首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Domain structure in yeast tRNA ligase   总被引:12,自引:0,他引:12  
Q Xu  D Teplow  T D Lee  J Abelson 《Biochemistry》1990,29(26):6132-6138
Yeast tRNA ligase is one of two proteins required for the splicing of precursor tRNA molecules containing introns. The 95-kDa tRNA ligase has been purified to homogeneity from a strain of Escherichia coli which overexpresses the protein. The ligation reaction requires three enzymatic activities: phosphodiesterase, polynucleotide kinase, and ligase. By partial proteolytic digestion, we have produced fragments of tRNA ligase which contain the constituent activities. These results provide evidence for a model in which the three constituent activities of ligase are located in three distinct domains separated by protease-sensitive regions. We have also located the active adenylylated site in the ligase domains. It is lysine-114. The tRNA ligase sequence in this region has limited homology to the active-site region of T4 RNA ligase.  相似文献   

2.
N K Tanner  M M Hanna  J Abelson 《Biochemistry》1988,27(24):8852-8861
Yeast tRNA ligase, from Saccharomyces cerevisiae, is one of the protein components that is involved in the splicing reaction of intron-containing yeast precursor tRNAs. It is an unusual protein because it has three distinct catalytic activities. It functions as a polynucleotide kinase, as a cyclic phosphodiesterase, and as an RNA ligase. We have studied the binding interactions between ligase and precursor tRNAs containing two photoreactive uridine analogues, 4-thiouridine and 5-bromouridine. When irradiated with long ultraviolet light, RNA containing these analogues can form specific covalent bonds with associated proteins. In this paper, we show that 4-thiouridine triphosphate and 5-bromouridine triphosphate were readily incorporated into a precursor tRNA(Phe) that was synthesized, in vitro, with bacteriophage T7 RNA polymerase. The analogue-containing precursor tRNAs were authentic substrates for the two splicing enzymes that were tested (endonuclease and ligase), and they formed specific covalent bonds with ligase when they were irradiated with long-wavelength ultraviolet light. We have determined the position of three major cross-links and one minor cross-link on precursor tRNA(Phe) that were located within the intron and near the 3' splice site. On the basis of these data, we present a model for the in vivo splicing reaction of yeast precursor tRNAs.  相似文献   

3.
Pre-tRNA splicing is an essential process in all eukaryotes. It requires the concerted action of an endonuclease to remove the intron and a ligase for joining the resulting tRNA halves as studied best in the yeast Saccharomyces cerevisiae. Here, we report the first characterization of an RNA ligase protein and its gene from a higher eukaryotic organism that is an essential component of the pre-tRNA splicing process. Purification of tRNA ligase from wheat germ by successive column chromatographic steps has identified a protein of 125 kDa by its potentiality to covalently bind AMP, and by its ability to catalyse the ligation of tRNA halves and the circularization of linear introns. Peptide sequences obtained from the purified protein led to the elucidation of the corresponding proteins and their genes in Arabidopsis and Oryza databases. The plant tRNA ligases exhibit no overall sequence homologies to any known RNA ligases, however, they harbour a number of conserved motifs that indicate the presence of three intrinsic enzyme activities: an adenylyltransferase/ligase domain in the N-terminal region, a polynucleotide kinase in the centre and a cyclic phosphodiesterase domain at the C-terminal end. In vitro expression of the recombinant Arabidopsis tRNA ligase and functional analyses revealed all expected individual activities. Plant RNA ligases are active on a variety of substrates in vitro and are capable of inter- and intramolecular RNA joining. Hence, we conclude that their role in vivo might comprise yet unknown essential functions besides their involvement in pre-tRNA splicing.  相似文献   

