首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The grasshopper Podisma sapporensis consists of two main chromosome races in Hokkaido. The western group of populations of P. sapporensis, belonging to the XO race, has a diploid number of chromosomes 2n = 23 in the male and 2n = 24 in the female (sex determination XO male/XX female). The eastern group of populations of this species, belonging to the XY race, differs from the western one as a result of Robertsonian translocation between the originally acrocentric X chromosome and M5 autosome in homozygous state, having resulted in the forming of chromosome sex determination neo-XY male/neo-XX female (2n = 22). These races are geographically isolated by the mountainous system consisting of the Mts Daisetsu and Hidaka range, occupying the central part of the island. The hybrid zones between the races have not so far been discovered. Various levels of polymorphism for the pericentric inversions and C-banding variation exist in different chromosomes throughout populations in both chromosome races. In some solitary populations (the population at the summit of Mt Yotei, populations in the vicinity of Naganuma, Oketo, and Tanno) pericentric inversions are fixed in some pairs of chromosomes, which enables marking of the discrete karyomorphes. In the Mt Daisengen population all chromosomes are two-armed as a result of fixing the pericentric inversions. These facts contradict karyotypical conservatism of the tribe Podismini. The level of diversity of P. sapporensis karyotypes could provide a new perspective on the evolutionary process of different karyotype in Orthoptera. The considerable occurrence of polymorphism in chromosomes suggests that karyotypic diversification is undergoing in P. sapporensis. The authors also proposed that P. sapporensis would be divided into four chromosome subraces in the XO chromosome race and two chromosome subraces in the XY race, on the basis of karyotypic features. These races may have been established by fundamental climatic changes during the glacial epoch.  相似文献   

2.
The brachypterous grasshopper Podisma sapporensis (Orthoptera: Acrididae) is distributed throughout the Sakhalin, Kunashir and Hokkaido Islands. Karyotypes of this species consist of two major chromosomal races with different sex chromosome systems, XO/XX and XY/XX. Molecular phylogeographic analysis of the chromosome races and subraces confirms the genetic divergence of the races and subraces in P. sapporensis. Here we first report that P. sapporensis is infected with Wolbachia consisting of three variants on wsp locus, while gatB locus was monomorphic. Furthermore, observation of cell tissue of P. sapporensis using electron microscopy confirmed the infection of Wolbachia that was inferred from polymerase chain reaction and revealed the distribution of the bacteria in the head, thorax and abdomen of P. sapporensis embryos. Our finding may shed new light on Wolbachia as a possible agent causing hybrid dysfunction resulting from experimental crosses between chromosome races or subraces of P. sapporensis.  相似文献   

3.
 First results from two strategies aimed at elucidating the genetics of sex in the dioecious genus Actinidia Lindl. (Actinidiaceae) support the hypothesis that sex-determining genes are localized in a pair of chromosomes which, although cytologically indistinguishable, function like an XX/XY system with male heterogamety. A. chinensis Planch., a close relative of the kiwifruit [A. deliciosa (A. Chev.) CF Liang et AR Ferguson], has diploid and tetraploid races. Bulk segregant analysis to find sex-linked markers revealed two markers whose inheritance patterns in three diploid families showed X and Y linkage and indicated that the male is the heterogametic sex. Some recombination between the markers and the sex-determining loci was also demonstrated. Sex ratios in 12 progenies from controlled crosses varied around 1:1, as expected for an XX/XY system. Received: 20 December 1995 / Revision accepted: 24 April 1997  相似文献   

4.
BACKGROUND AND AIMS: Gametophytic apomixis is regularly associated with polyploidy. It has been hypothesized that apomixis is not present in diploid plants because of a pleiotropic lethal effect associated with monoploid gametes. Rare apomictic triploid plants for Paspalum notatum and P. simplex, which usually have sexual diploid and apomictic tetraploid races, were acquired. These triploids normally produce male gametes through meiosis with a range of chromosome numbers from monoploid (n = 10) to diploid (n = 20). The patterns of apomixis transmission in Paspalum were investigated in relation to the ploidy levels of gametes. METHODS: Intraspecific crosses were made between sexual diploid, triploid and tetraploid plants as female parents and apomictic triploid plants as male parents. Apomictic progeny were identified by using molecular markers completely linked to apomixis and the analysis of mature embryo sacs. The chromosome number of the male gamete was inferred from chromosome counts of each progeny. KEY RESULTS: The chromosome numbers of the progeny indicated that the chromosome input of male gametes depended on the chromosome number of the female gamete. The apomictic trait was not transmitted through monoploid gametes, at least when the progeny was diploid. Diploid or near-diploid gametes transmitted apomixis at very low rates. CONCLUSIONS: Since male monoploid gametes usually failed to form polyploid progenies, for example triploids after 4x x 3x crosses, it was not possible to determine whether apomixis could segregate in polyploid progenies by means of monoploid gametes.  相似文献   

