首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pre- and/or probiotics can cause changes in the ecological balance of intestinal microbiota and hence influence microbial metabolic activities. In the present study, the influence of oligofructose-enriched inulin (OF-IN), Lactobacillus casei Shirota, and Bifidobacterium breve Yakult on the colonic fate of NH3 and p-cresol was investigated. A randomized, placebo-controlled, crossover study was performed in 20 healthy volunteers to evaluate the influence of short- and long-term administration of OF-IN, L. casei Shirota, B. breve Yakult, and the synbiotic L. casei Shirota + OF-IN. The lactose[15N,15N]ureide biomarker was used to study the colonic fate of NH3. Urine and fecal samples were analyzed for 15N content by combustion-isotope ratio mass spectrometery and for p-cresol content by gas chromatography-mass spectrometry. RT-PCR was applied to determine the levels of total bifidobacteria. Both short- and long-term administration of OF-IN resulted in significantly decreased urinary p-cresol and 15N content. The reduction of urinary 15N excretion after short-term OF-IN intake was accompanied by a significant increase in the 15N content of the fecal bacterial fraction. However, this effect was not observed after long-term OF-IN intake. In addition, RT-PCR results indicated a significant increase in total fecal bifidobacteria after long-term OF-IN intake. Long-term L. casei Shirota and B. breve Yakult intake showed a tendency to decrease urinary 15N excretion, whereas a significant decrease was noted in p-cresol excretion. In conclusion, dietary addition of OF-IN, L. casei Shirota, and B. breve Yakult results in a favorable effect on colonic NH3 and p-cresol metabolism, which, in the case of OF-IN, was accompanied by an increase in total fecal bifidobacteria.  相似文献   

2.
Following a single oral dose of 10 mg/kg of [15N]glycine, plasma [15N]glycine kinetics and urinary 15N excretion were measured in 12 cirrhosis patients and in 6 control subjects. Cirrhosis patients were divided into two groups of 6 patients with and without a history of hepatic encephalopathy designated as group II and group I, respectively. Thirty minutes after oral administration of labeled glycine, the plasma concentration of [15N]glycine was significantly higher in both cirrhosis groups than that in the control group (P less than 0.05 and P less than 0.01). The elimination constant of plasma [15N]glycine slightly decreased in group II, but not significantly. Urinary 15N excretion did not differ among the three groups, but the rate of urinary ammonia 15N in urinary 15N was significantly increased in group II (P less than 0.05). The whole-body protein flux did not differ among the three groups, but whole-body protein breakdown was significantly increased in group II cirrhosis patients (P less than 0.05). These findings indicated that the kinetics of glycine were substantially altered in severe cirrhosis patients. Because hepatic uptake and oxidation of glycine was well maintained even in group II, increased endogenous protein breakdown seemed to be responsible for hyperglycinemia and also for the negative nitrogen balance seen in this group.  相似文献   

3.
We investigated the effect of human milk feeding on the nitrogen metabolism of appropriate-for-gestational age infants of birth weight 1.5-2.0 kg. Eight infants received pooled mature human milk. The remaining 20 were divided into two equal groups, who received one of two low-protein, milk-based formulae. The formulae were identical in composition except for the protein source, which was either casein- or whey-predominant. The three diet groups received similar total nitrogen (390 mg N.kg-1.d-1) and energy (500 kJ.kg-1.d-1) intakes. The human-milk-fed group, however, received a significantly higher intake of nonprotein and urea nitrogen and a significantly lower true protein nitrogen. Nitrogen metabolism was studied using a modified constant infusion of [15N]glycine, mixed with the feeding every 2-3 h. Urine was collected in approximately 3-h aliquots and analysed for total ammonia and urea nitrogen. Excretion of the 15N label was measured in urinary urea and ammonia. No differences were seen between the three diet groups in total [15N]urea or [15N]ammonia urinary excretion. However, the concentration of 15N in urinary urea in the human-milk-fed group was lower than in the two formula-fed groups. This reduction in concentration appeared due to a higher dietary intake of urea among the human-milk-fed group, and the consequent dilution of the label in the urine. As a result, protein turnover rates calculated from the [15N]urea end product were artificially raised in the milk-fed group, and were significantly higher than those in the formula groups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Rates of whole body amino nitrogen flux were measured in 16 obese adolescents undergoing weight reduction with a high protein low energy diet. The subjects received approximately 2.5 g of animal protein per day per kilogram ideal body weight and maintained nitrogen balance throughout the 18 days on the diet. Flux rates were calculated separately from the cumulative excretion of 15N in urinary ammonia and urea following the administration of a single dose of [15N]glycine. The pattern of 15N label appearance in urinary ammonia and urea nitrogen was followed for 72 h after the administration of [15N]glycine. Significant amounts of label continued to be excreted in both urinary ammonia and nitrogen for 36-48 h after label administration. The weight-reducing diet accelerated 15N cumulative excretion in urinary urea, but not in ammonia nitrogen compared with the control diet. Whole body nitrogen flux rates increased rapidly and significantly on the diet. Using the urea end product, this increase was evident on the 4th diet day, but not by the 7th or subsequent days. On the other hand, using the ammonia end product, flux rate increased markedly (p less than 0.0001) and remained elevated throughout the whole study. Our results demonstrate adaptive changes in whole body amino-nitrogen metabolism in response to the reducing diet. Different patterns of change are seen depending upon whether an ammonia or a urea end product is used. Our data thus add to the evidence for compartmentation of the body's amino-nitrogen pools.  相似文献   

