首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 876 毫秒
1.
The effects of varying CaSO4 and NaCl levels on the nutrient content ofLeucaena leucocephala were established by examining the concentrations of Na, Ca, Cl, K and Mg in leucaena roots, stems and leaves. Leucaena was grown in nutrient solution at four levels of CaSO4 (0.5, 1.0, 2.5 and 5.0 mM) and NaCl (1, 25, 50 and 100 mM), in randomized blocks with five replications. Leucaena excluded sodium from stems and leaves when NaCl concentration was 50 mM or less. Sodium uptake decreased as CaSO4 concentration increased. Calcium uptake was affected by NaCl concentration when substrate CaSO4 concentration was 0.5 mM. At this level, 100 mM NaCl caused a marked decrease in leaf calcium and a marked increase in leaf Cl. In all other treatments, Cl uptake was not affected by CaSO4 concentration. Potassium uptake was strongly depressed as NaCl concentration increased at low Ca concentration, but this effect was offset at high Ca. Magnesium uptake decreased as CaSO4 levels increased.  相似文献   

2.
Nutrient culture studies frequently involve the use of balancing ions to equalize concentrations of essential nutrient elements. In a pot experiment in controlled environment with Lupinus angustifolius, growth and nodulation were assessed following calcium treatment (15 mM) using the acetate, chloride and sulphate salts in various combinations. Chloride depressed nodulation at levels higher than 20 mM; nodule mass and number were highest at the maximum sulphate concentration (13 mM). At the lowest sulphate level (2 mM), nodulation and root growth were depressed by 4 mM or higher acetate. Nodulation (dry weight and numbers of nodules) was maximized at 13 mM sulphate/4 mM chloride.  相似文献   

3.
Summary To assess the potential for developing a salt resistant cultivar of chickpea (Cicer arietinum L.) 160 genotypes were screened for percent survival after 9 weeks in greenhouse solution cultures, with 50 mM NaCl or 25 mM Na2SO4. All plants grew well in the sulfate treatment but only cv. L-550 survived the chloride treatment. Salt damage appeared and developed slowly. To check these apparent effects of cultivar and kind of anion, three genotypes including cv. L-550 were then grown in solutions with isoosmotic NaCl or Na2SO4 at three levels (−0.044, −0.088, and −0.132 MPa), and in a separate experiment cv. L-550 was grown with NaCl and Na2SO4 at four levels: 10, 20, 30 and 50 mM Na. Salt composition affected shoot weight less than salt level or cultivar did. Shoot dry weight was only slightly less in chloride treatments than in isoosmotic sulfate, and for the least sensitive cultivar (L-550) this held only at the highest salt level, corresponding to that in the screening trial. Further, sensitivity to sulfate and to chloride was equal when sodium concentrations in shoots were equal, regardless of anion compositions of media. Shoot Na concentration was a useful negative indicator of growth under salt stress regardles of cultivar, and may be a useful tolerance indicator also for other species that neither accumulate nor efficiently exclude Na.  相似文献   

4.
Use of sodium chloride (NaCl) as a deicing salt results in high concentrations of ions in roadside soils, which decreases seedling emergence in these areas. Greenhouse experiments performed in soil culture tested the efficacy of three soil fertilizers, gypsum (CaSO4), potash (potassium chloride, KCl) and potassium nitrate (KNO3), in alleviating NaCl stress on seedling emergence of three grass species exhibiting a range of salt tolerance, Poa pratensis (Kentucky bluegrass), Bouteloua gracilis (blue grama), and Puccinellia distans (alkali grass). Two-factor factorial designs were utilized for each species-fertilizer combination. Treatments of 5000 mg/L (0.086 M) NaCl with or without fertilizer, in concentrations that were equal to 0.5, 1, and 2 times the molar equivalent of 5000 mg/L NaCl were applied biweekly. Salt stress on Poa pratensis emergence was alleviated by all fertilizers with CaSO4 having the greatest effect in alleviating NaCl stress and potash and potassium nitrate alleviating stress at lower treatment levels. Emergence of Bouteloua gracilis and Puccinellia distans was in most cases negatively effected by soil amendments.  相似文献   

