首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
In rheumatoid arthritis (RA), macrophage is one of the major sources of inflammatory mediators. Macrophages produce inflammatory cytokines through toll‐like receptor (TLR)‐mediated signalling during RA. Herein, we studied macrophages from the synovial fluid of RA patients and observed a significant increase in activation of inositol‐requiring enzyme 1α (IRE1α), a primary unfolded protein response (UPR) transducer. Myeloid‐specific deletion of the IRE1α gene protected mice from inflammatory arthritis, and treatment with the IRE1α‐specific inhibitor 4U8C attenuated joint inflammation in mice. IRE1α was required for optimal production of pro‐inflammatory cytokines as evidenced by impaired TLR‐induced cytokine production in IRE1α‐null macrophages and neutrophils. Further analyses demonstrated that tumour necrosis factor (TNF) receptor‐associated factor 6 (TRAF6) plays a key role in TLR‐mediated IRE1α activation by catalysing IRE1α ubiquitination and blocking the recruitment of protein phosphatase 2A (PP2A), a phosphatase that inhibits IRE1α phosphorylation. In summary, we discovered a novel regulatory axis through TRAF6‐mediated IRE1α ubiquitination in regulating TLR‐induced IRE1α activation in pro‐inflammatory cytokine production, and demonstrated that IRE1α is a potential therapeutic target for inflammatory arthritis.  相似文献   

2.
3.
Mycobacterium avium, a slow‐growing nontuberculous mycobacterium, causes fever, diarrhoea, loss of appetite, and weight loss in immunocompromised people. We have proposed that endoplasmic reticulum (ER) stress‐mediated apoptosis plays a critical role in removing intracellular mycobacteria. In the present study, we investigated the role of the regulated IRE1‐dependent decay (RIDD) pathway in macrophages during M. avium infection based on its role in the regulation of gene expression. The inositol‐requiring enzyme 1 (IRE1)/apoptosis signal‐regulating kinase 1 (ASK1)/c‐Jun N‐terminal kinase (JNK) signalling pathway was activated in macrophages after infection with M. avium. The expression of RIDD‐associated genes, such as Bloc1s1 and St3gal5, was decreased in M. avium‐infected macrophages. Interestingly, M. avium‐induced apoptosis was significantly suppressed by pretreatment with irestatin (inhibitor of IRE1α) and 4μ8c (RIDD blocker). Macrophages pretreated with N‐acetyl cysteine (NAC) showed decreased levels of reactive oxygen species (ROS), IRE1α, and apoptosis after M. avium infection. The expression of Bloc1s1 and St3gal5 was increased in NAC‐pretreated macrophages following infection with M. avium. Growth of M. avium was significantly increased in irestatin‐, 4μ8c‐, and NAC‐treated macrophages compared with the control. The data indicate that the ROS‐mediated ER stress response induces apoptosis of M. avium‐infected macrophages by activating IRE1α‐RIDD. Thus, activation of IRE1α suppresses the intracellular survival of M. avium in macrophages.  相似文献   

4.
5.
6.
Previous studies have shown that the ovarian failure in autoimmune‐induced premature ovarian failure (POF) mice could be improved by the transplantation of human placenta‐derived mesenchymal stem cells (hPMSCs); however, the protective mechanism of hPMSCs transplantation on ovarian dysfunction remains unclear. Ovarian dysfunction is closely related to the apoptosis of granulosa cells (GCs). To determine the effects of hPMSCs transplantation on GCs apoptosis, an autoimmune POF mice model was established with zona pellucida glycoprotein 3 (ZP3) peptide. It is reported that the inositol‐requiring enzyme 1α (IRE1α) and its downstream molecules play a central role in the endoplasmic reticulum (ER) stress‐induced apoptosis pathway. So the aim of this study is to investigate whether hPMSCs transplantation attenuated GCs apoptosis via inhibiting ER stress IRE1α signaling pathway. The ovarian dysfunction, follicular dysplasia, and GCs apoptosis were observed in the POF mice. And the IRE1α pathway was activated in ovaries of POF mice, as demonstrated by, increased X‐box binding protein 1 (XBP1), up‐regulated 78 kDa glucose‐regulated protein (GRP78) and caspase‐12. Following transplantation of hPMSCs, the ovarian structure and function were significantly improved in POF mice. In addition, the GCs apoptosis was obviously attenuated and IRE1α pathway was significantly inhibited. Transplantation of hPMSCs suppressed GCs apoptosis‐induced by ER stress IRE1α signaling pathway in POF mice, which might contribute to the hPMSCs transplantation‐mediating ovarian function recovery.  相似文献   