5.
Pseudomonas species MA was grown with methylamine as a sole source of carbon and nitrogen enabling the total flow of carbon and nitrogen into this organism to be simultaneously monitored in vivo using 13C and 15N NMR. [13C]Methylamine was rapidly and extensively incorporated into the methyl group of N-methylglutamate during high oxygenation of the cell suspension, but when the oxygenation rate was lower, a significant portion was also found in the methyl group of gamma-glutamylmethylamide. At later times the carbon label was found in intermediates of the serine assimilation pathway, with glutamate derived from the tricarboxylic acid cycle being the most abundant product. Incorporation of [15N]methylamine was only detected as N-methyl[15N]glutamate, but when protein synthesis was inhibited, the label was also detected in the amino nitrogen of glutamate. When oxygenation rates were lower, the 15N-labeled methylamine was found in the methylamide group of gamma-glutamylmethylamide in addition to being incorporated into N-methylglutamate. gamma-Glutamylmethylamide formation was linked to the overall energy state of the cell and was not affected by inhibition of the carbon assimilation pathway. Neither 5-hydroxy-N-methylpyroglutamate nor N-methyl-alpha-ketoglutaramate were detected to any significant extent. A mechanism was proposed for the role of gamma-glutamylmethylamide in the regulation of endogenous nitrogen supplies in this organism.  相似文献   

6.
Protocols have been developed and applied for the high-throughput production of [U-15N]- or [U-13C-, U-15N]-labeled proteins using the conditional methionine auxotroph Escherichia coli B834. The large-scale growth and expression uses a chemically defined auto-induction medium containing salts and trace metals, vitamins including vitamin B12, and glucose, glycerol, and lactose. The results from nine expression trials in 2-L of the auto-induction medium (500 mL in each of four polyethylene terephthalate beverage bottles) gave an average final optical density at 600 nm of approximately 5, an average wet cell mass yield of approximately 9.5 g L(-1), and an average yield of approximately 20 mg of labeled protein in the six instances in which proteolysis of the fusion protein was observed. Correlations between the cell mass recovered, the level of protein expression, and the relative amounts of glucose, glycerol, and lactose in the auto-induction medium were noted. Mass spectral analysis showed that the purified proteins contained both 15N and 13C at levels greater than 95%. 1H-15N heteronuclear single quantum correlation spectroscopy as well as 13C; 15N-edited spectroscopy showed that the purified [U-15N]- and [U-13C, U-15N]-labeled proteins were suitable for structure analysis.  相似文献   

7.
The preparation of L-[15N]tyrosine and [15N]tyramine by microbial synthesis is described. Immobilized Erwinia herbicola cells were added to a reaction mixture containing phenol, pyruvic acid, and 15NH4Cl. The reaction was driven by excess nonlabeled pyruvate and phenol. Under these denaturing concentrations of phenol, immobilized cells were more effective than free ones. Gram quantities of L-[15N]tyrosine were obtained without label dilution. The conversion of this L-[15N]tyrosine into [15N]tyramine by Streptococcus faecalis was performed at maximal efficiency. Gas chromatographic-mass spectrometric studies and 1H and 15N NMR analyses of the labeled compounds are reported.  相似文献   

8.
Calystegines are nortropane alkaloids bearing between three and five hydroxyl groups in various positions. [15N]Tropinone was administered to root cultures of Calystegia sepium and the incorporation into calystegines was followed. Increase of label in calystegines was measured by one-dimensional 15N NMR and inverse-detected 2D NMR techniques. The results show that tropinone and pseudotropine are metabolites in the biosynthetic pathway of calystegines. The velocity of calystegine accumulation was followed kinetically by transfer of root cultures from 15N-enriched medium to 14N-medium and analysis by GC-MS. A constant calystegine formation with no interference by excretion or degradation was observed. A biosynthetic rate for individual calystegines at each time point was calculated, the maximum was 0.4 mg/day/g of biomass. This allowed the velocity of individual biosynthetic steps to be estimated.  相似文献   