5.
Summary Callus of the mangrove plant, Sonneratia alba J. Smith, established from pistils of flower buds were cultured on solid Murashige and Skoog medium supplemented with 0 to 500 mM NaCl. Maximum growth was observed with 50 mM NaCl, and net growth of callus occurred for concentrations up to 200 mM NaCl. At 500 mM NaCl, growth of callus was completely inhibited, although a part of the tissue was still alive after 30 d. Cellular levels of Na+ and Cl were greatly increased by the treatment with NaCl. Uptake of K+ was also enhanced and was accompanied by increasing levels of Na+ and Cl so that the Na+/K+ ratio was almost constant (4.1–4.2) in callus grown with 50–200 mM NaCl. Levels of Mg2+ and Ca2+ were not changed significantly with 50–200 mM NaCl, whereas levels of free NH 4 + , NO 3 and SO 4 2− ions, which are convertible to organic compounds, were lowest in callus grown with 50 mM NaCl. The rate of conversion of 15NH 4 + into macromolecules during 30 d culture with 0–100 mM NaCl did not vary greatly, but 200 mM NaCl reduced the biosynthesis of macromolecules from this ion. The highest rate of conversion of 15NO 3 into macromolecules was observed at 50 mM NaCl. Identification of compatible solutes with NMR-spectroscopy indicated that mannitol is the compatible solute for intact plants of Sonneratia alba, but no accumulation of mannitol was found in calluses, not even in those grown at high concentrations of NaCl.  相似文献   

6.
Calcium and Salt Toleration by Bean Plants   总被引:9,自引:0,他引:9  
The role of calcium in the salt relations of the bean plant, Phaseolus vulgaris, was examined. Brittle wax bush bean plants were cultured in nutrient solutions containing 50 mM NaCl. In the absence of added calcium the plants showed a general breakdown of the roots. A low concentration of calcium in the nutrient solution (0.1 mM) prevented this. Without added calcium the plants absorbed and translocated sodium at such a rate that high concentrations of it built up in the leaves within two days. With increasing concentrations of calcium in the nutrient solution the leaves contained progressively less sodium, and at 3 mM CaSO4 the concentrations of sodium in the leaves was equal to that of the control plants grown without addition of salt. Even after both roots and stems had reached a high concentration of sodium, the leaves of plants grown in the presence of adequate concentrations of calcium contained little sodium.  相似文献   

7.
Summary The effects of increasing concentrations of NaCl and CaCl2 on quince (Cydonia oblonga Mill. BA 29 clone) somatic embryogenesis and adventitious root regeneration were investigated. Leaves collected from in vitro-grown shoots were used as explants and induced for 2d in liquid Murashige and Skoog medium containing 11.3 μM 2,4-dichlorophenoxyacetic acid. Explants were then cultured on semisolid Murashige and Skoog medium enriched with 4.7 μM kinetin and 0.5 μM naphthaleneacetic acid under red light for 25 d and under white light for another 25 d. Two experiments were performed: in the first, NaCl was used at 0,25, 50, 100, and 200 mM in factorial combination with CaCl2 at 3, 9, and 27 mM; in the second, NaCl was applied at 0, 5, 10, 20, 40, and 80 mM in combination with CaCl2 at 0.3, 1.0, and 3.0 mM. Quince leaves revealed the capacity to regenerate somatic embryos and/or adventitious roots. Quantitative and qualitative regeneration from leaves was affected by NaCl treatments: increasing NaCl concentrations, in combination with CaCl2 at 1 mM, led to an increase in the proportion of leaves producing somatic embryos only, and to a decrease of both leaves regenerating roots only and leaves simultaneously producing somatic embryos and adventitious roots. This suggests a beneficial effect of salt stress on the embryogenic process. The regeneration response decreased with increasing salt concentrations and was almost totally inhibited above 50 mM NaCl and 9 mM CaCl2. The presence of CaCl2 in the culture medium apparently mitigated the effects of salt stress, but only when NaCl was applied at 40 mM. NaCl at 5 mM, in the presence of 0.3 or 1 mM CaCl2, was favorable both to somatic embryo and root production. No value of the ratio Na+/Ca2+ was found to be optimal for the regeneration processes.  相似文献   