5.
The gametic and zygotic selection of genome imbalance was investigated in the Chinese hamster by direct chromosome analyses of spermatocytes and preimplantation embryos from crosses between chromosomally normal females and males heterozygous for a reciprocal translocation, T(2;10)3Idr, abbreviated here as T3. The karyotypes and the frequencies of embryos observed at the first cleavage in the cross +/+female X T3/+male were consistent with those expected from MII scoring in male T3 heterozygotes. Therefore, it was concluded that there was neither gametic selection against genome imbalance nor zygotic selection from fertilization until the first cleavage metaphase. However, 9.1-10.8% of embryos were arrested at the two-cell stage, and karyotypes of these embryos were confirmed as 22(2,10,10,10(2)), 21(2,10,10), and 21(2,10,10(2)). The common abnormality of these embryos was partial monosomy of chromosome 2. Among day 4 embryos, some chromosomally unbalanced embryos, mainly with a deficiency of other segments of chromosomes 2 and 10, had fewer blastomeres than chromosomally balanced embryos. This finding suggests that cleavage of these embryos had been retarded by day 4 of gestation.  相似文献   

6.
Chromosome counts on the progeny of crosses between diploid and tetraploid races ofDactylis show that tetraploid hybrids are produced as well as the expected triploids. The relative proportions of 4x and 3x hybrids vary greatly in different crosses, and the data suggest that parental geno-type influences the result. Overall, the frquencies of 3x and 4x hybrids are about equal, with no indication of a difference between the reciprocal 2x×4x and 4x×2x cross-combinations except perhaps in the case of diploids and autotetraploids of the same subspecies. Rare triploid hybrids are found in crosses between diploid subspecies ofDactylis. The mechanisms by which a diploid plant could donate two genomes to its offspring are discussed in relation to theDactylis situation, and the evolutionary significance of 4x hybrids formed in this way is considered.  相似文献   

7.
8.
Interrelationships between H. vulgare (2x=14) and H. bulbosum (2x=14; 4x=28) were estimated on the basis of the karyotypes and the pairing behaviour of the chromosomes in diploid, triploid and tetraploid hybrids obtained with the aid of embryo culture. — A comparison of the karyotypes of the two species revealed similarities as well as differences. It was concluded that at least 4 or more of the chromosomes were similar in morphology and probably closely related. — Diploid and tetraploid hybrids are rarely obtained and their chromosome numbers tend to be unstable whereas triploid hybrids (1 vulgare + 2 bulbosum genomes) were stable and relatively easy to produce. In the diploid hybrid only 40% of the meiotic cells contained 14 chromosomes while the numbers ranged from 7 to 16 in other cells. All hybrids exhibited pairing between the chromosomes of the two species. Diploid hybrids had a mean of 5.0 and a maximum of 7 bivalents per cell in those cells having 14 chromosomes. Triploid hybrids from crosses between 2x H. vulgare and 4x H. bulbosum exhibited a mean of 1.5 and a maximum of 5 trivalents per cell. In a hexaploid sector found following colchicine treatment of a triploid the mean frequencies of chromosome associations per cell were: 5.5I+8.0II+0.7III+3.7IV+0.3V+0.4VI. One unstable 27 chromosome hybrid obtained from crosses between the autotetraploid forms had a mean of 1.1 and a maximum of 4 quadrivalents per cell. The chromosome associations observed in these hybrids are consistent and are taken as evidence of homoeologous pairing between the chromosomes of the two species. Interspecific hybridization between these two species also reveals that chromosome stable hybrids are only obtained when the genomes are present in a ratio of 1 vulgare2 bulbosum. Based upon the results obtained, the possibility of transferring genetic characters from H. bulbosum into cultivated barley is discussed.  相似文献   