9.
The metabolic relationship of D-lysine, L-lysine, and L-pipecolic acid has been investigated in Neurospora crassa. Kinetic experiments show that radioactivity from D-lysine is efficiently incorporated into L-pipecolic acid and that this metabolite is converted to L-lysine. The alpha-amino group from D-[alpha-15N]lysine is lost in the course of its conversion to L-pipecolic acid and is trapped by pyruvate and alpha-keto glutarate to give L-[alpha-15N]alanine and L-[alpha-15N]glutamic acid. These amino acids are devoid of any label, however, when D-[epsilon-15N]lysine is applied to the fungus. As determined by mass and 15N NMR spectrometry the label from D-[epsilon-15N]lysine migrate via L-pipecolic acid into the alpha position of L-lysine, i.e. D-[epsilon-15N]lysine is converted to L-[alpha-15N]lysine. L-Pipecolic acid functions as an intermediate in this conversion.  相似文献   

10.
Utilization of [15N]glutamate by cultured astrocytes.   总被引:2,自引:1,他引:1       下载免费PDF全文
The metabolism of 0.25 mM-[15N]glutamic acid in cultured astrocytes was studied with gas chromatography-mass spectrometry. Almost all 15N was found as [2-15N]glutamine, [2-15N]glutamine, [5-15N]glutamine and [15N]alanine after 210 min of incubation. Some incorporation of 15N into aspartate and the 6-amino position of the adenine nucleotides also was observed, the latter reflecting activity of the purine nucleotide cycle. After the addition of [15N]glutamate the ammonia concentration in the medium declined, but the intracellular ATP concentration was unchanged despite concomitant ATP consumption in the glutamine synthetase reaction. Some potential sources of glutamate nitrogen were identified by incubating the astrocytes for 24 h with [5-15N]glutamine, [2-15N]glutamine or [15N]alanine. Significant labelling of glutamate was noted with addition of glutamine labelled on either the amino or the amide moiety, reflecting both glutaminase activity and reductive amination of 2-oxoglutarate in the glutamate dehydrogenase reaction. Alanine nitrogen also is an important source of glutamate nitrogen in this system.  相似文献   

11.
Oxygenated nitrogen species, for example, the protonated form of nitrous acid (H2ONO+), dinitrogentrioxide (N2O3), dinitrogentetroxide (N2O4), or peroxynitrite (ONOO-), can react with amines to form molecular nitrogen. These reactions can occur spontaneously with primary aliphatic amines or via cytochrome P450 catalysed reactions with secondary amines. In principle measurements of the excretion of the molecular nitrogen generated by these reactions could be used as an index of the levels of oxygenated nitrogen compounds acting as nitrosating agents. To test this idea, [15N2]urea (3 mmol) was administered orally to five patients infected with Helicobacter pylori (as diagnosed by the [13C]urea breath test) and to four healthy volunteers. All participants ingested 3-mmol sodium nitrate as a precursor for NA 5 min before the ingestion of the nitrogen tracer. During the test the participants breathed 100% oxygen to increase the sensitivity of detection of endogenous molecular nitrogen. After the administration of [15N2]urea, the patients with H. pylori showed significantly increased 15N enrichments of exhaled N2, expressed as delta value (per 1000), compared with healthy volunteers (patients: 3.5 +/- 0.9 vs. volunteers: 1.3 +/- 0.4; p < .05). We speculate that the endogenous production of molecular nitrogen is a protective process controlling the body NO and nitrite levels. The 15N breath technique allows the noninvasive estimation of the body nitrosation and could indicate the health risk, possibly the oxidative stress status, caused by highly reactive oxygenated nitrogen species and carbenium ion intermediates.  相似文献   

12.
Regiospecific syntheses of [3-15N]uracil and [3-15N]thymine are described using [15N]ammonium sulfate as a source of labeled nitrogen. The overall yields are excellent, and the reactions are amenable to production of multigram quantities of labeled material.  相似文献   