8.
Summary The effects of NaCl and CaCl2 on shoot regeneration from quince (Cydonia oblonga BA L29 clone) leaves were investigated. Caulogenesis was induced on in vitro-grown leaves treated for 2d in liquid Murashige and Skoog (MS) medium with 11.3 μM 2,4-dichlorophenoxyacetic acid and cultured on MS gelled medium supplemented with 4.5 μM thidiazuron and 0.5 μM naphthaleneacetic acid. Three experiments were performed: in the first, we compared the effects of NaCl at 0, 25, 50, 100, and 200 mM in factorial combination with 3, 9, and 27 mM CaCl2. In the second, NaCl was tested at 0, 5, 10, 20, 40, and 80 mM with CaCl2 at 0.3, 1.0, and 3.0 mM. The third experiment was carried out with the same experimental design as the second one but replacing NaCl with Na2SO4. Shoot regeneration was evaluated after 50 d of culturing: 25 in darkness and 25 in white light. In the first experiment, shoot regeneration was very poor and was observed only at the lower salt concentrations. In the second experiment, the percentages of caulogenic leaves were much higher, but decreased with increasing NaCl concentration. The more pronounced negative effect of the highest NaCl concentrations appeared to be partly mitigated by CaCl2 at 1 and 3 mM. The presence of 3 mM CaCl2, in the experiment with Na2SO4, appeared to be even more effective in reducing the adverse effect of sodium stress on caulogenesis. This result was attributed to the lower Cl concentration in the growth medium, which resulted from replacing NaCl with Na2SO4. NaCl applied at low concentrations (5 and 10 mM) in combination with 3 mM CaCl2 exerted a favorable effect on adventitious shoot regeneration. As regards the Na+ and Ca2+ interaction, when the Na+/Ca2+ ratio was below roughly 35 and 20, with NaCl and Na2SO4, respectively, at least 60% of leaves showed regenerating capacity, but optimal values of this ratio were not derived.  相似文献   

9.
El-Hamdaoui  A.  Redondo-Nieto  M.  Torralba  B.  Rivilla  R.  Bonilla  I.  Bolaños  L. 《Plant and Soil》2003,251(1):93-103
The effects of different levels of B (from 9.3 to 93 M B) and Ca (from 0.68 to 5.44 mM Ca) on plant development, nitrogen fixation, and mineral composition of pea (Pisum sativum L. cv. Argona) grown in symbiosis with Rhizobium leguminosarum bv. viciae 3841 and under salt stress, were analysed. The addition of extra B and extra Ca to the nutrient solution prevented the reduction caused by 75 mM NaCl of plant growth and the inhibition of nodulation and nitrogen fixation. The number of nodules recovered by the increase of Ca concentration at any B level, but only nodules developed at high B and high Ca concentrations could fix nitrogen. Addition of extra B and Ca during plant growth restored nodule organogenesis and structure, which was absolutely damaged by high salt. The increase in salt tolerance of symbiotic plants mediated by B and Ca can be co-related with the recovery of the contents of some nutrients. Salinity produced a decrease of B and Ca contents both in shoots and in nodulated roots, being increased by the supplement of both elements in the nutrient solution. Salinity also reduced the content in plants of other nutrients important for plant development and particularly for symbiotic nitrogen fixation, as K and Fe. A balanced nutrition of B and Ca (55.8 M B, 2.72 mM Ca) was able to counter-act the deficiency of these nutrients in salt-stressed plants, leading to a huge increase in salinity tolerance of symbiotic pea plants. The necessity of nutritional studies to successfully cultivate legumes in saline soils is discussed and proposed.  相似文献   