7.
CTRP9 has been reported to regulate lipid metabolism and exert cardioprotective effects, yet its role in high‐fat diet (HFD)‐induced cardiac lipotoxicity and the underlying mechanisms remain unclear. In the current study, we established HFD‐induced obesity model in wild‐type (WT) or CTRP9 knockout (CTRP9‐KO) mice and palmitate‐induced lipotoxicity model in neonatal rat cardiac myocytes (NRCMs) to investigate the effects of CTRP9 on cardiac lipotoxicity. Our results demonstrated that the HFD‐fed CTRP9‐KO mice accentuated cardiac hypertrophy, fibrosis, endoplasmic reticulum (ER) stress‐initiated apoptosis and oxidative stress compared with the HFD‐fed WT mice. In vitro, CTRP9 treatment markedly alleviated palmitate‐induced oxidative stress and ER stress‐induced apoptosis in NRCMs in a dose‐dependent manner. Phosphorylated AMPK at Thr172 was reduced, and phosphorylated mammalian target of rapamycin (mTOR) was strengthened in the heart of the HFD‐fed CTRP9‐KO mice compared with the HFD‐fed control mice. In vitro, AMPK inhibitor compound C significantly abolished the effects of CTRP9 on the inhibition of the apoptotic pathway in palmitate‐treated NRCMs. In a further mechanistic study, CTRP9 enhanced expression of phosphorylated LKB1 at Ser428 and promoted LKB1 cytoplasmic localization. Besides, silencing of LKB1 gene by lentivirus significantly prohibited activation of AMPK by CTRP9 and partially eliminated the protective effect of CTRP9 on the cardiac lipotoxicity. These results indicate that CTRP9 exerted anti‐myocardial lipotoxicity properties and inhibited cardiac hypertrophy probably through the LKB1/AMPK signalling pathway.  相似文献   

8.
9.
10.
Lipotoxicity cardiomyopathy is the result of excessive accumulation and oxidation of toxic lipids in the heart. It is a major threat to patients with diabetes. Glucagon‐like peptide‐1 (GLP‐1) has aroused considerable interest as a novel therapeutic target for diabetes mellitus because it stimulates insulin secretion. Here, we investigated the effects and mechanisms of the GLP‐1 analog exendin‐4 and the dipeptidyl peptidase‐4 inhibitor saxagliptin on cardiac lipid metabolism in diabetic mice (DM). The increased myocardial lipid accumulation, oxidative stress, apoptosis, and cardiac remodeling and dysfunction induced in DM by low streptozotocin doses and high‐fat diets were significantly reversed by exendin‐4 and saxagliptin treatments for 8 weeks. We found that exendin‐4 inhibited abnormal activation of the (PPARα)‐CD36 pathway by stimulating protein kinase A (PKA) but suppressing the Rho‐associated protein kinase (ROCK) pathway in DM hearts, palmitic acid (PA)‐treated rat h9c2 cardiomyocytes (CMs), and isolated adult mouse CMs. Cardioprotection in DM mediated by exendin‐4 was abolished by combination therapy with the PPARα agonist wy‐14643 but mimicked by PPARα gene deficiency. Therefore, the PPARα pathway accounted for the effects of exendin‐4. This conclusion was confirmed in cardiac‐restricted overexpression of PPARα mediated by adeno‐associated virus serotype‐9 containing a cardiac troponin T promoter. Our results provide the first direct evidence that GLP‐1 protects cardiac function by inhibiting the ROCK/PPARα pathway, thereby ameliorating lipotoxicity in diabetic cardiomyopathy.  相似文献   

