首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Pseudomonas aeruginosa is an important human pathogen, producing lung infection in individuals with cystic fibrosis (CF), patients who are ventilated and those who are neutropenic. The respiratory epithelium provides the initial barrier to infection. Pseudomonas aeruginosa can enter epithelial cells, although the mechanism of entry and the role of intracellular organisms in its life cycle are unclear. We devised a model of infection of polarized human respiratory epithelial cells with P. aeruginosa and investigated the role of the cystic fibrosis transmembrane conductance regulator (CFTR) in adherence, uptake and IL-8 production by human respiratory epithelial cells. We found that a number of P. aeruginosa strains could invade and replicate within cells derived from a patient with CF. Intracellular bacteria did not produce host cell cytotoxicity over a period of 24 h. When these cells were transfected with wild-type CFTR, uptake of bacteria was significantly reduced and release of IL-8 following infection enhanced. We propose that internalized P. aeruginosa may play an important role in the pathogenesis of infection and that, by allowing greater internalization into epithelial cells, mutant CFTR results in an increased susceptibility of bronchial infection with this microbe.  相似文献   

2.
Growing evidence is pointing to the importance of multicellular bacterial structures in the interaction of pathogenic bacteria with their host. Transition from planktonic to host cell-associated multicellular structures is an essential infection step that has not been described for the opportunistic human pathogen Pseudomonas aeruginosa. In this study we show that P. aeruginosa interacts with the surface of epithelial cells mainly forming aggregates. Dynamics of aggregate formation typically follow a sigmoidal curve. First, a single bacterium attaches at cell-cell junctions. This is followed by rapid recruitment of free-swimming bacteria and association of bacterial cells resulting in the formation of an aggregate on the order of minutes. Aggregates are associated with phosphatidylinositol 3,4,5-trisphosphate (PIP3)-enriched host cell membrane protrusions. We further show that aggregates can be rapidly internalized into epithelial cells. Lyn, a member of the Src family tyrosine kinases previously implicated in P. aeruginosa infection, mediates both PIP3-enriched protrusion formation and aggregate internalization. Our results establish the first framework of principles that define P. aeruginosa transition to multicellular structures during interaction with host cells.  相似文献   

3.
The cystic fibrosis (CF) transmembrane conductance regulator (CFTR) protein is an epithelial cell receptor for the outer core oligosaccharide of the Pseudomonas aeruginosa LPS. Bacterial binding leads to CFTR-dependent bacterial internalization, initiation of NF-kappaB nuclear translocation, cellular desquamation, and eventual apoptosis of the infected cells, all of which are critical for innate immune resistance to infection with this pathogen. Lack of this reaction in CF patients underlies their hypersusceptibility to chronic P. aeruginosa infection. In this study we tested whether these epithelial cell responses are dependent upon the localization of CFTR to lipid rafts. Confocal microscopy showed that green fluorescent protein-tagged CFTR (GFP-CFTR) and the lipid raft marker ganglioside GM1 colocalized at sites of P. aeruginosa contact and internalization. GFP-CFTR localized to low density Triton X-100-insoluble fractions in lysates of Madin-Darby canine kidney GFP-CFTR cells, and P. aeruginosa infection increased the levels of GFP-CFTR in these fractions as determined by Western blot. Cells expressing GFP-DeltaF508-CFTR did not have rafts with detectable CFTR protein. Extraction of cell surface cholesterol via cyclodextrin treatment of the cells inhibited CFTR entry into rafts. In addition, cyclodextrin treatment of both human and canine epithelial cells inhibited cellular ingestion of P. aeruginosa, NF-kappaB nuclear translocation, and apoptosis. These results indicate that lipid raft localization of CFTR is required for signaling in response to P. aeruginosa infection. Such signaling is needed for the coordination of innate immunity to P. aeruginosa lung infection, a process that is defective in CF.  相似文献   