10.
Fifteen genotypes of faba bean (Vicia faba L.) were inoculated with salt-tolerant Rhizobium leguminosarum biovar. viciae strain GRA 19 in solution culture with 0 (control) and 75 mM NaCl added immediately after transplanting. Genotypes varied in their tolerance of high levels of NaCl. Physiological parameters (dry weight of shoot and root, number and dry weight of nodules) were not affected by salinity in lines VF46, VF64 and VF112. Faba bean line VF60 was sensitive to salt stress. Host tolearance appeared to be a major requisite for nodulation and N2 fixation under salt stress. Tolerant line VF112 sustained nitrogen fixation under saline conditions. Activity of the ammonium assimilation enzymes glutamine synthetase and glutamate synthase, and soluble protein content, were reduced by salinity in all genotypes tested. Evidence presented here suggests a need to select faba bean genotypes that are tolerant to salt stress.Abbreviations ARA acetylene reduction activity - NADH-GOGAT NADH-dependent glutamate synthase - GS glutamine synthetase  相似文献   

11.
Summary Growth sensitivity of four local grapevine (Vitis vinifera) varieties, Ashlamesh, Helwani, Kassofee, and Khoudeiry, were evaluated for salt. They were cultured on DSD1 medium until rooting stage, then they were transferred to a liquid DSD1 medium containing 0, 10, 20, 30, 40, 80, 120, or 150 mM NaCl for 30 d. The shoot length and leaf number of Ashlamesh, Helwani, and Kassofee were significantly increased at 10 and/or 30 mM NaCl, whereas, 150 mM NaCl decreased shoot length of all varieties except Kassofee. The presence of NaCl at 80 mM or higher concentrations decreased the chlorophyll content and root number of all varieties, while 30 mM NaCl increased root number of Kassofec.  相似文献   

12.
The effects of NaCl salinity on growth, morphology and photosynthesis of Salvinia natans (L.) All. were investigated by growing plants in a growth chamber at NaCl concentrations of 0, 50, 100 and 150 mM. The relative growth rates were high (ca. 0.3 d−1) at salinities up to 50 mM and decreased to less than 0.2 d−1 at higher salinities, but plants produced smaller and thicker leaves and had shorter stems and roots, probably imposed by the osmotic stress and lowered turgor pressure restricting cell expansion. Na+ concentrations in the plant tissue only increased three-fold, but uptake of K+ was reduced, resulting in very high Na+/K+ ratios at high salinities, indicating that S. natans lacks mechanisms to maintain ionic homeostasis in the cells. The contents of proline in the plant tissue increased at high salinity, but concentrations were very low (<0.1 μmol g−1 FW), indicating a limited capacity of S. natans to synthesize proline as a compatible compound. The potential photochemical efficiency of PSII (Fv/Fm) of S. natans remained unchanged at 50 mM NaCl but was reduced at higher salinities, and the photosynthetic capacity (ETRmax) was significantly reduced at 50 mM NaCl and higher. It is concluded that S. natans is a salt-sensitive species lacking physiological measures to cope with exposure to high NaCl salinity. At low salinities salts are taken up and accumulate in old leaves, and high growth rates are maintained because new leaves are produced at a higher rate than for plants not exposed to salt.  相似文献   

13.
B. H. Ng 《Plant and Soil》1987,103(1):123-125
The growth, nodulation and nitrogen fixation ofCasuarina equisetifolia were compared at six levels (0–500mM NaCl) of salinity in sand culture. Dry weight of nodules, shoots and roots and N content of shoots increased at intermediate levels of salinity (50–100 mM) but decreased at 500 mM NaCl. Nodulation occurred at all NaCl levels, but at 500mM NaCl level, the nodule dry weight declined by 50% from the control. Increasing NaCl concentration of up to 200mM had little effect on the N2-fixation rate, but at 500mM NaCl level the rate decreased to 40% of the control value.  相似文献   

14.
Summary Rhizosphere salinity decreased the capacity of soybean to accumulate a pterocarpanoid phytoalexin (glyceollin) in the stem in response toPhytophthora megasperma var.sojae. Rapid (48h) accumulation was depressed by NaCl, Na2SO4, CaCl2 and MgSO4 applications. Time-course accumulations was slowed by applications. Time-course accumulation was slowed by application of 0.131M NaCl. Glyceollin accumulation was also reduced in plants subjected to a period of high salinity stress (0.177M NaCl, 72 h) after a period of nonsalinized growth. Calcium chloride completely suppressed glyceollin accumulation in normally-resistant plants but no susceptibility to the fungus was observed.  相似文献   

