首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Osteosarcoma is the most common primary bone tumour in children and adolescents. Accumulating evidence has shown that microRNAs (miRNAs) participate in the development of almost all types of cancer. Here, we investigated the role of miR‐224 in the development and progression of osteosarcoma. We demonstrated that miR‐224 was down‐regulated in osteosarcoma cell lines and tissues. Lower miR‐224 levels were correlated with shorter survivalin osteosarcoma patients. Furthermore, overexpression of miR‐224 suppressed osteosarcoma cell proliferation, migration and invasion and contributed to the increased sensitivity of MG‐63 cells to cisplatin. We identified Rac1 as a direct target gene of miR‐224 in osteosarcoma. Rac1 expression was up‐regulated in the osteosarcoma cell lines and tissues, and there was an inverse correlation between Rac1 and miR‐224 expression in osteosarcoma tissues. Furthermore, rescuing Rac1 expression decreased the sensitivity of miR‐224‐overexpressing MG‐63 cells to cisplatin. We also demonstrated that ectopic expression of Rac1 promoted the proliferation, migration and invasion of miR‐224‐overexpressing MG‐63 cells. These data suggest that miR‐224 plays a tumour suppressor role in the development of osteosarcoma and is related to the sensitivity of osteosarcoma to cisplatin.  相似文献   

2.
3.
Cancer stem cells (CSCs) are a source of tumour recurrence in patients with nasopharyngeal carcinoma (NPC); however, the function of microRNA‐124 (miR‐124) in NPC CSCs has not been clearly defined. In this study, we investigated the role of miR‐124 in NPC CSCs. qRT‐PCR was performed to measure miR‐124 expression in NPC tissues and cell lines and the effects of miR‐124 on stem‐like properties and radiosensitivity of NPC cells measured. Luciferase reporter assays and rescue experiments were used to investigate the interaction of miR‐124 with the 3′UTR of junctional adhesion molecule A (JAMA). Finally, we examined the effects of miR‐124 in an animal model and clinical samples. Down‐regulation of miR‐124 was detected in cancer tissues and was inversely associated with tumour stage and lymph node metastasis. Overexpression of miR‐124 inhibited stemness properties and enhanced radiosensitivity of NPC cells in vitro and in vivo via targeting JAMA. Up‐regulation of miR‐124 was correlated with superior overall survival of patients with NPC. Our study demonstrates that miR‐124 can inhibit stem‐like properties and enhance radiosensitivity by directly targeting JAMA in NPC. These findings provide novel insights into the molecular mechanisms underlying therapy failure in NPC.  相似文献   

4.
MiR‐4732‐5p was previously found to be dysregulated in nipple discharge of breast cancer. However, the expression and function of miR‐4732‐5p in breast cancer remain largely unknown. Here, the expression of miR‐4732‐5p was detected using quantitative real‐time PCR in breast cancer tissues and cell lines. Cell proliferation, apoptosis, migration and invasion assays were performed to examine the effects of miR‐4732‐5p in breast cancer. In addition, mRNA sequencing, bioinformatics analysis, Western blot and luciferase assays were performed to identify the target of miR‐4732‐5p. Overall, miR‐4732‐5p was significantly down‐regulated in breast cancer tissues, especially in lymph node metastasis (LNM)‐negative tissues, compared with adjacent normal tissues. However, it was more highly expressed in LNM‐positive breast cancer tissues, compared with LNM‐negative ones. Expression of miR‐4732‐5p was positively correlated with lymph node metastasis, larger tumour size, advanced clinical stage, high Ki‐67 levels and poor prognosis. MiR‐4732‐5p promoted cell proliferation, migration and invasion in breast cancer. MiR‐4732‐5p directly targeted the 3′‐UTR of tetraspanin 13 (TSPAN13) and suppressed TSPAN13 expression at the mRNA and protein levels. These results suggested that miR‐4732‐5p may serve as a tumour suppressor in the initiation of breast cancer, but as a tumour promoter in breast cancer progression by targeting TSPAN13.  相似文献   