4.
Bacterial adherence to mammalian cells and their internalization are thought to participate in Pseudomonas aeruginosa pathogenicity. In this study, we explored the role of alpha5beta1 and alphavbeta5 integrins and their natural ligands, fibronectin (Fn) and vitronectin (Vn), in P. aeruginosa interaction with epithelial cells by using the PAK reference bacterial strain, A549 respiratory, and SKOV-3 human ovarian cell lines. The host cell cytoskeleton and cellular tyrosine kinases seem to be solicited during the PAK-respiratory cell interaction: cytochalasin D and genistein decreased the bacterial adherence and internalization. Blocking antibodies to alphavbeta5 integrins were the only antibodies tested to have inhibitory activity against PAK adherence to A549 cells. PAK internalization by A549 and SKOV-3 cells was markedly decreased in the presence of blocking antibodies to Vn and alphavbeta5 integrins. Addition of Vn in excess restored PAK invasion of both A549 and SKOV-3 cells in the presence of anti-Vn antibodies. Immunofluorescence experiments revealed that, in the presence of bacteria, the Vn fibrillar network disappeared, and alphavbeta5 staining was concentrated in sites where adherent bacteria were present. Taken together, these findings suggest that alphavbeta5 integrins, and their natural ligand Vn, are involved in PAK entry into human epithelial cells.  相似文献   

5.
6.
Several Pseudomonas aeruginosa strains are internalized by epithelial cells in vitro and in vivo, but the host pathways usurped by the bacteria to enter nonphagocytic cells are not clearly understood. Here, we report that internalization of strain PAK into epithelial cells triggers and requires activation of phosphatidylinositol 3-kinase (PI3K) and protein kinase B/Akt (Akt). Incubation of Madin-Darby canine kidney (MDCK) or HeLa cells with the PI3K inhibitors LY294002 (LY) or wortmannin abrogated PAK uptake. Addition of the PI3K product phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P3] to polarized MDCK cells was sufficient to increase PAK internalization. PtdIns(3,4,5)P3 accumulated at the site of bacterial binding in an LY-dependent manner. Akt phosphorylation correlated with PAK invasion. The specific Akt phosphorylation inhibitor SH-5 inhibited PAK uptake; internalization also was inhibited by small interfering RNA-mediated depletion of Akt phosphorylation. Expression of constitutively active Akt was sufficient to restore invasion when PI3K signaling was inhibited. Together, these results demonstrate that the PI3K signaling pathway is necessary and sufficient for the P. aeruginosa entry and provide the first example of a bacterium that requires Akt for uptake into epithelial cells.  相似文献   

7.
The invasion of Pseudomonas aeruginosa and Salmonella enterica serovar Typhi into epithelial cells depends on the cystic fibrosis transmembrane conductance regulator (CFTR) protein as an epithelial receptor. In the case of P. aeruginosa , the bacterial ligand for CFTR is the outer core oligosaccharide portion of the lipopolysaccharide (LPS). To determine whether serovar Typhi LPS is also a bacterial ligand mediating internalization, we used both P. aeruginosa and serovar Typhi LPS as a competitive inhibitor of serovar Typhi invasion into the epithelial cell line T84. P. aeruginosa LPS containing a complete core efficiently inhibited serovar Typhi invasion. However, neither killed wild-type Typhi cells nor purified LPS were effective inhibitors. LPS from mutant Typhi strains defective in O side-chain synthesis, but with an apparently normal core, was capable of inhibiting invasion, but LPS obtained from a deeper rough mutant strain with alterations in fast-migrating core oligosaccharide failed to inhibit invasion. Lastly, exposure of wild-type serovar Typhi to T84 cultures before heat killing resulted in a structural alteration in its LPS that allowed the heat-killed cells to inhibit invasion of wild-type serovar Typhi. These data indicate that the serovar Typhi LPS core, like the P. aeruginosa LPS core, is a ligand mediating internalization of bacteria by epithelial cells, and that exposure of this ligand on wild-type Typhi is induced by the bacteria's interaction with host cells.  相似文献   