4.
C L Peebles  P Gegenheimer  J Abelson 《Cell》1983,32(2):525-536
Splicing of transfer RNA precursors containing intervening sequences proceeds in two distinct stages: endonucleolytic cleavage, followed by ligation. We have physically separated endonuclease and ligase activities from extracts of yeast cells, and we report properties of the partially purified endonuclease preparation. The endonuclease behaves as an integral membrane protein: it is purified from a membrane fraction from which it can be solubilized with nonionic detergents, and the activity of the endonuclease in the membrane fraction is stimulated by nonionic detergents. The endonuclease cleaves precursor tRNAs at two sites to excise the intervening sequence precisely. Both the extent and the accuracy of cleavage are enhanced by the presence of spermidine; the degree of stimulation varies with the pre-tRNA substrate. The cleavage products possess 5'-hydroxyl and 2',3'-cyclic phosphodiester termini. The cyclic phosphodiester termini can be opened to 2'-phosphates by a cyclic phosphodiesterase activity in the preparation.  相似文献   

5.
Joining of tRNA halves during splicing in extracts of Saccharomyces cerevisiae requires each of the three enzymatic activities associated with the tRNA ligase polypeptide. Joining is most efficient for tRNA as opposed to oligonucleotide substrates and is sensitive to single base changes at a distance from splice sites suggesting considerable specificity. To examine the basis for this specificity, binding of ligase to labeled RNA substrates was measured by native gel electrophoresis. Ligase bound tRNA halves with an association constant 1600-fold greater than that for a nonspecific RNA. Comparison of binding of a series of tRNA processing intermediates revealed that tRNA-structure, particularly in the region around the splice sites, contributes to specific binding. Finally, the ligase was shown to form multiple, discrete complexes with tRNA substrates. The basis for recognition by ligase and its role in a tRNA processing pathway are discussed.  相似文献   

6.
A new type of cyclic GMP binding protein was recently identified in our laboratory (Hamet, P. and Coquil, J.-F. (1978) J. Cyclic Nucleotide Res. 4, 281--290). The binding, recovered in the supernatant fractions, is highly specific for cyclic GMP and is clearly distinct from the binding to cyclic GMP-dependent protein kinase. Chromatography on DEAE-Sepharose separated the cyclic GMP binding protein from cyclic AMP binding, cyclic AMP-dependent kinase activities, and from guanylate cyclase. The optimal binding occurs at high pH and in the presence of thiol reagents. Several phosphodiesterase inhibitors increase the affinity of binding (Kd was 353 +/- 60 nM in the absence and 13.4 +/- 1.5 nM in the presence of 1-methyl-3-isobutyl-xanthine). The molecular weight of the binding protein was determined to be about 176,000 and the sedimentation coefficient was 6.4 S. While the binding and phosphodiesterase activities co-migrated on DEAE-Sepharose, gel filtration and sucrose gradients, certain treatments (such as increasing the concentrations of salt and heating) were able to influence one activity while having no effect on the other. Hence, the binding activity may be involved in the regulation of the activity of cyclic GMP phosphodiesterase. Since the binding protein appears to be the only 'receptor' for cyclic GMP detectable in platelets, this protein and/or its relation to cyclic GMP phosphodiesterase may play a role in the mechanism of action of cyclic GMP in platelets.  相似文献   

7.
Splicing of tRNA precursors in Saccharomyces cerevisiae extracts proceeds in two steps; excision of the intervening sequence and ligation of the tRNA halves. The ability to resolve these two steps and the distinct physical properties of the endonuclease and ligase suggested that the splicing steps may not be concerted and that these two enzymes may act independently in vivo. A ligase competition assay was developed to examine whether the excision and ligation steps in tRNA splicing in vitro are concerted or independent. The ability of either yeast ligase or T4 ligase plus kinase to join the tRNA halves produced by endonuclease and the distinct structures of the reaction products provided the basis for the competition assay. In control reactions, joining of isolated tRNA halves formed by preincubation with endonuclease was measured. The ratio of yeast to T4 reaction products in these control assays reflected the ratio of the enzyme activities, as would be expected if each has equal access to the substrate. In splicing competition assays, endonuclease and pre-tRNA were added to ligase mixtures, and joining of the halves that were formed was measured. In these assays the products were predominantly those of the yeast ligase even when the T4 enzymes were present in excess. These results demonstrate preferential access of yeast ligase to the endonuclease products and provide evidence for the assembly of a functional tRNA splicing complex in vitro. This observation has important implications for the organization of the splicing components and of the gene expression pathway in vivo.  相似文献   