13.
The metabolism of 2.5 mM-[15N]aspartate in cultured astrocytes was studied with gas chromatography-mass spectrometry. Three primary metabolic pathways of aspartate nitrogen disposition were identified: transamination with 2-oxoglutarate to form [15N]glutamate, the nitrogen of which subsequently was transferred to glutamine, alanine, serine and ornithine; condensation with IMP in the first step of the purine nucleotide cycle, the aspartate nitrogen appearing as [6-amino-15N]adenine nucleotides; condensation with citrulline to form argininosuccinate, which is cleaved to yield [15N]arginine. Of these three pathways, the formation of arginine was quantitatively the most important, and net nitrogen flux to arginine was greater than flux to other amino acids, including glutamine. Notwithstanding the large amount of [15N]arginine produced, essentially no [15N]urea was measured. Addition of NaH13CO3 to the astrocyte culture medium was associated with the formation of [13C]citrulline, thus confirming that these cells are capable of citrulline synthesis de novo. When astrocytes were incubated with a lower (0.05 mM) concentration of [15N]aspartate, most 15N was recovered in alanine, glutamine and arginine. Formation of [6-amino-15N]adenine nucleotides was diminished markedly compared with results obtained in the presence of 2.5 mM-[15N]aspartate.  相似文献   

14.
《Experimental mycology》1995,19(4):297-304
Chalot, M., Finlay, R. D., Ek, H., and Söderström, B. 1995. Metabolism of [15N]alanine in the ectomycorrhizal fungus Paxillus involutus. Experimental Mycology 19, 297-304. Alanine metabolism in the ectomycorrhizal fungus Paxillus involutus was investigated using [15N]alanine. Short-term exposure of mycelial discs to [15N]alanine showed that the greatest flow of 15N was to glutamate and to aspartate. Levels of enrichment were as high as 15-20% for glutamate and 13-18% for aspartate, whereas that of alanine reached 30%. Label was also detected in the amino-N of glutamine and in serine and glycine, although at lower levels. Preincubation of mycelia with aminooxyacetate, an inhibitor of transamination reactions. resulted in complete inhibition of the flow of the label to glutamate, aspartate, and amino-N of glutamine, whereas [15N]alanine rapidly accumulated. This evidence indicates the direct involvement of alanine aminotransferase for translocation of 15N from alanine to glutamate. Alanine may be a convenient reservoir of both nitrogen and carbon.  相似文献   

15.
Glutamic acid producer Brevibacterium lactofermentum intact cells were used to demonstrate the feasibility of in vivo 15N NMR to follow nitrogen assimilation and amino acid production throughout the growth cycle. The induction of glutamic acid production by different growth conditions was studied. Intracellular and extracellular levels of free metabolites were estimated as function of oxygen supply and biotin concentration. 15N NMR enabled us to distinguish two phases during the fermentation. At the early stage of fermentation, glutamic acid was accumulated intracellularly independent of oxygen supply and no product was excreted. In the late growth phase, the permeability of the cells developed and L-glutamic acid was excreted. The effect of aeration and biotin concentration on cellular contents and excretion was also studied by 15N NMR. Glutamate, N-acetylglutamine, and glutamine were the main nitrogenous pools independent of cell culture conditions. Free ammonia was not accumulated intracellularly although glutamic acid fermentation can be characterized as the process of nitrogen assimilation and the uptake of ammonia is the key step. In conclusion, the application of in vivo 15N NMR spectroscopy unraveled various problems of nitrogen metabolism, in a rapid and nondestructive manner.  相似文献   

16.
In experiments on 4 sheep fed on a low protein diet [6.2 g N/day] and given a single i.v. dose of 15N-labelled urea [15 mg 15N/kg body mass], the authors found that, from 0.5 to 6 h, mean 15N incorporation rose progressively in the total rumen fluid nitrogen from 0.23 to 0.44 at. % 15N and in the rumen bacterial nitrogen from 0.11 to 0.51 at. % 15N. Up to 3 h, total nitrogen enrichment was greater (0.5 at. % 15N) than enrichment of bacterial nitrogen (0.28 at. % 15N), but from 3 to 6 h there was little difference between them. The mean 15N values in the nucleic acids isolated from rumen fluid bacteria in samples collected 3 and 6 hours after injecting labelled urea into the blood were 0.15 and 0.19 at. % 15N respectively, in nucleic acids isolated from the liver 0.042 and 0.04 at. % 15N, in the total rumen bacterial nitrogen 0.28 and 0.51 at. % 15N and in the total liver nitrogen 0.11 and 0.11 at. % 15N. It is concluded from the results that blood urea nitrogen is utilized for synthesis of the total nitrogenous substances of the sheep's rumen bacteria and liver far more intensively than for synthesis of the nucleic acids isolated from them. At the same time, it is utilized more intensively for nucleic acid synthesis in the rumen bacteria than in the liver.  相似文献   