8.
The Gram-negative pathogen Pseudomonas aeruginosa invades epithelial cells in vivo and in vitro . We have examined the pathway(s) by which epithelial cells internalize P. aeruginosa strain PA103 using Madin-Darby canine kidney (MDCK) cells. We have recently demonstrated that P. aeruginosa internalization occurs by an actin-dependent Toxin B-inhibited pathway which becomes downregulated as epithelial cells become polarized, suggesting that one or more of the Rho family GTPases is involved in bacterial internalization. Here, we demonstrate that activation of the Rho family GTPases by cytotoxic necrotizing factor 1 (CNF-1) stimulates P. aeruginosa internalization. Examination of the roles of the individual Rho family GTPases in internalization shows that expression of a constitutively active allele of RhoA (RhoAV14), but not of constitutively active Rac1 (Rac1V12) or Cdc42 (Cdc42V12), is sufficient to increase uptake of PA103 pscJ . This relative increase persists when bacterial infection is established at the basolateral surface of polarized cells, suggesting that the effect of RhoAV14 is not simply due to its known ability to disrupt tight junction integrity in polarized cells. RhoAV14-mediated stimulation of bacterial uptake is actin dependent as it is abrogated by exposure to latrunculin A. We also find that endogenous Rho GTP levels in epithelial cells are increased by infection with an internalized strain of P. aeruginosa; conversely, a poorly internalized isogenic strain expressing the bacterial anti-internalization protein ExoT causes decreased Rho GTP levels. Experimental inhibition of Rho, either by expressing dominant negative RhoAN19 or by inhibiting native Rho using a membrane permeable fusion construct of a Rho-specific inhibitor, C3 ADP-ribosyltransferase, does not inhibit PA103 pscJ internalization in MDCK or HeLa cells. Models consistent with these data are presented.  相似文献   

9.
The mammalian innate immune system recognizes pathogen-associated molecular patterns through pathogen recognition receptors. Nod1 has been described recently as a cytosolic receptor that detects specifically diaminopimelate-containing muropeptides from Gram-negative bacteria peptidoglycan. In the present study we investigated the potential role of Nod1 in the innate immune response against the opportunistic pathogen Pseudomonas aeruginosa. We demonstrate that Nod1 detects the P. aeruginosa peptidoglycan leading to NF-kappaB activation and that this activity is diminished in epithelial cells expressing a dominant-negative Nod1 construct or in mouse embryonic fibroblasts from Nod1 knock-out mice infected with P. aeruginosa. Finally, we demonstrate that the cytokine secretion kinetics and bacterial killing are altered in Nod1-deficient cells infected with P. aeruginosa in the early stages of infection.  相似文献   

10.
Three of the Type III-secreted effectors of Pseudomonas aeruginosa (ExoS, ExoT, and ExoY) each alter mammalian cell morphology in culture without causing a loss of cell viability. For ExoS and ExoT this property involves RhoGAP activity, and leads to actin cytoskeleton disruption and a reduced capacity for internalizing bacteria. ExoY does not possess RhoGAP activity. Instead, cell rounding depends upon its adenylate cyclase catalytic region. Since anti-phagocytic activities of ExoS and ExoT are associated with cell rounding and cytoskeleton disruption, we hypothesized that ExoY would also inhibit P. aeruginosa invasion of epithelial cells coinciding with adenylate cyclase-mediated cytoskeleton disruption. The results showed actin disruption of epithelial cells at 2 h post-infection associated with both adenylate cyclase-active ExoY and its catalytic mutant form ExoYK81M, and which coincided with inhibition of bacterial invasion (76% inhibition by ExoY, and 37% by ExoYK81M). Surprisingly, at 4h post-infection, neither form of ExoY inhibited invasion despite extensive actin disruption. These data suggest that ExoY, like ExoS and ExoT, contains more than one active domain affecting mammalian cell function. The data also suggest that cytoskeleton disruption does not necessarily predict invasion inhibitory activity, supporting the recently proposed model that P. aeruginosa internalization can proceed through more than one pathway.  相似文献   