8.
9.
Kurz JC  Fierke CA 《Biochemistry》2002,41(30):9545-9558
The RNA subunit of bacterial ribonuclease P (RNase P) requires high concentrations of magnesium ions for efficient catalysis of tRNA 5'-maturation in vitro. The protein component of RNase P, required for cleavage of precursor tRNA in vivo, enhances pre-tRNA binding by directly contacting the 5'-leader sequence. Using a combination of transient kinetics and equilibrium binding measurements, we now demonstrate that the protein component of RNase P also facilitates catalysis by specifically increasing the affinities of magnesium ions bound to the RNase P x pre-tRNA(Asp) complex. The protein component does not alter the number or apparent affinity of magnesium ions that are either diffusely associated with the RNase P RNA polyanion or required for binding mature tRNA(Asp). Nor does the protein component alter the pH dependence of pre-tRNA(Asp) cleavage catalyzed by RNase P, providing further evidence that the protein component does not directly stabilize the catalytic transition state. However, the protein subunit does increase the affinities of at least four magnesium sites that stabilize pre-tRNA binding and, possibly, catalysis. Furthermore, this stabilizing effect is coupled to the P protein/5'-leader contact in the RNase P holoenzyme x pre-tRNA complex. These results suggest that the protein component enhances the magnesium affinity of the RNase P x pre-tRNA complex indirectly by binding and positioning pre-tRNA. Furthermore, RNase P is inhibited by cobalt hexammine (K(I) = 0.11 +/- 0.01 mM) while magnesium, manganese, cobalt, and zinc compete with cobalt hexammine to activate RNase P. These data are consistent with the hypothesis that catalysis by RNase P requires at least one metal-water ligand or one inner-sphere metal contact.  相似文献   

10.
Binding activity obtained from an established line of hepatoma tissue culture (HTC) cells has a lower apparent affinity for cyclic AMP at physiological pH than has the analogous binding activity from rat liver. However, the apparent binding affinity of HTC preparations can be reversibly increased by adding NaCl or guanidine · HCl. In the presence of such activating substances, a macromolecular inhibitory activity has been chromatographically separated from the cyclic AMP-binding activity. Removal of this inhibitory component causes the apparent affinity of the cyclic AMP-binding activity from HTC cells to increase and resemble that observed with liver preparations. Before treatment with salt, the inhibitory activity seems to be physically associated with the binding activity. Adding the isolated inhibitory component back to a suitably activated binding preparation from HTC cells results in a decrease in the apparent affinity for cyclic AMP. The isolated inhibitory component is devoid of cyclic AMP-binding and cyclic AMP phosphodiesterase activities and has an apparent minimal molecular weight of about 30,000 by gel filtration. It possesses protein kinase activity and seems to be identical to the catalytic subunit of a cyclic AMP-stimulated protein kinase on the basis of chromatographic properties and sensitivities to heat and low pH. This catalytic subunit represents only a minor portion of total cellular protein kinase activity and is also present in liver extracts. However, the binding activity from liver is not inhibited significantly under conditions where the binding from HTC cells is affected by the catalytic subunit. The difference in this inhibitory response between liver and HTC preparations appears to reflect differences in the cyclic AMP-binding proteins themselves.  相似文献   

