐binding homeobox 1 (ZEB1) induced the epithelial–mesenchymal transition (EMT) and altered ZEB1 expression could lead to aggressive and cancer stem cell (CSC) phenotypes in various cancers. Tissue specimens from 96 prostate cancer patients were collected for immunohistochemistry and CD34/periodic acid–Schiff double staining. Prostate cancer cells were subjected to ZEB1 knockdown or overexpression and assessment of the effects on vasculogenic mimicry formation in vitro and in vivo. The underlying molecular events of ZEB1‐induced vasculogenic mimicry formation in prostate cancer were then explored. The data showed that the presence of VM and high ZEB1 expression was associated with higher Gleason score, TNM stage, and lymph node and distant metastases as well as with the expression of vimentin and CD133 in prostate cancer tissues. Furthermore, ZEB1 was required for VM formation and altered expression of EMT‐related and CSC‐associated proteins in prostate cancer cells in vitro and in vivo. ZEB1 also facilitated tumour cell migration, invasion and clonogenicity. In addition, the effects of ZEB1 in prostate cancer cells were mediated by Src signalling; that is PP2, a specific inhibitor of the Src signalling, dose dependently reduced the p‐Src527 level but not p‐Src416 level, while ZEB1 knockdown also down‐regulated the level of p‐Src527 in PC3 and DU‐145 cells. PP2 treatment also significantly reduced the expression of VE‐cadherin, vimentin and CD133 in these prostate cancer cells. Src signalling mediated the effects of ZEB1 on VM formation and gene expression.  相似文献   

8.
Immunotherapy mediated by recombinant antibodies is an effective therapeutic strategy for a variety of cancers. In a previous study, we demonstrated that the fibroblast growth factor 1 (FGF‐1)‐specific recombinant antibody scFv1C9 arrests the cell cycle at the G0/G1 transition by blocking the intracrine FGF‐1 pathway in breast cancer cells. Here, we further show that the overexpression of scFv1C9 in MCF‐7 and MDA‐MB‐231 breast cancer cells by lentiviral infection resulted in decreased tumourigenicity, tumour growth and lung metastasis through FGF‐1 neutralization. We found that scFv1C9 resulted in the up‐regulation of p21, which in turn inhibited the expression of CDK2 and blocked cell cycle progression. To explore the potential role of scFv1C9 in vivo, we delivered the gene into solid tumours by electroporation, which resulted in significant inhibition of tumour growth. In tumour tissue sections, immunohistochemical staining of the cellular proliferation marker Ki‐67 and the microvessel marker CD31 showed a reduction in the proliferative index and microvessel density, respectively, upon expression of scFv1C9 compared with the appropriate controls. Thus, our data indicate a central role for scFv1C9 in blocking the intracrine pathway of FGF‐1, therefore, scFv1C9 could be developed in an effective therapeutic for breast cancer.  相似文献   

9.
Ran is considered to be a promising target for tumor-specific immunotherapy because its protein is exclusively expressed in tumor tissues, though its mRNA can be expressed in most normal tissues. In our study, we obtained four candidate wild-type epitopes designated Ran1, Ran2, Ran3, and Ran4, derived from the Ran antigen with the highest predicted affinity with MHC-I, indicated by affinity prediction plots and molecular dynamics simulation. However, in vitro affinity assays of these epitopes showed only a moderate affinity with MHC-I. Thus, we designed altered peptide ligands (APLs) derived from Ran wild-type epitopes with preferred primary and auxiliary HLA-A*0201 molecule anchor residue replacement. Of the eight tested peptides, the 1Y analog had the strongest binding-affinity and lowest-dissociation rate to HLA-A*0201. Additionally, we investigated the CTLs activities induced by Ran wild-type peptides and the APLs in human PBMCs and in HLA-A*0201/Kb transgenic mice. Ran1 1Y was superior to other APLs and wild-type peptides in eliciting epitope-specific CTL immune responses both in vitro and in vivo. In summary, a wild-type epitope of the tumor-specific antigen Ran, expressed broadly in many tumors, was identified and designated Ran1. An APL of Ran1, Ran1 1Y, was further designed and verified in vitro and in vivo and found to elicit a stronger Ran-specific CTL response, indicating a potential anti-tumor application in the future.  相似文献   