5.
Lung cancer is the most common incident cancer, with a high mortality worldwide, and non‐small‐cell lung cancer (NSCLC) accounts for approximately 85% of cases. Numerous studies have shown that the aberrant expression of microRNAs (miRNAs) is associated with the development and progression of cancers. However, the clinical significance and biological roles of most miRNAs in NSCLC remain elusive. In this study, we identified a novel miRNA, miR‐34b‐3p, that suppressed NSCLC cell growth and investigated the underlying mechanism. miR‐34b‐3p was down‐regulated in both NSCLC tumour tissues and lung cancer cell lines (H1299 and A549). The overexpression of miR‐34b‐3p suppressed lung cancer cell (H1299 and A549) growth, including proliferation inhibition, cell cycle arrest and increased apoptosis. Furthermore, luciferase reporter assays confirmed that miR‐34b‐3p could bind to the cyclin‐dependent kinase 4 (CDK4) mRNA 3′‐untranslated region (3′‐UTR) to suppress the expression of CDK4 in NSCLC cells. H1299 and A549 cell proliferation inhibition is mediated by cell cycle arrest and apoptosis with CDK4 interference. Moreover, CDK4 overexpression effectively reversed miR‐34‐3p‐repressed NSCLC cell growth. In conclusion, our findings reveal that miR‐34b‐3p might function as a tumour suppressor in NSCLC by targeting CDK4 and that miR‐34b‐3p may, therefore, serve as a biomarker for the diagnosis and treatment of NSCLC.  相似文献   

6.
7.
In our study, we aimed to investigate the role of CDR1as during competitive inhibition of miR‐7 in the regulation of cisplatin chemosensitivity in breast cancer via regulating REGγ. RT‐qPCR was applied to detect the expression of CDR1as and miR‐7 in breast cancer tissues, breast cancer cell lines and corresponding drug‐resistant cell lines. The correlation between CDR1as and miR‐7 and between miR‐7 and REGγ was evaluated. MCF‐7‐R and MDA‐MB‐231‐R cells were selected followed by transfection of a series of mimics, inhibitors or siRNA. The effect of CDR1as on the half maximal inhibitor concentration (IC50), cisplatin sensitivity and cell apoptosis was also analysed. Furthermore, a subcutaneous xenograft nude mouse model was established to further confirm the effect of CDR1as on the chemosensitivity of breast cancer to cisplatin in vivo. Immunohistochemical staining was conducted to test the Ki‐67 expression in nude mice. A positive correlation was found between the drug resistance and CDR1as expression in breast cancer. CDR1as could increase the resistance of breast cancer cells to cisplatin. miR‐7 expression was low, while REGγ was highly expressed in MCF‐7‐R and MDA‐MB‐231‐R cells. CDR1as competitively inhibited miR‐7 and up‐regulated REGγ. Overexpression of miR‐7 could reverse the enhanced sensitivity of silenced CDR1as to drug‐resistant breast cancer cells. Additionally, in vivo experiments demonstrated that CDR1as mediated breast cancer occurrence and its sensitivity to cisplatin. Silencing CDR1as decreased Ki‐67 expression. Silencing CDR1as may inhibit the expression of REGγ by removing the competitive inhibitory effect on miR‐7 and thus enhancing the sensitivity of drug‐resistant breast cancer cells.  相似文献   

8.
Osteosarcoma is the most common primary bone tumour. Increasing evidence has demonstrated the pathogenic role of microRNA (miRNAs) dysregulation in tumour development. miR‐379 was previously reported to function as an oncogenic or tumour‐suppressing miRNA in a tissue‐dependent manner. However, its function in osteosarcoma remains unknown. In this study, we found that the expression of miR‐379 was downregulated in osteosarcoma tissues and cell lines. Further functional characterization revealed that miR‐379 suppressed osteosarcoma cell proliferation and invasion in vitro and retarded the growth of osteosarcoma xenografts in vivo. Mechanistically, PDK1 was identified as the direct target of miR‐379 in osteosarcoma, in which PDK1 expression was up‐regulated and showed inverse correlation with miR‐379. Enforced expression of PDK1 promoted osteosarcoma cell proliferation and rescued the anti‐proliferative effect of miR‐379. These data suggest that miR‐379 could function as a tumour‐suppressing miRNA via targeting PDK1 in osteosarcoma.  相似文献   