11.
12.
Ribonuclease P (RNase P) catalyzes the 5'-end maturation of transfer RNA molecules. Recent evidence suggests that the eukaryotic protein subunits may provide substrate-binding functions (True, H. L., and Celander, D. W. (1998) J. Biol. Chem. 273, 7193-7196). We now report that Pop3p, an essential protein subunit of the holoenzyme in Saccharomyces cerevisiae, displays novel RNA-binding properties. A recombinant form of Pop3p (H6Pop3p) displays a 3-fold greater affinity for binding pre-tRNA substrates relative to tRNA products. The recognition sequence for the H6Pop3p-substrate interaction in vitro was mapped to a 39-nucleotide long sequence that extends from position -21 to +18 surrounding the natural processing site in pre-tRNA substrates. H6Pop3p binds a variety of RNA molecules with high affinity (K(d) = 16-25 nm) and displays a preference for single-stranded RNAs. Removal or modification of basic C-terminal residues attenuates the RNA-binding properties displayed by the protein specifically for a pre-tRNA substrate. These studies support the model that eukaryotic RNase P proteins bind simultaneously to the RNA subunit and RNA substrate.  相似文献   

13.
Yeast tRNA ligase (Trl1) converts cleaved tRNA half-molecules into spliced tRNAs containing a 2'-PO4, 3'-5' phosphodiester at the splice junction. Trl1 performs three reactions: (i) the 2',3'-cyclic phosphate of the proximal fragment is hydrolyzed to a 3'-OH, 2'-PO4 by a cyclic phosphodiesterase (CPD); (ii) the 5'-OH of the distal fragment is phosphorylated by an NTP-dependent polynucleotide kinase; and (iii) the 3'-OH, 2'-PO4, and 5'-PO4 ends are sealed by an ATP-dependent RNA ligase. Trl1 consists of an N-terminal adenylyltransferase domain that resembles T4 RNA ligase 1, a central domain that resembles T4 polynucleotide kinase, and a C-terminal CPD domain that resembles the 2H phosphotransferase enzyme superfamily. Here we show that all three domains are essential in vivo, although they need not be linked in the same polypeptide. We identify five amino acids in the adenylyltransferase domain (Lys114, Glu266, Gly267, Lys284, and Lys286) that are essential for Trl1 activity and are located within motifs I (114KANG117), IV (266EGFVI270), and V (282FFKIK286) that comprise the active sites of DNA ligases, RNA capping enzymes, and T4 RNA ligases 1 and 2. Mutations K404A and T405A in the P-loop (401GXGKT405) of the central kinase-like domain had no effect on Trl1 function in vivo. The K404A and T405A mutations eliminated ATP-dependent kinase activity but preserved GTP-dependent kinase activity. A double alanine mutant in the P-loop was lethal in vivo and abolished GTP-dependent kinase activity. These results suggest that GTP is the physiological substrate and that the Trl1 kinase has a single NTP binding site of which the P-loop is a component. Two other mutations in the central domain were lethal in vivo and either abolished (D425A) or severely reduced (R511A) GTP-dependent RNA kinase activity in vitro. Mutations of the signature histidines of the CPD domain were either lethal (H777A) or conferred a ts growth phenotype (H673A).  相似文献   

14.
Mechanism of action of a yeast RNA ligase in tRNA splicing   总被引:44,自引:0,他引:44  
The yeast endonuclease and ligase activities that carry out the splicing of tRNA precursors in vitro have been physically separated. The properties of a partially purified ligase fraction were examined. The ligase requires a divalent cation and a nucleoside triphosphate as cofactor. The product of ligation is a 2′-phosphomonoester, 3′,5′-phosphodiester linkage. The phosphate in the newly formed phosphodiester bond comes from the γ position of ATP, while the 2′ phosphate is derived from the RNA substrate. An adenylylated enzyme intermediate was identified by incorporation of label from α-32P-ATP. Adenylylation was reversed by pyrophosphate, releasing ATP, whereas ligation was accompanied by release of AMP. Polynucleotide kinase and cyclic phosphodiesterase activities copurify with the adenylylated protein and may be required for the tRNA splicing reaction.  相似文献   