10.
Okadaic acid is a lipophilic marine algal toxin commonly responsible for diarrhetic shellfish poisoning (DSP). Outbreaks of DSP have been increasing and are of worldwide public health concern; therefore, there is a growing demand for more rapid, reliable, and economical analytical methods for the detection of this toxin. In this study, anti-okadaic acid single-chain variable fragment (scFv) genes were prepared by cloning heavy and light chain genes from hybridoma cells, followed by fusion of the chains via a linker peptide. An scFv–pLIP6/GN recombinant plasmid was constructed and transformed into Escherichia coli for expression, and the target scFv was identified with IC–CLEIA (chemiluminescent enzyme immunoassay). The IC15 was 0.012 ± 0.02 μg/L, and the IC50 was 0.25 ± 0.03 μg/L. The three-dimensional structure of the scFv was simulated with computer modeling, and okadaic acid was docked to the scFv model to obtain a putative structure of the binding complex. Two predicted critical amino acids, Ser32 and Thr187, were then mutated to verify this theoretical model. Both mutants exhibited significant loss of binding activity. These results help us to understand this specific scFv–antigen binding mechanism and provide guidance for affinity maturation of the antibody in vitro. The high-affinity scFv developed here also has potential for okadaic acid toxin detection.  相似文献   

11.
HNK20 is a mouse monoclonal IgA that binds to the F glycoprotein of respiratory syncytial virus (RSV) and neutralizes the virus, both in vitro and in vivo. The single-chain antibody fragment (scFv) derived from HNK20 is equally active and has allowed us to assess rapidly the effect of mutations on affinity and antiviral activity. Humanization by variable domain resurfacing requires that surface residues not normally found in a human Fv be mutated to the expected human amino acid, thereby eliminating potentially immunogenic sites. We describe the construction and characterization of two humanized scFvs, hu7 and hu10, bearing 7 and 10 mutations, respectively. Both molecules show unaltered binding affinities to the RSV antigen (purified F protein) as determined by ELISA and surface plasmon resonance measurements of binding kinetics (Ka approximately 1x10(9) M-1). A competition ELISA using captured whole virus confirmed that the binding affinities of the parental scFv and also of hu7 and hu10 scFvs were identical. However, when compared with the original scFv, hu10 scFv was shown to have significantly decreased antiviral activity both in vitro and in a mouse model. Our observations suggest that binding of the scFv to the viral antigen is not sufficient for neutralization. We speculate that neutralization may involve the inhibition or induction of conformational changes in the bound antigen, thereby interfering with the F protein-mediated fusion of virus and cell membranes in the initial steps of infection.  相似文献   

12.
 The high-molecular-weight melanoma-associated antigen, HMW-MAA, has been demonstrated to be of potential interest for diagnosis and treatment of malignant melanoma. Murine monoclonal antibodies (mAb) generated in response to different epitopes of this cell-surface molecule efficiently localise to metastatic lesions in patients with disseminated disease. In this work, phage-display-driven selection for melanoma-reactive antibodies generated HMW-MAA specificities capable of targeting bacterial superantigens (SAg) and cytotoxic T cells to melanoma cells. Cynomolgus monkeys were immunised with a crude suspension of metastatic melanoma. A strong serological response towards HMW-MAA demonstrated its role as an immunodominant molecule in the primate. Several clones producing monoclonal scFv antibody fragments that react with HMW-MAA were identified using melanoma cells and tissue sections for phage selection of a recombinant antibody phage library generated from lymph node mRNA. One of these scFv fragments, K305, was transferred and expressed as a Fab-SAg fusion protein and evaluated as the tumour-targeting moiety for superantigen-based immunotherapy. It binds with high affinity to a unique human-specific epitope on the HMW-MAA, and demonstrates more restricted crossreactivity with normal smooth-muscle cells than previously described murine mAb. The K305 Fab was fused to the superantigen staphylococcal enterotoxin A (D227A) [SEA(D227A)], which had been mutated to reduce its intrinsic MHC class II binding affinity, and the fusion protein was used to demonstrate redirection of T cell cytotoxicity to melanoma cells in vitro. In mice with severe combined immunodeficiency, carrying human melanoma tumours, engraftment of human lymphoid cells followed by treatment with the K305Fab-SEA(D227A) fusion protein, induced HMW-MAA-specific tumour growth reduction. The phage-selected K305 antibody demonstrated high-affinity binding and selectivity, supporting its use for tumour therapy in conjunction with T-cell-activating superantigens. Received: 9 September 1999 / Accepted: 21 October 1999  相似文献   