9.
Enterovirus 71 (EV71) is an emerging life‐threatening pathogen particularly in the Asia‐Pacific region. Apoptosis is a major pathogenic feature in EV71 infection. However, which molecular mechanism participating in EV71‐induced apoptosis is not completely understood. Long noncoding RNAs (lncRNAs), a newly discovered class of regulatory RNA molecules, govern a wide range of biological functions through multiple regulatory mechanisms. Whether lncRNAs involved in EV71‐induced apoptosis was investigated in this study. We conducted an apoptosis‐oriented approach by integrating lncRNA and mRNA profilings. lnc‐IRAK3‐3 is down‐regulated in EV71 infection and plays an important role in EV71 infection‐induced apoptosis. Compensation of lnc‐IRAK3‐3 in EV71 infection promoted cell apoptosis wherein GADD45β expression was increased and further triggered caspase3 and PARP cleavage. Using bioinformatics analysis and functional assays, lnc‐IRAK3‐3 could functionally sequester miR‐891b and GADD45β 3′UTR whereas miR‐891b showed the inhibitory activity on GADD45β expression. Taken together, lnc‐IRAK3‐3 has the ability capturing miR‐891b to enforce GADD45β expression and eventually promotes apoptosis. On the contrary, host cells suppress lnc‐IRAK3‐3 to relieve lnc‐IRAK3‐3‐sequestered miR‐891b, restrain GADD45β, and attenuate apoptosis in EV71 infection that prevent host cells from severe damages. We discover a new molecular mechanism by which host cells counteract EV71‐induced apoptosis through the lnc‐IRAK3‐3/miR‐891b/GADD45β axis partially.  相似文献   

10.
MicroRNAs (miRNAs) are key regulators in the tumour growth and metastasis of human hepatocellular carcinoma (HCC). Increasing evidence suggests that miR‐301b‐3p functions as a driver in various types of human cancer. However, the expression pattern of miR‐301b‐3p and its functional role as well as underlying molecular mechanism in HCC remain poorly known. Our study found that miR‐301b‐3p expression was significantly up‐regulated in HCC tissues compared to adjacent non‐tumour tissues. Clinical association analysis revealed that the high level of miR‐301b‐3p closely correlated with large tumour size and advanced tumour‐node‐metastasis stages. Importantly, the high miR‐301b‐3p level predicted a prominent poorer overall survival of HCC patients. Knockdown of miR‐301b‐3p suppressed cell proliferation, led to cell cycle arrest at G2/M phase and induced apoptosis of Huh7 and Hep3B cells. Furthermore, miR‐301b‐3p knockdown suppressed tumour growth of HCC in mice. Mechanistically, miR‐301b‐3p directly bond to 3′UTR of vestigial like family member 4 (VGLL4) and negatively regulated its expression. The expression of VGLL4 mRNA was down‐regulated and inversely correlated with miR‐301b‐3p level in HCC tissues. Notably, VGLL4 knockdown markedly repressed cell proliferation, resulted in G2/M phase arrest and promoted apoptosis of HCC cells. Accordingly, VGLL4 silencing rescued miR‐301b‐3p knockdown attenuated HCC cell proliferation, cell cycle progression and apoptosis resistance. Collectively, our results suggest that miR‐301b‐3p is highly expressed in HCC. miR‐301b‐3p facilitates cell proliferation, promotes cell cycle progression and inhibits apoptosis of HCC cells by repressing VGLL4.  相似文献   

11.
MicroRNAs (miRNAs) play a pivotal role in carcinogenesis. Dysregulation of miRNAs, both oncogenic miRNAs and tumour‐suppressive miRNAs, is closely associated with cancer development and progression. The levels of miRNAs could be changed epigenetically by DNA methylation in the 5′ untranslated region (UTR) of pre‐mature miRNAs. To investigate whether DNA methylation alters the expression of miR‐129 in lung cancer, we did DNA methylation assays and found that 5′ UTR region of miR‐129‐2 gene was absolutely methylated in both A549 and SPCA‐1 lung cancer cells, but totally un‐methylated in 95‐D cells. The expression of miR‐129 was restored by 5‐Aza‐2'‐deoxycytidine (DAC), a de‐methylation agent, in both A549 and SPCA‐1 cells, resulting in attenuated cell migration and invasion ability, and decreased protein level of NF‐κB, which indicates the involvement of NF‐κB pathway. To further illustrate the roles of miR‐129 in lung tumourigenesis, we overexpressed miR‐129 in lung cancer cells by transfection of miR‐129 mimics, and found arrested cell proliferation at G2/M phase of cell cycle and inhibited cell invasion. These findings strongly suggest that miR‐129 is a tumour suppressive miRNA, playing important roles in the development and progression of human lung cancer.  相似文献   