15.
We have previously demonstrated that the catalytic sub-unit of protein kinase A can catalyse a potent activation of partially purified Type V cyclic GMP-specific phosphodiesterase activity (Burns et al., 1992, Biochem. J. 283, 487-491). We now demonstrate that this phosphodiesterase most likely has a sub-unit mass of 90kDa, based upon 32P-cyclic GMP photo-affinity labelling, that activation of the phosphodiesterase does not require the prior binding of cyclic GMP to the phosphodiesterase, and that alkaline phosphatase can reverse the protein kinase A-dependent activation of phosphodiesterase activity. Zaprinast is a mixed inhibitor of non-activated cyclic GMP phosphodiesterase activity. However, inhibition of the protein kinase A-activated phosphodiesterase is competitive. These results suggest that protein kinase A can modulate the inhibitory effects of zaprinast via perturbations of a non-catalytic binding site.  相似文献   

16.
A new type of cyclic GMP binding protein was recently identified in our laboratory (Hamet, P. and Coquil, J.-F. (1978) J. Cyclic Nucleotide Res. 4, 281–290). The binding, recovered in the supernatant fractions, is highly specific for cyclic GMP and is clearly distinct from the binding to cyclic GMP-dependent protein kinase. Chromatography on DEAE-Sepharose separated the cyclic GMP binding protein from cyclic AMP binding, cyclic AMP-dependent kinase activities, and from guanylate cyclase. The optimal binding occurs at high pH and in the presence of thiol reagents. Several phosphodiesterase inhibitors increase the affinity of binding (Kd was 353 ± 60 nM in the absence and 13.4 ± 1.5 nM in the presence of 1-methyl-3-isobutyl-xanthine). The molecular weight of the binding protein was determined to be about 176 000 and the sedimentation coefficient was 6.4 S. While the binding and phosphodiesterase activities co-migrated on DEAE-Sepharose, gel filtration and sucrose gradients, certain treatments (such as increasing the concentrations of salt and heating) were able to influence one activity while having no effect on the other. Hence, the binding activity may be involved in the regulation of the activity of cyclic GMP phosphodiesterase. Since the binding protein appears to be the only ‘receptor’ for cyclic GMP detectable in platelets, this protein and/or its relation to cyclic GMP phosphodiesterase may play a role in the mechanism of action of cyclic GMP in platelets.  相似文献   

17.
Bacterial ribonuclease P (RNase P) is a ribonucleoprotein complex composed of one catalytic RNA (PRNA) and one protein subunit (P protein) that together catalyze the 5' maturation of precursor tRNA. High-resolution X-ray crystal structures of the individual P protein and PRNA components from several species have been determined, and structural models of the RNase P holoenzyme have been proposed. However, holoenzyme models have been limited by a lack of distance constraints between P protein and PRNA in the holoenzyme-substrate complex. Here, we report the results of extensive cross-linking and affinity cleavage experiments using single-cysteine P protein variants derivatized with either azidophenacyl bromide or 5-iodoacetamido-1,10-o-phenanthroline to determine distance constraints and to model the Bacillus subtilis holoenzyme-substrate complex. These data indicate that the evolutionarily conserved RNR motif of P protein is located near (<15 Angstroms) the pre-tRNA cleavage site, the base of the pre-tRNA acceptor stem and helix P4 of PRNA, the putative active site of the enzyme. In addition, the metal binding loop and N-terminal region of the P protein are proximal to the P3 stem-loop of PRNA. Studies using heterologous holoenzymes composed of covalently modified B. subtilis P protein and Escherichia coli M1 RNA indicate that P protein binds similarly to both RNAs. Together, these data indicate that P protein is positioned close to the RNase P active site and may play a role in organizing the RNase P active site.  相似文献   