9.
Chloroplast inheritance was studied in Cosmarium turpinii Bréb. with respect to both vegetative and zygotic transmission. Analyses were carried out on (1) reciprocal haploid x diploid crosses with respect to the number and size of the zygotic chloroplasts, (2) differential survival of chloroplasts in hypnospores of different mating type strains, and (3) the position of the chloroplasts in diploid zygotes. Morphological evidence indicates that the chloroplasts in the mature zygote are derived from the (+) mating type gamete with an infrequent contribution from the (–) mating type gamete. Additional evidence suggests that the chloroplast material of each of 2 Bones arising from the zygote is derived from the plastid material of a semicell of a gamete. Differential survival of the chloroplasts is interpreted as a result of physiological differences between cells of complementary mating types.  相似文献   

10.
Experimental crosses between diploids, triploids and tetraploids ofHieracium echioides were made to examine mating interactions. Specifically, cytotype diversity in progeny from experimental crosses, intercytotype pollen competition as a reproductive barrier between diploids and tetraploids, and differences in seed set between intra- and intercytotype crosses were studied. Only diploids were found in progeny from 2x × 2x crosses. The other types of crosses yielded more than one cytotype in progeny, but one cytotype predominated in each cross type: diploids (92%) in 2x × 3x crosses, tetraploids (88%) in 3x × 2x crosses, triploids (96%) in 2x × 4x crosses, triploids (90%) in 4x × 2x crosses, tetraploids (60%) in 3x × 3x crosses, pentaploids (56%) in 3x × 4x crosses, triploids (80%) in 4x × 3x crosses and tetraploids (88%) in 4x × 4x crosses. No aneuploids have been detected among karyologically analyzed plants. Unreduced egg cell production was detected in triploids and tetraploids, but formation of unreduced pollen was recorded only in two cases in triploids. Triploid plants produced x, 2x and 3x gametes: in male gametes x (92%) gametes predominated whereas in female gametes 3x (88%) gametes predominated. Cytotype diversity in progeny from crosses where diploids and tetraploids were pollinated by mixture of pollen from diploid and tetraploid plants suggested intercytotype pollen competition to serve as a prezygotic reproductive barrier. No statistically significant difference in seed set obtained from intra- and intercytotype crosses between diploids and tetraploids was observed, suggesting the absence of postzygotic reproductive barriers among cytotypes.  相似文献   

11.
To shed light on the biological origins of sex differences in neural tube defects (NTDs), we examined Trp53-null C57BL/6 mouse embryos and neonates at 10.5 and 18.5 days post coitus (dpc) and at birth. We confirmed that female embryos show more NTDs than males. We also examined mice in which the testis-determining gene Sry is deleted from the Y chromosome but inserted onto an autosome as a transgene, producing XX and XY gonadal females and XX and XY gonadal males. At birth, Trp53 nullizygous mice were predominantly XY rather than XX, irrespective of gonadal type, showing that the sex difference in the lethal effect of Trp53 nullizygosity by postnatal day 1 is caused by differences in sex chromosome complement. At 10.5 dpc, the incidence of NTDs in Trp53-null progeny of XY* mice, among which the number of the X chromosomes varies independently of the presence or absence of a Y chromosome, was higher in mice with two copies of the X chromosome than in mice with a single copy. The presence of a Y chromosome had no protective effect, suggesting that sex differences in NTDs are caused by sex differences in the number of X chromosomes.  相似文献   

12.
To examine interindividual differences in sperm chromosome aneuploidy, repeated semen specimens were obtained from a group of ten healthy men, aged 20-21 at the start of the study, and analyzed by multi-color fluorescence in situ hybridization (FISH) analysis to determine the frequencies of sperm aneuploidy for chromosomes X, Y, 8, 18 and 21 and of diploidy. Semen samples were obtained three times over a five-year period. Statistical analysis examining the stability of sperm aneuploidy over time by type and chromosome identified two men who consistently exhibited elevated frequencies of sperm aneuploidy (stable variants): one with elevated disomy 18 and one with elevated MII diploidy. Differences among frequencies of aneuploidy by chromosome were also seen. Overall, disomy frequencies were lower for chromosome X, 8 and 18 than for chromosomes 21 or Y and for XY aneuploidy. The frequency of chromosome Y disomy did not differ from XY sperm frequency. Also, the frequency of meiosis I (XY) and II (YY + XX) sex chromosome errors did not differ in haploid sperm, but the frequency of MII errors was lower than MI errors in diploid sperm. Frequencies of sperm aneuploidy were similar between the first sampling period and the second, two years later. However, the frequency of some types of aneuploidy (XY, disomy Y, disomy 8, total autosomal disomies, total diploidy, and subcategories of diploidy) increased significantly between the first sampling period and the last, five years later, while others remained unchanged (disomy X, 21 and 18). These findings confirm inter-chromosome differences in the frequencies of disomy and suggest that some apparently healthy men exhibit consistently elevated frequencies of specific sperm aneuplodies. Furthermore, time/age-related changes in sperm aneuploidy may be detected over as short a period as five years in a repeated-measures study.  相似文献   