11.
Pulmonary fibrosis is characterized by an extensive activation of fibrogenic cells and deposition of extracellular matrix (ECM). Transforming growth factor (TGF)‐β1 plays a pivotal role in the pathogenesis of pulmonary fibrosis, probably through the epithelial‐ to‐mesenchymal transition (EMT) and ECM production. The present study investigates potential mechanism by which TGF‐β1 induces EMT and ECM production in the fibrogenesis of human lung epithelial cells during pulmonary fibrosis. The expression of EMT phenotype and other proteins relevant to fibrogenesis were measured and the cell bio‐behaviours were assessed using Cell‐IQ Alive Image Monitoring System. We found that TGF‐β1‐induced EMT was accompanied with increased collagen I deposition, which may be involved in the regulation of connective tissue growth factor (CTGF) and phosphoinositide 3‐kinase (PI3K) signalling pathway. Treatment with PI3K inhibitors significantly attenuated the TGF‐β1‐ induced EMT, CTGF expression and collagen I synthesis in lung epithelial cells. The interference of CTGF expression impaired the basal and TGF‐β1‐stimulated collagen I deposition, but did not affect the process of EMT. Our data indicate that the signal pathway of TGF‐β1/PI3K/CTGF plays an important role in the fibrogenesis of human lung epithelial cells, which may be a novel therapeutic approach to prevent and treat pulmonary fibrosis.  相似文献   

12.
13.
14.
Pancreatic stellate cells (PSCs) play a critical role in fibrogenesis during alcoholic chronic pancreatitis (ACP). Transforming growth factor‐beta1 (TGF‐β1) is a key regulator of extracellular matrix production and PSC activation. Endotoxin lipopolysaccharide (LPS) has been recognized as a trigger factor in the pathogenesis of ACP. This study aimed to investigate the mechanisms by which LPS modulates TGF‐β1 signalling and pancreatic fibrosis. Sprague‐Dawley rats fed with a Lieber‐DeCarli alcohol (ALC) liquid diet for 10 weeks with or without LPS challenge during the last 3 weeks. In vitro studies were performed using rat macrophages (Mφs) and PSCs (RP‐2 cell line). The results showed that repeated LPS challenge resulted in significantly more collagen production and PSC activation compared to rats fed with ALC alone. LPS administration caused overexpression of pancreatic TLR4 or TGF‐β1 which was paralleled by an increased number of TLR4‐positive or TGF‐β1‐positive Mφs or PSCs in ALC‐fed rats. In vitro, TLR4 or TGF‐β1 production in Mφs or RP‐2 cells was up‐regulated by LPS. LPS alone or in combination with TGF‐β1 significantly increased type I collagen and α‐SMA production and Smad2 and 3 phosphorylation in serum‐starved RP‐2 cells. TGF‐β pseudoreceptor BAMBI production was repressed by LPS, which was antagonized by Si‐TLR4 RNA or by inhibitors of MyD88/NF‐kB. Additionally, knockdown of Bambi with Si‐Bambi RNA significantly increased TGF‐β1 signalling in RP‐2 cells. These findings indicate that LPS increases TGF‐β1 production through paracrine and autocrine mechanisms and that LPS enhances TGF‐β1 signalling in PSCs by repressing BAMBI via TLR4/MyD88/NF‐kB activation.  相似文献   