18.
RNA ligase in bacteria: formation of a 2',5' linkage by an E. coli extract   总被引:9,自引:0,他引:9  
C L Greer  B Javor  J Abelson 《Cell》1983,33(3):899-906
Ligase activity was detected in extracts of Escherichia coli, Clostridium tartarivorum, Rhodospirillum salexigens, Chromatium gracile, and Chlorobium limicola. Ligase was measured by joining of tRNA halves produced from yeast IVS-containing tRNA precursors by a yeast endonuclease. The structure of tRNATyr halves joined by an E. coli extract was examined. The ligated junction is resistant to nuclease P1 and RNAase T2 but sensitive to venom phosphodiesterase and alkaline hydrolysis, consistent with a 2',5' linkage. The nuclease-resistant junction dinucleotide comigrates with authentic (2',5') APA marker in thin-layer chromatography. The phosphate in the newly formed phosphodiester bond is derived from the pre-tRNA substrate. The widespread existence of a bacterial ligase raises the possibility of a novel class of RNA processing reactions.  相似文献   

19.
Non-enzymatic excision of pre-tRNA introns?   总被引:3,自引:0,他引:3       下载免费PDF全文
H van Tol  H J Gross    H Beier 《The EMBO journal》1989,8(1):293-300
We used human tRNA(Tyr) precursor as a substrate to study self-excision of a pre-tRNA intron. This RNA was synthesized in vitro in a HeLa cell extract. It contains a 5' leader, an intron of 20 nucleotides and a 3' trailer. Self-cleavage of pre-tRNA(Tyr) occurs in 100 mM NH4OAc at a pH ranging from 6 to 8.5 in the presence of spermine, MgCl2 and Triton X-100 under conditions very similar to enzymatic intron excision. The reaction is temperature-dependent, relatively fast as compared to the enzyme-catalysed reaction and leads to fragments which resist further degradation. The detailed structure of all major and minor cleavage products was established by fingerprint analyses. Non-enzymatic cleavage occurs predominantly at the 3' splice site and to a minor extent at the 5' splice site. Other minor cleavage sites are located within the intron and in the 3' trailer. Putative 5' and 3' tRNA halves resulting from pre-tRNA(Tyr) self-cleavage are substrates for wheat germ RNA ligase, suggesting that the cleavage reaction yields 2',3'-cyclic phosphate and 5'-hydroxyl termini. Pre-tRNA splicing endonuclease is believed to cleave both the 5' and the 3' splice site. However, on the basis of our results we propose that this enzyme may support the formation of a pre-tRNA tertiary structure favourable for autocatalytic intron excision and impair unspecific self-cleavage.  相似文献   

20.
Properties of caldesmon isolated from chicken gizzard.   总被引:5,自引:4,他引:1       下载免费PDF全文
Chicken gizzard smooth muscle contains two major calmodulin-binding proteins: caldesmon (11.1 microM; Mr 141 000) and myosin light-chain kinase (4.6 microM; Mr 136 000), both of which are associated with the contractile apparatus. The amino acid composition of caldesmon is distinct from that of myosin light-chain kinase and is characterized by a very high glutamic acid content (25.5%), high contents of lysine (13.6%) and arginine (10.3%), and a low aromatic amino acid content (2.4%). Caldesmon lacked myosin light-chain kinase and phosphatase activities and did not compete with either myosin light-chain kinase or cyclic nucleotide phosphodiesterase (both calmodulin-dependent enzymes) for available calmodulin, suggesting that calmodulin may have distinct binding sites for caldesmon on the one hand and myosin light-chain kinase and cyclic nucleotide phosphodiesterase on the other. Consistent with the lack of effect of caldesmon on myosin phosphorylation, caldesmon did not affect the assembly or disassembly of myosin filaments in vitro. As previously shown [Ngai & Walsh (1984) J. Biol. Chem. 259, 13656-13659], caldesmon can be reversibly phosphorylated. The phosphorylation and dephosphorylation of caldesmon were further characterized and the Ca2+/calmodulin-dependent caldesmon kinase was purified; kinase activity correlated with a protein of subunit Mr 93 000. Caldesmon was not a substrate of myosin light-chain kinase or phosphorylase kinase, both calmodulin-activated protein kinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号