13.
M Ro?ek 《Folia biologica》1989,37(3-4):151-154
Bembidion quadrimaculatum possesses 24 chromosomes: 2n male = 22 + XY, 2n female = 22 + XX; their structure is meta- and submetacentric and differences in length between them are slight. Achiasmatic meiosis has been identified in spermatogenesis. The diploid chromosome number in Clivina fossor is 44; 2n male = 42 + XY, 2n female = 42 + XX. The chromosome structure is meta-, submeta-, and subtelocentric and X is the longest element in the set. 1 to 2 chiasmata per bivalent occur in meiosis.  相似文献   

14.
Karyotypic and cytogenetic characteristics of catfish Harttia carvalhoi (Paraíba do Sul River basin, S?o Paulo State, Brazil) were investigated using differential staining techniques (C-banding, Ag-staining) and fluorescent in situ hybridization (FISH) with 18S and 5S rDNA probes. The diploid chromosome number of females was 2n = 52 and their karyotype was composed of nine pairs of metacentric, nine pairs of submetacentric, four pairs of subtelocentric and four pairs of acrocentric chromosomes. The diploid chromosome number of males was invariably 2n = 53 and their karyotype consisted of one large unpaired metacentric, eight pairs of metacentric, nine pairs of submetacentric, four pairs of subtelocentric, four pairs of acrocentric plus two middle-sized acrocentric chromosomes. The differences between female and male karyotypes indicated the presence of a sex chromosome system of XX/XY1Y2 type, where the X is the largest metacentric and Y1 and Y2 are the two additional middle-sized acrocentric chromosomes of the male karyotype. The major rDNA sites as revealed by FISH with an 18S rDNA probe were located in the pericentromeric region of the largest pair of acrocentric chromosomes. FISH with a 5S rDNA probe revealed two sites: an interstitial site located in the largest pair of acrocentric chromosomes, and a pericentromeric site in a smaller metacentric pair of chromosomes. Translocations or centric fusions in the ancestral 2n = 54 karyotype is hypothesized for the origin of such multiple sex chromosome systems where females are fixed translocation homozygotes whereas males are fixed translocation heterozygotes. The available cytogenetic data for representatives of the genus Harttia examined so far indicate large kayotype diversity.  相似文献   

15.
The genus Helleborus comprises 22 species, which are allocated to six sections. H. x hybridus and H. niger, which belong to different Helleborus sections, are economically important ornamentals. Several other species with minor impact exhibit interesting features, e.g. flower size, flower colour, foliage, scent and disease resistance, which should be introgressed into H. x hybridus or H. niger through interspecific hybridisation. The aims of this study were to investigate whether and which kind of hybridisation barriers occur in crosses between Helleborus species and if they differ in their manifestations, depending on the genetic distance of the respective partners. In order to obtain interspecific hybrids despite crossing barriers, a method to overcome these barriers should be developed. Crossing barriers in Helleborus were localised as predominantly post‐zygotic according to in situ pollen tube staining with aniline blue. For certain crosses, pre‐zygotic barriers could also be assumed, but pollen tube growth was not totally inhibited. Therefore, embryo rescue techniques via ovule culture were established to overcome the post‐zygotic barriers. Ovules were isolated from maternal plants 5–7 weeks after pollination in most cases and then cultured in vitro. Overall, 219 hybrids were successfully obtained, of which 16 were derived from inter‐sectional crosses. Hybrids were verified by flow cytometry and/or by molecular DNA markers.  相似文献   