15.
Low pH (5.2) decreased nodule number and acetylene reduction. Aluminium further depressed those parameters in theRhizobium leguminosarum-Pisum sativum associations examined. In the Al-treated plants nodule formation by strains 128C53 and 128C30 was not affected by 3 or 15 and 30 or 60 μM Al, respectively, as compared with the number of nodules on plants grown at pH 5.2 in the absence of Al. However, improved nodulation rates by those strains did not enhance plant dry weight or reduced nitrogen content. No differences in nitrogenase activity were found among strains of nodulating plants grown at the same aluminium level. These results suggest that Al-ions affected specifically nitrogenase activity and that this effect was primarily responsible for the reduction in plant growth.  相似文献   

16.
Soil born fungi such as Phytium ultimum, Fusarium ssp., and Rhizoctonia solani (Kühn) severely restrict stand establishment of common bean (Phaseolus vulgaris L.) on acid soils of the Tropics. Calcium application is known to alleviate fungal infection in many legumes but the causes are still unclear. To investigate environmental factors and physiological mechanisms involved, growth chamber experiments were conducted with an acid sandy soil from Mexico. Treatments were soil liming at a rate of 0.67 g Ca(OH)2 kg-1, gypsum application at 0.49 g CaSO4 2H2O kg-1 soil placed around the seed, and an untreated control. Beans were grown under three temperature regimes with constant night and one constant day vs. two sinusoidal day temperatures. To examine patterns of seed and seedling exudation at regular intervals leachates of germinating seeds were collected on filter paper soaked with equilibrium solutions from soils of the three treatments. The severity of root rot in the control treatment was highest when plants were stressed by temperature extremes. At a sinusoidal day temperature peaking at 40°C soil liming and gypsum application to the seed increased the number of healthy seedlings similarly by over 60%. However, only liming which effectively eliminated growth constraints by low pH and high aluminum concentrations led to an increase in hypocotyl elongation by 22% and in total root length by 8%. Both calcium amendments increased the calcium and potassium contents in the hypocotyl tissue. From seeds exposed to the equilibrium solution of unlimed soil with pH 3.7, 1 mM Ca, and 0.6 mM Al considerable amounts of amino acids and carbohydrates were leached. In contrast, exposure to the equilibrium solution from limed soil with pH 4.3, 3 mM Ca, and negligible concentrations of Al led to a net uptake of amino acids and decreased leaching of carbohydrates. Exposure to the equilibrium solution of the gypsum treatment with pH 3.6, 20 mM Ca, and 1.2 mM Al resulted in a somewhat smaller net uptake of amino acids compared to liming. During germination pH around the seeds steeply increased in the untreated control but significantly less with both amendments. The results indicate that pH and the Ca/Al ratio in the soil solution around bean seeds determine their pattern of exudation and solute uptake. For bean germination and early growth on acid soils locally placed application of small amounts of gypsum as seed pelleting seems as effective as soil liming in reducing the incidence of root rot. The results indicate that this may be accomplished by decreasing the amount of leachates available for fungal development.  相似文献   

17.
Two Rhizobium strains (WU1001 and WU1008) were isolated from nodules of Acacia redolens growing in saline areas of south-west Australia, and two strains selected from the University of Western Australia's culture collection (WU429 isolated from A. saligna and WU433 from A. cyclops). The growth of each in buffered, yeast extract mannitol broth culture was largely unaffected by salt up to 300 mM NaCl. A slight increase in lag time occurred at concentrations of 120 mM NaCl and above, but cell number at the static phase was not affected. Each of the four Rhizobium strains tested accumulated Na+ but showed decreasing levels of sugar with increasing salt in the external medium. Amino acid levels also increased, in some cases by more than tenfold. However, the relative proportion of each remained fairly constant in the bacteria, irrespective of salt treatment. Only trace quantities of proline were detected and there was no increase in this amino acid with salt. Acidic amino acids (glutamate and aspartate) remained as a constant proportion.Rhizobium strains WU429, WU1001 and WU1008 produced effective nodules on both A. cyclops and A. redolens grown in sand with up to 80 mM NaCl (added in nutrient solutions free of nitrogen). Strain WU433 was highly infective on both Acacia species tested at low salt concentrations (2–40 mM NaCl), but infection was sensitive to salt levels at 120 mM NaCl and above. Nodules formed with strain WU433 were, however, ineffective on both A. redolens and on A. cyclops and showed nil or negligible rates of acetylene reduction at all salt concentrations. Strains WU429, WU1001 and WU1008 in combination with a highly salt-tolerant provenance of A. redolens formed symbioses which did not vary significantly in nodule number and mass, specific nodule activity or total N content irrespective of salt level up to 160 mM NaCl. On a more salt sensitive provenance of A. redolens and on A. cyclops the infectivity and effectivity of the Rhizobium strains tested usually decreased as the external salt concentration increased. These data are interpreted to indicate that tolerance of the legume host was the most important factor determining the success of compatible Rhizobium strains in forming effective symbioses under conditions of high soil salinity.  相似文献   