15.
Arsenite (As(III)), an effective chemotherapeutic agent for the acute promyelocytic leukemia (APL) and multiple myeloma (MM), might be also a promise for the therapy of other cancers, including the solid tumors. However, the molecular bases of arsenite‐induced cytotoxicity in the tumor cells have not been fully defined. In this study, we have disclosed that arsenite effectively induces the apoptotic response in the HepG2 human hepatoma cells by triggering GADD45α induction and the subsequent activation of JNKs/AP‐1 cell death pathway. However, signaling events relating to GADD45α/JNKs/AP‐1 pathway activation have not been observed in HL7702 human diploid hepatic cells under the same arsenite exposure condition. Our results thus have illustrated the selective pro‐apoptotic role of arsenite in the hepatoma cells by activating GADD45α‐dependent cell death pathway whereas with little effect on the normal hepatic cells. The approaches to up‐regulate GADD45α levels might be helpful in improving the chemotherapeutic action of arsenite on certain solid tumors including hepatoma. J. Cell. Biochem. 109: 1264–1273, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
The 90‐kDa heat shock protein (Hsp90α) has been identified on the surface of cancer cells, and is implicated in tumor invasion and metastasis, suggesting that it is a potentially important target for tumor therapy. However, the regulatory mechanism of Hsp90α plasma membrane translocation during tumor invasion remains poorly understood. Here, we show that Hsp90α plasma membrane expression is selectively upregulated upon epidermal growth factor (EGF) stimulation, which is a process independent of the extracellular matrix. Abrogation of EGF‐mediated activation of phospholipase (PLCγ1) by its siRNA or inhibitor prevents the accumulation of Hsp90α at cell protrusions. Inhibition of the downstream effectors of PLCγ1, including Ca2+ and protein kinase C (PKCγ), also blocks the membrane translocation of Hsp90α, while activation of PKCγ leads to increased levels of cell‐surface Hsp90α. Moreover, overexpression of PKCγ increases extracellular vesicle release, on which Hsp90α is present. Furthermore, activation or overexpression of PKCγ promotes tumor cell motility in vitro and tumor metastasis in vivo, whereas a specific neutralizing monoclonal antibody against Hsp90α inhibits such effects, demonstrating that PKCγ‐induced Hsp90α translocation is required for tumor metastasis. Taken together, our study provides a mechanistic basis for the role for the PLCγ1–PKCγ pathway in regulating Hsp90α plasma membrane translocation, which facilitates tumor cell motility and promotes tumor metastasis.  相似文献   

17.
Cardiomyocyte tumour necrosis factor α (TNF‐α) production contributes to myocardial depression during sepsis. This study was designed to observe the effect of norepinephrine (NE) on lipopolysaccharide (LPS)‐induced cardiomyocyte TNF‐α expression and to further investigate the underlying mechanisms in neonatal rat cardiomyocytes and endotoxaemic mice. In cultured neonatal rat cardiomyocytes, NE inhibited LPS‐induced TNF‐α production in a dose‐dependent manner. α1‐ adrenoceptor (AR) antagonist (prazosin), but neither β1‐ nor β2‐AR antagonist, abrogated the inhibitory effect of NE on LPS‐stimulated TNF‐α production. Furthermore, phenylephrine (PE), an α1‐AR agonist, also suppressed LPS‐induced TNF‐α production. NE inhibited p38 phosphorylation and NF‐κB activation, but enhanced extracellular signal‐regulated kinase 1/2 (ERK1/2) phosphorylation and c‐Fos expression in LPS‐treated cardiomyocytes, all of which were reversed by prazosin pre‐treatment. To determine whether ERK1/2 regulates c‐Fos expression, p38 phosphorylation, NF‐κB activation and TNF‐α production, cardiomyocytes were also treated with U0126, a selective ERK1/2 inhibitor. Treatment with U0126 reversed the effects of NE on c‐Fos expression, p38 mitogen‐activated protein kinase (MAPK) phosphorylation and TNF‐α production, but not NF‐κB activation in LPS‐challenged cardiomyocytes. In addition, pre‐treatment with SB202190, a p38 MAPK inhibitor, partly inhibited LPS‐induced TNF‐α production in cardiomyocytes. In endotoxaemic mice, PE promoted myocardial ERK1/2 phosphorylation and c‐Fos expression, inhibited p38 phosphorylation and IκBα degradation, reduced myocardial TNF‐α production and prevented LPS‐provoked cardiac dysfunction. Altogether, these findings indicate that activation of α1‐AR by NE suppresses LPS‐induced cardiomyocyte TNF‐α expression and improves cardiac dysfunction during endotoxaemia via promoting myocardial ERK phosphorylation and suppressing NF‐κB activation.  相似文献   