11.
Invasion of epithelial cells represents a potential pathogenic mechanism for Pseudomonas aeruginosa. We explored the role of mitogen-activated protein kinase kinases (MEK 1/2) and the extracellular signal-regulated kinases (ERK 1/2) in P. aeruginosa invasion. Treatment of corneal epithelial cells with MEK inhibitors, PD98059 (20 microM) or UO126 (100 microM), reduced P. aeruginosa invasion by approximately 60% without affecting bacterial association with the cells (P=0.0001). UO124, a negative control for UO126, had no effect on bacterial internalization. Infection of cells with an internalization-defective flhA mutant of P. aeruginosa was associated with less ERK 1/2 tyrosine phosphorylation than infection with wild-type invasive P. aeruginosa. An ERK-2 inhibitor, 5-iodotubercidin (20 microM), reduced P. aeruginosa invasion by approximately 40% (P=0.035). Together, these data suggest that P. aeruginosa internalization by epithelial cells involves a pathway(s) that includes MEK and ERK signaling proteins.  相似文献   

12.
Respiratory syncytial virus (RSV) infection causes severe lower respiratory diseases in infancy, early childhood and the elderly. RSV infections respond poorly to current therapies. Therefore, we initiated a search for novel drug targets by investigating the characteristics and identity of RSV adhesion receptors on mammalian cells. Soluble human lectins, complex polysaccharides and a low molecular selectin antagonist, TBC1269, were used to characterise and isolate the RSV receptor on a human epithelial cell line (Hep2 cells). The binding characteristics of the RSV receptor on Hep2 cells were similar to those reported for L-selectin. The carbohydrate-based selectin antagonists, fucoidan and TBC 1269, inhibit RSV infection both in vitro and in a mouse model of infection. Furthermore, we have isolated annexin II as a potential RSV receptor on Hep2 cells. The expression of annexin II was increased after RSV infection. Recombinant annexin II binds to RSV G-protein, heparin and plasminogen and the binding is inhibited by a selectin antagonist, TBC1269. These findings indicate that inhibitors of annexin II could have potential in treating RSV infection.  相似文献   

13.
Mucosotropic, high-risk human papillomaviruses (HPV) are sexually transmitted viruses that are causally associated with the development of cervical cancer. The most common high-risk genotype, HPV16, is an obligatory intracellular virus that must gain entry into host epithelial cells and deliver its double stranded DNA to the nucleus. HPV capsid proteins play a vital role in these steps. Despite the critical nature of these capsid protein-host cell interactions, the precise cellular components necessary for HPV16 infection of epithelial cells remains unknown. Several neutralizing epitopes have been identified for the HPV16 L2 minor capsid protein that can inhibit infection after initial attachment of the virus to the cell surface, which suggests an L2-specific secondary receptor or cofactor is required for infection, but so far no specific L2-receptor has been identified. Here, we demonstrate that the annexin A2 heterotetramer (A2t) contributes to HPV16 infection and co-immunoprecipitates with HPV16 particles on the surface of epithelial cells in an L2-dependent manner. Inhibiting A2t with an endogenous annexin A2 ligand, secretory leukocyte protease inhibitor (SLPI), or with an annexin A2 antibody significantly reduces HPV16 infection. With electron paramagnetic resonance, we demonstrate that a previously identified neutralizing epitope of L2 (aa 108-120) specifically interacts with the S100A10 subunit of A2t. Additionally, mutation of this L2 region significantly reduces binding to A2t and HPV16 pseudovirus infection. Furthermore, downregulation of A2t with shRNA significantly decreases capsid internalization and infection by HPV16. Taken together, these findings indicate that A2t contributes to HPV16 internalization and infection of epithelial cells and this interaction is dependent on the presence of the L2 minor capsid protein.  相似文献   