17.
1. Yeast was grown in a minimal synthetic medium together with a range of (14)C-labelled substrates under standardized conditions. After isolation, the purified thiamine was cleaved by sulphite and the pyrimidine and thiazole moieties were purified and assayed for radioactivity. 2. In order of decreasing incorporation, [(14)C]formate, [3-(14)C]serine, [2-(14)C]glycine and [2-(14)C]acetate supplied label for the pyrimidine, and [2-(14)C]glycine, [3-(14)C]serine, [1-(14)C]glycine, [(14)C]formate and [2-(14)C]acetate for the thiazole. Incorporation of label into the fragments from several other (14)C-labelled substrates, including [Me-(14)C]- and [3,4-(14)C(2)]-methionine, was insignificant. 3. [3-(14)C]Serine was shown not to contribute label to C-2 of the thiazole ring. 4. Significant incorporation of nitrogen from [(15)N]glycine into the thiazole moiety, but not into the pyrimidine moiety, was established. 5. It appears that C-2 and N-3 of the thiazole ring are formed from C-2 and the nitrogen atom of glycine, but the entire methionine molecule does not appear to be implicated.  相似文献   

18.
Natural abundance of (15)N and [N] was studied in thalli of mat-forming lichens collected from tundra and heathland sites in the northern and southern hemispheres. The study includes samples of British Cladonia portentosa from sites in regions of high and low N-loading and in heathland growing both directly on peat and independently of the soil substratum, in a canopy of prostrate gorse ( Ulex minor). In the mat-forming lichens examined, a non-random pattern in [N] and delta(15)N was characterised by a minimum in delta(15)N, which occurred most frequently at 20-40 mm below the thallus apex. Nitrogen concentration increased above this point, towards the apex, though remained invariably low towards the thallus base. We discuss the significance of the pattern in [N] and delta(15)N for current theories describing the uptake and recycling of nitrogen by mat-forming lichens in oligotrophic habitats. Our data are incompatible with the suggested uptake of soil organic-N depleted in (15)N, though are consistent with possible internal recycling and the development of a structural necromass. The study emphasises the internal fractionation of nitrogen isotopes and provides a caveat against the assumption that values of delta(15)N provide an unequivocal indicator of source-sink relationships in nitrogen cycling.  相似文献   

19.
A rapid gas chromatography-mass spectrometry method for [15N]ammonia analysis is deseribed which is based on the formation of [15N]glutamic acid from ammonia and analysis of isotopic abundance in the N-trifluoroacetyl-n-butylester glutamate derivative. Mean recovery of [15N]ammonia added to either plasma or urine was greater than 99% with a relative standard deviation of less than 10%. The method can be applied to the determination of extremely low levels of ammonia through an isotope dilution technique. The [15N]ammonia abundance of blood and urine was determined in an adult following on oral dose (500 mg) of 15NH4Cl. A peak isotopic abundance of 13 atoms% excess was reached by 30 min. Urinary excretion of [15N]ammonia during the first 4 h after administration of the isotope amounted to 4.1% of the isotope administered.  相似文献   

20.
In 2 two‐factorial experiments, each conducted on 80 growing male rats, the effects of substituting 10% raw potato starch (PS), pectins (PEC), or cellulose (CEL) for wheat starch (WS) and the addition of tannic acid to WS (WSTA) were studied using diets differing in protein quality. Casein unsupplemented or supplemented with DL‐methionine and gluten unsupplemented or supplemented with lysine, methionine and tryptophan were used as protein sources in Experiment 1 and 2, respectively. Parameters indicative of caecal fermentation intensity (pH, acetic, propionic and butyric acid contents, digesta and tissue weight) and of protein metabolism (urea blood concentration, faecal and urinary nitrogen excretion) were determined. Ten‐day balance experiments were preceded by a 10‐day adaption period to respective carbohydrates given in a diet containing balanced protein.

In both experiments the type of carbohydrates affected the caecal concentration of individual and total SCFA and other parameters of fermentation intensity. Pectins and potato starch were fermented more intensively than cellulose. Faecal N excretion was increased by all carbohydrates substituted for cereal starch, and by tannic acid. Urinary excretion was greater on CEL than on PEC and WSTA containing casein and on other diets containing gluten. In both experiments urinary N excretion was the lowest on PEC diets. Protein quality had the greatest effect on apparent biological value and net protein utilization but all indices of protein utilization were also affected by carbohydrates. It is concluded that not only the amount of N excreted in faeces but also in urine is affected by the type and fermentability of carbohydrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号