13.
Intercellular communication between mesenchymal stem cells (MSCs) and their target cells in the perivascular environment is modulated by exosomes derived from MSCs. However, the potential role of exosome‐mediated microRNA transfer in neointimal hyperplasia remains to be investigated. To evaluate the effects of MSC‐derived exosomes (MSC‐Exo) on neointimal hyperplasia, their effects upon vascular smooth muscle cell (VSMC) growth in vitro and neointimal hyperplasia in vivo were assessed in a model of balloon‐induced vascular injury. Our results showed that MSC‐Exo were internalised by VSMCs and inhibited proliferation and migration in vitro. Further analysis revealed that miR‐125b was enriched in MSC‐Exo, and repressed the expression of myosin 1E (Myo1e) by targeting its 3? untranslated region. Additionally, MSC‐Exo and exosomally transferred miR‐125b repressed Myo1e expression and suppressed VSMC proliferation and migration and neointimal hyperplasia in vivo. In summary, our findings revealed that MSC‐Exo can transfer miR‐125b to VSMCs and inhibit VSMC proliferation and migration in vitro and neointimal hyperplasia in vivo by repressing Myo1e, indicating that miR‐125b may be a therapeutic target in the treatment of vascular diseases.  相似文献   

14.
15.
We have developed a technology for rapidly generating novel and fully human antibodies by simply using the antigen DNA. A human single‐chain variable fragment (scFv) antibody library was constructed in a yeast two‐hybrid vector with high complexity. After cloning cDNA encoding the mature sequence of human interleukin‐8 (hIL8) into the yeast two‐hybrid system vector, we have screened the human scFv antibody library and obtained three distinct scFv clones that could specifically bind to hIL8. One clone was chosen for further improvement by a novel affinity maturation process using the error‐prone PCR of the scFv sequence followed by additional rounds of yeast two‐hybrid screening. The scFv antibodies of both primary and affinity‐matured scFv clones were expressed in E. coli. All purified scFvs showed specific binding to hIL8 in reciprocal coimmunoprecipitation and ELISA assays. All scFvs, as well as a fully human IgG antibody converted from one of the scFv clones and expressed in the mammalian cells, were able to effectively inhibit hIL8 in neutrophil chemotaxis assays. The technology described can generate fully human antibodies with high efficiency and low cost.  相似文献   

16.
Shi HL  Yang T  Deffar K  Dong CG  Liu JY  Fu CL  Zheng DX  Qin B  Wang JJ  Wang XZ  Zhu XJ 《IUBMB life》2011,63(2):129-137
The fibroblast growth factors (FGFs) are important for embryo development, wound healing, hematopoiesis, and angiogenesis. FGF-1, a member of FGF family, is involved in both receptor-dependent pathways and an intracrine pathway. Studies have recently shown that FGF-1 is overexpressed in the early stages of several kinds of cancer. Thus, FGF-1 is a candidate for cancer immunotargeting. To study the potential use of therapeutic antibodies against FGF-1, a monoclonal hybridoma 1C9 secreting monoclonal antibody specific for FGF-1 was developed. Then, a single-chain variable fragment (scFv) antibody was genetically engineered from hybridama 1C9. The binding of the scFv1C9 to the antigen FGF-1 was demonstrated by ELISA and immunoprecipitation assays. Functional analysis showed that the overexpressed scFv1C9 in MCF-7 cells targeted endogenous FGF-1 and prevented the translocation of FGF-1 into the nucleus, resulting in the blockade of the intracrine pathway of FGF-1, which caused the G1 arrest by p21 up-regulation. These results suggest that the generated scFv1C9 is an effective inhibitor of the intracrine pathway of FGF-1 and has a potential application as anti-tumoral agent in breast cancer.  相似文献   

17.
目的:制备特异性抗人表皮生长因子受体(EGFR)的单链抗体(sc Fv),鉴定其生物学活性,为进一步研究基于单链抗体的免疫治疗奠定基础。方法:从分泌抗人EGFR单克隆抗体的杂交瘤细胞系提取总RNA,利用5'RACE技术扩增轻链和重链可变区(VL、VH)基因,构建具有VL、VH基因的单链抗体基因,并将构建的单链抗体基因克隆到真核细胞表达载体pc DNA3.1中进行表达和鉴定。ELISA鉴定单链抗体对抗原的特异性;Fortebio检测抗原抗体间的亲和力,流式细胞术检测单链抗体结合肺癌细胞系天然EGFR的功能活性。结果:获得唯一的轻重链可变区序列VL、VH,成功构建EGFR-sc Fv,特异性与天然EGFR蛋白结合,亲和力达3.22×10-9mol/L。结论:成功构建了抗人EGFR单链抗体,为肺癌免疫导向治疗研究奠定了基础。  相似文献   