14.
The nosocomial pathogen Pseudomonas aeruginosa causes clinical infection in the setting of pre-existing epithelial tissue damage, an association that is mirrored by the increased ability of P. aeruginosa to bind, invade and damage injured epithelial cells in vitro . In this study, we report that P. aeruginosa inhibits the process of epithelial wound repair in vitro through the type III-secreted bacterial protein ExoT, a GTPase-activating protein (GAP) for Rho family GTPases. This inhibition primarily targets cells at the edge of the wound, and causes actin cytoskeleton collapse, cell rounding and cell detachment. ExoT-dependent inhibition of wound repair is mediated through the GAP activity of this bacterial protein, as mutations in ExoT that alter the conserved arginine (R149) within the GAP domain abolish the ability of P. aeruginosa to inhibit wound closure. Because ExoT can also inhibit P. aeruginosa internalization by phagocytes and epithelial cells, this protein may contribute to the in vivo virulence of P. aeruginosa by allowing organisms both to overcome local host defences, such as an intact epithelial barrier, and to evade phagocytosis by immune effector cells.  相似文献   

15.
The opportunistic human pathogen Pseudomonas aeruginosa causes rapidly progressive and tissue-destructive infections, such as hospital-acquired and ventilator-associated pneumonias. Innate immune responses are critical in controlling P. aeruginosa in the mammalian lung, as demonstrated by the increased susceptibility of MyD88(-/-) mice to this pathogen. Experiments conducted using bone marrow chimeric mice demonstrated that radio-resistant cells participated in initiating MyD88-dependent innate immune responses to P. aeruginosa. In this study we used a novel transgenic mouse model to demonstrate that MyD88 expression by epithelial cells is sufficient to generate a rapid and protective innate immune response following intranasal infection with P. aeruginosa. MyD88 functions as an adaptor for many TLRs. However, mice in which multiple TLR pathways (e.g., TLR2/TLR4/TLR5) are blocked are not as compromised in their response to P. aeruginosa as mice lacking MyD88. We demonstrate that IL-1R signaling is an essential element of MyD88-dependent epithelial cell responses to P. aeruginosa infection.  相似文献   

16.
Interaction of the Listeria surface protein InlB with the hepatocyte growth factor receptor Met activates signalling events that trigger bacterial internalization into mammalian epithelial cells. We show here that purified phagosomes containing InlB-coated beads display type II phosphatidylinositol 4-kinase (PI4K) activity. In human epithelial HeLa cells, both PI4KIIalpha and PI4KIIbeta isoforms are corecruited with Met around InlB-coated beads or wild-type Listeria during the early steps of internalization, and phosphatidylinositol 4-phosphate [PI(4)P] is detected at the entry site. We demonstrate that PI4KIIalpha or PI4KIIbeta knockdown, but not type III PI4Kbeta knockdown, inhibits Listeria internalization. Production of PI(4)P derivatives such as phosphatidylinositol 3,4,5-triphosphate [PI(3,4,5)P(3)] upon InlB stimulation is not affected by PI4KIIalpha or beta knockdown, suggesting that these phosphoinositides are generated by a type III PI4K. Strikingly, knockdown of the PI(4)P ligand and clathrin adaptor AP-1 strongly inhibits bacterial entry. Together, our results reveal a yet non-described role for type II PI4Ks in phagocytosis.  相似文献   

17.
InlB is one of the two Listeria monocytogenes invasion proteins required for bacterial entry into mammalian cells. Entry into human epithelial cells such as Caco-2 requires InlA, whereas InlB is needed for entry into cultured hepatocytes and some epithelial or fibroblast cell lines such as Vero, HEp-2 and HeLa cells. InlB-mediated entry requires tyrosine phosphorylation, cytoskeletal rearrangements and activation of the host protein phosphoinositide (PI) 3-kinase, probably in response to engagement of a receptor. In this study, we demonstrate for the first time that InlB is sufficient to promote internalization. Indeed, coating of normally non-invasive bacteria or inert latex beads with InlB leads to internalization into mammalian cells. In addition, a soluble form of InlB also appears to promote uptake of non-invasive bacteria, albeit at a very low level. Similar to entry of L. monocytogenes , uptake of InlB-coated beads required tyrosine phosphorylation in the host cell, PI 3-kinase activity and cytoskeletal reorganization. Taken together, these data indicate that InlB is sufficient for entry of L. monocytogenes into host cells and suggest that this protein is an effector of host cell signalling pathways.  相似文献   