12.
The aim of this study is to determine the expression and roles of miR‐346 in nasopharyngeal carcinoma (NPC). We showed that miR‐346 was upregulated in NPC tissues compared with adjacent non‐tumorous nasopharyngeal tissues. Inhibition of miR‐346 significantly attenuated the migration and invasion of NPC cells. Luciferase reporter assay showed that miR‐346 targeted the 3′‐untranslated region (3′‐UTR) of breast cancer metastasis suppressor 1 (BRMS1). Overexpression of miR‐346 suppressed the endogenous expression of BRMS1 in NPC cells. There was a significant negative correlation between miR‐346 and BRMS1 protein expression in NPC tissues (r = ?0.372, P = 0.008). Rescue experiments demonstrated that overexpression of BRMS1 lacking the 3′‐UTR impaired the invasiveness of NPC cells transfected with miR‐346 mimic. Taken together, miR‐346 shows the ability to promote the migration and invasion of nasopharyngeal cancer cells via targeting BRMS1 and represents a potential therapeutic target for NPC.  相似文献   

13.
MicroRNAs (miRNAs) are powerful regulators in the tumorigenesis of cholangiocarcinoma (CCA). Previous studies report that miR‐551b‐3p acts as an oncogenic factor in ovarian cancer, but plays a tumour suppressive role in gastric cancer. However, the expression pattern and potential function of miR‐551b‐3p were still unclear in CCA. Therefore, this study aimed to explore the expression of miR‐551b‐3p and its role as well as molecular mechanism in CCA. Analysis of TCGA dataset suggested that miR‐551b‐3p was under‐expressed in CCA tissues compared to normal bile duct tissues. Furthermore, our data confirmed the decreased levels of miR‐551b‐3p in CCA samples and cell lines. Interestingly, TCGA data suggested that low miR‐551b‐3p level indicated reduced overall survival of CCA patients. Gain‐ and loss‐of‐function experiments found that miR‐551b‐3p inhibited the proliferation, G1‐S phase transition and induced apoptosis of CCA cells. In vivo experiments revealed that ectopic expression of miR‐551b‐3p inhibited tumour growth of CCA in mice. Further investigation demonstrated that miR‐551b‐3p directly bond to the 3′‐UTR of Cyclin D1 (CCND1) mRNA and negatively regulated the abundance of CCND1 in CCA cells. An inverse correlation between miR‐551b‐3p expression and the level of CCND1 mRNA was detected in CCA tissues from TCGA dataset. Notably, CCND1 knockdown showed similar effects to miR‐551b‐3p overexpression in HuCCT‐1 cells. CCND1 restoration rescued miR‐551b‐3p‐induced inhibition of proliferation, G1 phase arrest and apoptosis in HuCCT‐1 cells. In summary, miR‐551b‐3p inhibits the expression of CCND1 to suppress CCA cell proliferation and induce apoptosis, which may provide a theoretical basis for improving CCA treatment.  相似文献   

14.
Detection and treatment of lung cancer still remain a clinical challenge. This study aims to validate exosomal microRNA‐96 (miR‐96) as a serum biomarker for lung cancer and understand the underlying mechanism in lung cancer progression. MiR‐96 expressions in normal and lung cancer patients were characterized by qPCR analysis. Changes in cell viability, migration and cisplatin resistance were monitored after incubation with isolated miR‐96‐containing exosomes, anti‐miR‐96 and anti‐miR negative control (anti‐miR‐NC) transfections. Dual‐luciferase reporter assay was used to study interaction between miR‐96 and LIM‐domain only protein 7 (LMO7). Changes induced by miR‐96 transfection and LMO7 overexpression were also evaluated. MiR‐96 expression was positively correlated with high‐grade and metastatic lung cancers. While anti‐miR‐96 transfection exhibited a tumour‐suppressing function, exosomes isolated from H1299 enhanced cell viability, migration and cisplatin resistance. Potential miR‐96 binding sites were found within the 3′‐UTR of wild‐type LMO7 gene, but not of mutant LMO7 gene. LMO7 expression was inversely correlated with lung cancer grades, and LMO7 overexpression reversed promoting effect of miR‐96. We have identified exosomal miR‐96 as a serum biomarker of malignant lung cancer. MiR‐96 promotes lung cancer progression by targeting LMO7. The miR‐96‐LMO7 axis may be a therapeutic target for lung cancer patients, and new diagnostic or therapeutic strategies could be developed by targeting the miR‐96‐LMO7 axis.  相似文献   