18.
Compelling evidences suggest that fibroblast growth factor-2 (FGF-2) plays important roles in tumor growth, angiogenesis and metastasis. Molecules blocking the FGF-2 signaling have been proposed as anticancer agents. Through screening of a human scFv phage display library, we have isolated several human single-chain Fv fragments (scFvs) that bind to human FGF-2. After expression and purification in bacteria, one scFv, named 1A2, binds to FGF-2 with a high affinity and specificity, and completes with FGF-2 binding to its receptor. This 1A2 scFv was then cloned into the pIgG1 vector and expressed in 293T cells. The purified hIgG1-1A2 antibody showed a high binding affinity of 8 × 10−9 M to rhFGF-2. In a set of vitro assays, it inhibited various biological activities of FGF-2 such as the proliferation, migration and tube formation of human umbilical vein endothelial cells. More importantly, hIgG1-1A2 antibody also efficiently blocked the growth while inducing apoptosis of glioma cells. For the first time, we generated a human anti-FGF-2 antibody with proven in vitro anti-tumor activity. It may therefore present a new therapeutic candidate for the treatment of cancers that are dependent on FGF-2 signaling for growth and survival.  相似文献   

19.
Tn antigen is a truncated O‐glycan, frequently detected in colorectal cancer (CRC), but its precise role in CRC metastasis is not well addressed. Here we investigated the effects of Core 1 β3Gal‐T specific molecular chaperone (Cosmc) deletion‐mediated Tn antigen exposure on CRC metastasis and its underlying mechanism. We first used CRISPR/Cas9 technology to knockout Cosmc, which is required for normal O‐glycosylation, and thereby obtained Tn‐positive CRC cells. We then investigated the biological consequences of Tn antigen expression in CRC. The results showed that Tn‐positive cells exhibited an enhanced metastatic capability both in vitro and in vivo. A further analysis indicated that Tn antigen expression induced typical activation of epithelial‐mesenchymal transition (EMT). Mechanistically, we found that H‐Ras, which is known to drive EMT, was markedly up‐regulated in Tn‐positive cells, whereas knockdown of H‐Ras suppressed Tn antigen induced activation of EMT. Furthermore, we confirmed that LS174T cells (Tn‐positive) transfected with wild‐type Cosmc, thus expressing no Tn antigen, had down‐regulation of H‐Ras expression and subsequent inhibition of EMT process. In addition, analysis of 438 samples in TCGA cohort demonstrated that Cosmc expression was reversely correlated with H‐Ras, underscoring the significance of Tn antigen‐H‐Ras signalling in CRC patients. These data demonstrated that Cosmc deletion‐mediated Tn antigen exposure promotes CRC metastasis, which is possibly mediated by H‐Ras‐induced EMT activation.  相似文献   

20.
Background Although cancer of the prostate is one of the most commonly diagnosed cancers in men, no curative treatment currently exists after its progression beyond resectable boundaries. Therefore, new agents for targeted treatment strategies are needed. Cross-linking of tumor antigens with T-cell associated antigens by bispecific monoclonal antibodies have been shown to increase antigen-specific cytotoxicity in T-cells. Since the prostate-specific membrane antigen (PSMA) represents an excellent tumor target, immunotherapy with bispecific diabodies could be a promising novel treatment option for prostate cancer. Methods A heterodimeric diabody specific for human PSMA and the T-cell antigen CD3 was constructed from the DNA of anti-CD3 and anti-PSMA single chain Fv fragments (scFv). It was expressed in E. coli using a vector containing a bicistronic operon for co-secretion of the hybrid scFv VHCD3-VLPSMA and VHPSMA-VLCD3. The resulting PSMAxCD3 diabody was purified from the periplasmic extract by immobilized metal affinity chromatography (IMAC). The binding properties were tested on PSMA-expressing prostate cancer cells and PSMA-negative cell lines as well as on Jurkat cells by flow cytometry. For in vitro functional analysis, a cell viability test (WST) was used. For in vivo evaluation the diabody was applied together with human peripheral blood lymphocytes (PBL) in a C4-2 xenograft-SCID mouse model. Results By Blue Native gel electrophoresis, it could be shown that the PSMAxCD3 diabody is mainly a tetramer. Specific binding both to CD3-expressing Jurkat cells and PSMA-expressing C4-2 cells was shown by flow cytometry. In vitro, the diabody proved to be a potent agent for retargeting PBL to lyze C4-2 prostate cancer cells. Treatment of SCID mice inoculated with C4-2 tumor xenografts with the diabody and PBL efficiently inhibited tumor growth. Conclusions The PSMAxCD3 diabody bears the potential for facilitating immunotherapy of prostate cancer and for the elimination of minimal residual disease. P. Bühler and P. Wolf equally contributed to the work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号