16.
Tetraploid lineages are typically reproductively isolated from their diploid ancestors by post‐zygotic isolation via triploid sterility. Nevertheless, polyploids often also exhibit ecological divergence that could contribute to reproductive isolation from diploid ancestors. In this study, we disentangled the contribution of different forms of reproductive isolation between sympatric diploid and autotetraploid individuals of the food‐deceptive orchid Anacamptis pyramidalis by quantifying the strength of seven reproductive barriers: three prepollination, one post‐pollination prezygotic and three post‐zygotic. The overall reproductive isolation between the two cytotypes was found very high, with a preponderant contribution of two prepollination barriers, that is phenological and microhabitat differences. Although the contribution of post‐zygotic isolation (triploid sterility) is confirmed in our study, these results highlight that prepollination isolation, not necessarily involving pollinator preference, can represent a strong component of reproductive isolation between different cytotypes. Thus, in the context of polyploidy as quantum speciation, that generates reproductive isolation via triploid sterility, ecological divergence can strengthen the reproductive isolation between cytotypes, reducing the waste of gametes in low fitness interploidy crosses and thus favouring the initial establishment of the polyploid lineage. Under this light, speciation by polyploidy involves ecological processes and should not be strictly considered as a nonecological form of speciation.  相似文献   

17.
赵文阁  刘鹏  夏玉国 《四川动物》2004,23(3):185-187,i003
用骨髓细胞制片法分析了粗皮蛙的染色体组型 ,结果表明其二倍体染色体数为 2 6 ,可配成 13对 ,有5对大型染色体 (相对长度 >9)和 8对小型染色体 (相对长度 <6 5 ) ,其中 ,第 1、 5、 6、 7、 8对为中部着丝点染色体 ,第 12对为端部着丝点染色体 ,第 2、 3、 4、 9、 10、 11、 13对为亚中部着丝点染色体 ,第 4对为性染色体 ,属XY型 ,X染色体为亚中部着丝点 (相对长度为 10 70 ,臂比指数为 1 72 ) ,Y染色体为亚中部着丝点(相对长度为 12 83,臂比指数为 2 0 2 )。  相似文献   

18.
19.
Seedlings of 12 crosses involving pear varieties or hybrids were observed for the presence of haploid plants. On the basis of phenotypic characteristics, 17 plants corresponded to the haploid condition and, of these, 12 were determined by chromosome counting to be haploid (2n=x=17). In addition, and in order to induce in situ parthenogenesis, several pear varieties were pollinated with a selected clone carrying a homozygous dominant marker gene for the colour of red. This pollen had previously been irradiated with -rays of cobalt 60 at 0, 200, 250 and 500 Grays. The immature embryos were cultured in vitro, whereby 1 haploid and two mixoploid plants were obtained. Numerous diploid plants with the maternal phenotype were also obtained, and their genetic origin was subsequently studied by means of isozyme analysis.  相似文献   

20.
Diandric heterozygous diploid mouse embryos were produced by standard micromanipulatory techniques using eggs from female mice with a normal chromosome constitution and fertilised by homozygous Rb(1.3)1Bnr males containing a pair of large metacentric marker chromosomes in their karyotype. The constructed diandric eggs were transferred to the oviducts of pseudopregnant recipients and subsequently autopsied midday on the eighth day of gestation. From a total of 85 eggs transferred to females that subsequently became pregnant, 30 implanted. Eighteen implantation sites were found to contain resorptions, and 12 egg cylinder stage embryos were recovered. These were cytogenetically examined. In two cases, no mitoses were observed, and in a third embryo of normal size, only a single paternally-derived marker chromosome was present in its mitoses, indicating that this embryo had a normal chromosome constitution. This presumably resulted from a technical error during the micromanipulatory procedure. The remaining nine morphologically small but normal embryos were diploid, and each had two paternally-derived marker chromosomes, thus establishing their ploidy and confirming their diandric origin. G-banding analysis revealed that all of these embryos had an XY sex chromosome constitution. Since the expected XX:XY:YY ratio of 1:2:1 was not observed, it is clear that the XX class embryos were lost at some stage during the pre- or early post-implantation period, though whether they are represented by the resorption sites is not yet established. The YY class would not be expected to be recovered in any case, as these embryos are believed to be lost during early cleavage. The cytogenetic findings reported here are therefore similar to the results of the chromosomal analyses of the human complete hydatidiform moles of dispermic origin, all of which apparently have an XY karyotype. It is unclear why, both in the human and in the mouse, the XX diandric heterozygous diploid group should develop poorly compared to similar embryos with an XY karyotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号