15.
MicroRNAs are considered to play critical roles in the pathogenesis of human inflammatory arthritis, including rheumatoid arthritis (RA). The purpose of this study was to determine the relationship between miR‐10a‐5p and TBX5 in synoviocytes and evaluate their contribution to joint inflammation. The expression of miR‐10a‐5p and TBX5 in the synovium of RA and human synovial sarcoma cell line SW982 stimulated by IL‐1β was determined by RT‐qPCR and Western blotting. The direct interaction between miR‐10a‐5p and TBX5 3′UTR was determined by dual‐luciferase reporter assay in HeLa cells. Mimics and inhibitors of miR‐10a‐5p were transfected into SW982 cells. TBX5 was overexpressed by plasmid transfection or knocked down by RNAi. Proinflammatory cytokines and TLR3 and MMP13 expressions were determined by RT‐qPCR and Western blotting. Down‐regulated expression of miR‐10a‐5p and up‐regulation of TBX5 in human patients with RA were found compared to patients with OA. IL‐1β could reduce miR‐10a‐5p and increase TBX5 expression in SW982 cells in vitro. The direct target relationship between miR‐10a‐5p and 3′UTR of TBX5 was confirmed by luciferase reporter assay. Alterations of miR‐10‐5p after transfection with its mimic and inhibitor caused the related depression and re‐expression of TBX5 and inflammatory factors in SW982 cells. Overexpression of TBX5 after pCMV3‐TBX5 plasmid transfection significantly promoted the production of TLR3, MMP13 and various inflammatory cytokines, while this effect was rescued after knocking down of TBX5 with its specific siRNA. We conclude that miR‐10a‐5p in a relation with TBX5 regulates joint inflammation in arthritis, which would serve as a diagnostic and therapeutic target for RA treatment.  相似文献   

16.
17.
18.
The aberrant expression of human sirtuin 2 (SIRT2) has been detected in various types of cancer; however, the biological roles, underlying mechanisms and clinical significance of SIRT2 dysregulation in human colorectal cancer (CRC) remain unclear. The results of this study demonstrate that compared with paired normal tissues, SIRT2 expression is significantly decreased in CRC tissues. SIRT2 loss has been correlated with clinicopathological characteristics, including distant metastasis, lymph node metastasis and American Joint Committee on Cancer (AJCC) stage; this loss serves as an independent factor that indicates a poor prognosis for patients with CRC. Further gain‐ and loss‐of‐function analyses have demonstrated that SIRT2 suppresses CRC cell proliferation and metastasis both in vivo and in vitro. Mechanistically, miR‐212‐5p was identified to directly target the SIRT2 3′‐untranslated region (3′‐UTR), leading to SIRT2 down‐regulation. The ectopic expression of SIRT2 reverses the effect of miR‐212‐5p overexpression on CRC cell colony formation, invasion, migration and proliferation. Clinically, an inverse correlation was found between miR‐212‐5p and SIRT2 expression. High miR‐212‐5p expression has been found to result in a poor prognosis and aggressive clinicopathological characteristics in patients with CRC. Taken together, these results suggest that SIRT2, targeted by miR‐212‐5p, acts as a tumour suppressor in CRC and that the miR‐212‐5p/SIRT2 axis is a promising prognostic factor and potential therapeutic target in CRC.  相似文献   

19.

Objectives

Hypermethylation‐induced epigenetic silencing of tumour suppressor genes (TSGs) are frequent events during carcinogenesis. MicroRNA‐142 (miR‐142) is found to be dysregulated in cancer patients to participate into tumour growth, metastasis and angiogenesis. However, the tumour suppressive role of miR‐142 and the status of methylation are not fully understood in hepatocellular carcinoma (HCC).

Methods

Hepatocellular carcinoma tissues and corresponding non‐neoplastic tissues were collected. The expression and function of miR‐142 and TGF‐β in two HCC cell lines were determined. The miRNA‐mRNA network of miR‐142 was analysed in HCC cell lines.

Results

We found that the miR‐142 expression was reduced in tumour tissues and two HCC cell lines HepG2 and SMMC7721, which correlated to higher TNM stage, metastasis and differentiation. Moreover, miR‐142 was identified to directly target and inhibit transforming growth factor β (TGF‐β), leading to decreased cell vitality, proliferation, EMT and the ability of pro‐angiogenesis in TGF‐β‐dependent manner. Interestingly, the status of methylation of miR‐142 was analysed and the results found the hypermethylated miR‐142 in tumour patients and cell lines. The treatment of methylation inhibitor 5‐Aza could restore the expression of miR‐142 to suppress the TGF‐β expression, which impaired TGF‐β‐induced tumour growth.

Conclusion

These findings implicated that miR‐142 was a tumour suppressor gene in HCC and often hyermethylated to increase TGF‐β‐induced development of hepatocellular carcinoma.
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号