18.
Although it is known that the expression and activity of sirtuin 1 (Sirt1) decrease in the aged kidney, the role of interaction between Sirt1 and hypoxia‐inducible factor (HIF)‐1α is largely unknown. In this study, we investigated whether HIF‐1α could be a deacetylation target of Sirt1 and the effect of their interaction on age‐associated renal injury. Five‐week‐old (young) and 24‐month‐old (old) C57Bl/6J mice were assessed for their age‐associated changes. Kidneys from aged mice showed increased infiltration of CD68‐positive macrophages, higher expression of extracellular matrix (ECM) proteins, and more apoptosis than young controls. They also showed decreased Sirt1 expression along with increased acetylated HIF‐1α. The level of Bcl‐2/adenovirus E1B‐interacting protein 3, carbonic anhydrase 9, Snail, and transforming growth factor‐β1, which are regulated by HIF‐1α, was significantly higher in aged mice suggesting that HIF‐1α activity was increased. In HK‐2 cells, Sirt1 inhibitor sirtinol and siRNA‐mediated knockdown of Sirt1 enhanced apoptosis and ECM accumulation. During hypoxia, Sirt1 was down‐regulated, which allowed the acetylation and activation of HIF‐1α. Resveratrol, a Sirt1 activator, effectively prevented hypoxia‐induced production of ECM proteins, mitochondrial damage, reactive oxygen species generation, and apoptosis. The inhibition of HIF‐1α activity by Sirt1‐induced deacetylation of HIF‐1α was confirmed by Sirt1 overexpression under hypoxic conditions and by resveratrol treatment or Sirt1 overexpression in HIF‐1α‐transfected HK‐2 cells. Finally, we confirmed that chronic activation of HIF‐1α promoted apoptosis and fibrosis, using tubular cell‐specific HIF‐1α transgenic mice. Taken together, our data suggest that Sirt1‐induced deacetylation of HIF‐1α may have protective effects against tubulointerstitial damage in aged kidney.  相似文献   

19.
Our previous studies have assessed ginsenoside Rg1 (Rg1)‐mediated protection in a type 1 diabetes rat model. To uncover the mechanism through which Rg1 protects against cardiac injury induced by diabetes, we mimicked diabetic conditions by culturing H9C2 cells in high glucose/palmitate. Rg1 had no toxic effect, and it alleviated the high glucose/palmitate damage in a dose‐dependent manner, as indicated by 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide assay and lactate dehydrogenase release to the culture medium. Rg1 prevented high glucose/palmitate‐induced cell apoptosis, assessed using cleaved caspase‐3 and terminal deoxynucleotidyl transferase dUTP nick end labelling staining. Rg1 also reduced high glucose‐/palmitate‐induced reactive oxygen species formation and increased intracellular antioxidant enzyme activity. We found that Rg1 activates protein kinase B (AKT)/glycogen synthase kinase‐3 (GSK‐3β) pathway and antioxidant nuclear factor erythroid 2‐related factor 2 (Nrf2) pathway, indicated by increased phosphorylation of AKT and GSK‐3β, and nuclear translocation of Nrf2. We used phosphatidylinositol‐3‐kinase inhibitor Ly294002 to block the activation of the AKT/GSK‐3β pathway and found that it partially reversed the protection by Rg1 and decreased Nrf2 pathway activation. The results suggest that Rg1 exerts a protective effect against high glucose and palmitate damage that is partially AKT/GSK‐3β/Nrf2‐mediated. Further studies are required to validate these findings using primary cardiomyocytes and animal models of diabetes.  相似文献   

20.
Glioblastoma multiforme (GBM) is the most common malignant tumour in the adult brain and hard to treat. Nuclear factor κB (NF‐κB) signalling has a crucial role in the tumorigenesis of GBM. EGFR signalling is an important driver of NF‐κB activation in GBM; however, the correlation between EGFR and the NF‐κB pathway remains unclear. In this study, we investigated the role of mucosa‐associated lymphoma antigen 1 (MALT1) in glioma progression and evaluated the anti‐tumour activity and effectiveness of MI‐2, a MALT1 inhibitor in a pre‐clinical GBM model. We identified a paracaspase MALT1 that is involved in EGFR‐induced NF‐kB activation in GBM. MALT1 deficiency or inhibition significantly affected the proliferation, survival, migration and invasion of GBM cells both in vitro and in vivo. Moreover, MALT1 inhibition caused G1 cell cycle arrest by regulating multiple cell cycle–associated proteins. Mechanistically, MALTI inhibition blocks the degradation of IκBα and prevents the nuclear accumulation of the NF‐κB p65 subunit in GBM cells. This study found that MALT1, a key signal transduction cascade, can mediate EGFR‐induced NF‐kB activation in GBM and may be potentially used as a novel therapeutic target for GBM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号