18.
The cystic fibrosis (CF) transmembrane conductance regulator (CFTR) has been proposed to be an epithelial cell receptor for Pseudomonas aeruginosa involved in bacterial internalization and clearance from the lung. We evaluated the role of CFTR in clearing P. aeruginosa from the respiratory tract using transgenic CF mice that carried either the DeltaF508 Cftr allele or an allele with a Cftr stop codon (S489X). Intranasal application achieved P. aeruginosa lung infection in inbred C57BL/6 DeltaF508 Cftr mice, whereas DeltaF508 Cftr and S489X Cftr outbred mice required tracheal application of the inoculum to establish lung infection. CF mice showed significantly less ingestion of LPS-smooth P. aeruginosa by lung cells and significantly greater bacterial lung burdens 4.5 h postinfection than C57BL/6 wild-type mice. Microscopy of infected mouse and rhesus monkey tracheas clearly demonstrated ingestion of P. aeruginosa by epithelial cells in wild-type animals, mostly around injured areas of the epithelium. Desquamating cells loaded with P. aeruginosa could also be seen in these tissues. No difference was found between CF and wild-type mice challenged with an LPS-rough mucoid isolate of P. aeruginosa lacking the CFTR ligand. Thus, transgenic CF mice exhibit decreased clearance of P. aeruginosa and increased bacterial burdens in the lung, substantiating a key role for CFTR-mediated bacterial ingestion in lung clearance of P. aeruginosa.  相似文献   

19.
Bacteria of Stenotrophomonas maltophilia have been isolated with increasing frequency from the airways of cystic fibrosis (CF) patients, usually following P. aeruginosa infections, but their adherence to human epithelial respiratory cells has never been investigated. In this study, various S. maltophilia strains were seen to adhere to epithelial respiratory cells in vitro, mainly along intercellular junctions. Bacteria could also enter into host cells, as determined by the gentamicin exclusion assay and transmission electron microscopy. Cells co-incubated with P. aeruginosa and S. maltophilia exhibited a significantly decreased adherence of these latter bacteria. No decrease in S. maltophilia adherence was observed when co-infection was carried out with heat-killed P. aeruginosa or when respiratory cells were first incubated with P. aeruginosa, before incubation with S. maltophilia. Our data suggest that P. aeruginosa infections do not account for the increased prevalence of S. maltophilia in CF patient airways, that thermolabile products from P. aeruginosa can control the adherence of S. maltophilia to respiratory cells and also that these two bacteria do not compete for cell receptors.  相似文献   

20.
Internalization of the pathogenic bacterium Pseudomonas aeruginosa by non-phagocytic cells is promoted by rearrangements of the actin cytoskeleton, but the host pathways usurped by this bacterium are not clearly understood. We used RNAi-mediated gene inactivation of approximately 80 genes known to regulate the actin cytoskeleton in Drosophila S2 cells to identify host molecules essential for entry of P. aeruginosa. This work revealed Abl tyrosine kinase, the adaptor protein Crk, the small GTPases Rac1 and Cdc42, and p21-activated kinase as components of a host signaling pathway that leads to internalization of P. aeruginosa. Using a variety of complementary approaches, we validated the role of this pathway in mammalian cells. Remarkably, ExoS and ExoT, type III secreted toxins of P. aeruginosa, target this pathway by interfering with GTPase function and, in the case of ExoT, by abrogating P. aeruginosa-induced Abl-dependent Crk phosphorylation. Altogether, this work reveals that P. aeruginosa utilizes the Abl pathway for entering host cells and reveals unexpected complexity by which the P. aeruginosa type III secretion system modulates this internalization pathway. Our results furthermore demonstrate the applicability of using RNAi screens to identify host signaling cascades usurped by microbial pathogens that may be potential targets for novel therapies directed against treatment of antibiotic-resistant infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号