18.
Chi Lin  Chuan  Huei Kao  Ching 《Plant and Soil》2001,237(1):165-171
The relative importance of endogenous abscisic acid (ABA), as well as Na+ and Cl in NaCl-induced responses related to growth in roots of rice seedlings were investigated. The increase in ammonium, proline and H2O2 levels, and cell wall peroxidase (POD) activity has been shown to be related to NaCl-inhibited root growth of rice seedlings. Increasing concentrations of NaCl from 50 to 150 mM progressively decreased root growth and increased both Na+ and Cl. Treatment with NaCl in the presence of 4,4-diisothiocyano-2,2-disulfonic acid (DIDS, a nonpermeating amino-reactive disulfonic acid known to inhibit the uptake of Cl) had less Cl level in roots than that in the absence of DIDS, but did not affect the levels of Na+, and responses related to growth in roots. Treatment with 50 mM Na-gluconate (the anion of which is not permeable to membrane) had similar Na+ level in roots as that with 100 mM NaCl. It was found that treatment with 50 mM Na-gluconate effected growth reduction and growth-related responses in roots in the same way as 100 mM NaCl. All these results suggest that Cl is not required for NaCl-induced responses in root of rice seedlings. Endogenous ABA level showed no increase in roots of rice seedlings exposed to 150 mM NaCl. It is unlikely that ABA is associated with NaCl-inhibited root growth of rice seedlings.  相似文献   

19.
Summary In order to determine the effects of concentration on plant growth, aluminium (Al) was extracted (10–3 M CaCl2) from 4 acid brown hill soils which had been treated with superphosphate at rates equivalent to 0 to 300 kg P ha–1. The soils ranged in pH (CaCl2) from 3.5 to 4.9, and Al concentration from 0 to 0.6 mM. The effects of Al on ryegrass growth in the 4 soils in a glasshouse was compared with its effect on radicle elongation of seeds germinated in contact with CaCl2 extracts from the same soils.Ryegrass root growth in the glasshouse, and radicle elongation in the bioassay test were both unaffected by Al concentrations below 0.1 mM. Root growth was substantially reduced when Al concentration exceeded 0.1 mM and above 0.2 mM growth was almost completely inhibited. Radicle elongation rate was also reduced when the concentration of Al was greater than 0.2 mM agreeing well with the observation from the pot experiment.It is concluded that because of its speed and convenience the bioassay method offers a useful method of establishing critical levels of Al for crop plants.  相似文献   

20.
Growth of carrot and radish seedlings in nutrient culture was inhibited by pretreatment with three calmodulin inhibitors. There was little selective effect on specific organs, shoots, tap root and fibrous roots over a range of concentrations. Although pretreatment with CaCl2 (0.5 mM) did not affect growth of untreated seedlings, it partially reduced the inhibitory effects of trifluoperazine over the concentration range 0.01–0.05 mM. Trifluoperazine reduced the growth of GA3-treated seedlings but did not overcome the modifying effect of GA3 in favouring shoot/root ratio; ABA exacerbated its inhibitory effect on overall seedling growth and particularly on tap root development.Abbreviations GA3 gibberellic acid - ABA abscisic acid - CaCl2 calcium chloride - GAs gibberellins - Tfp trifluoperazine  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号