首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Protein A of soluble methane monooxygenase (EC 1.14.13.25) of Methylococcus capsulatus (Bath) is the hydroxylase component of the enzyme complex, capable of inserting an atom of oxygen into methane. The protein possesses an unusual non-heme iron center consisting of two mu-hydroxo-bridged antiferromagnetically coupled iron atoms. It was possible to remove the iron center of protein A by subjecting the protein to freeze/thaw cycles or by dialysis against 8-hydroxyquinoline. Incubation of iron-depleted protein A with iron-EDTA and dithiothreitol resulted in the reassembly of the iron center of protein A as judged by restoration of enzyme activity (typically approximately 3 times the original activity) and by ESR spectroscopic methods. Reconstitution was inhibited by a number of metal ions, but none of the metals tested proved capable of replacing iron in the oxidation of methane. A number of iron-chelating agents exhibited weak inhibition of reconstitution. The KM(app) for iron in the reconstitution reaction was 133 microM. In vitro translation of total RNA isolated from M. capsulatus (Bath) produced protein A subunits equal to the native molecular weight, suggesting that there is no precursor form of this protein. Addition of the in vitro translated protein A to the reconstitution system resulted in low levels of hydroxylase activity suggesting that the subunits of protein A are self-assembling, a supposition supported by the presence of only one protein band on nondenaturing gels. Taken together, these data suggest that the subunits of protein A are synthesized in their native, mature form and self-assemble into an apoprotein A, into which the iron center is inserted.  相似文献   

2.
Triapine (3-aminopyridine-2-carboxaldehyde thiosemicarbazone, 3-AP) is currently the most promising chemotherapeutic compound among the class of α-N-heterocyclic thiosemicarbazones. Here we report further insights into the mechanism(s) of anticancer drug activity and inhibition of mouse ribonucleotide reductase (RNR) by Triapine. In addition to the metal-free ligand, its iron(III), gallium(III), zinc(II) and copper(II) complexes were studied, aiming to correlate their cytotoxic activities with their effects on the diferric/tyrosyl radical center of the RNR enzyme in vitro. In this study we propose for the first time a potential specific binding pocket for Triapine on the surface of the mouse R2 RNR protein. In our mechanistic model, interaction with Triapine results in the labilization of the diferric center in the R2 protein. Subsequently the Triapine molecules act as iron chelators. In the absence of external reductants, and in presence of the mouse R2 RNR protein, catalytic amounts of the iron(III)–Triapine are reduced to the iron(II)–Triapine complex. In the presence of an external reductant (dithiothreitol), stoichiometric amounts of the potently reactive iron(II)–Triapine complex are formed. Formation of the iron(II)–Triapine complex, as the essential part of the reaction outcome, promotes further reactions with molecular oxygen, which give rise to reactive oxygen species (ROS) and thereby damage the RNR enzyme. Triapine affects the diferric center of the mouse R2 protein and, unlike hydroxyurea, is not a potent reductant, not likely to act directly on the tyrosyl radical.  相似文献   

3.
A quinol-cytochrome c oxidoreductase (cytochrome bc1 complex) has been purified from plasma membranes of a thermophilic Bacillus, PS3, by ion-exchange chromatography in the presence of Triton X-100. The purified enzyme shows absorption bands at 561-562 nm and 553 nm at room temperature, and 560, 551, and 547 nm at 80 K upon reduction, and gives an ESR signal similar to that of a Rieske-type iron sulfur center. Its contents of protohemes, heme c, and non-heme iron are about 23, 10, and 21 nmol/mg of protein, respectively. The enzyme consists of four polypeptides with molecular masses of 29, 23, 21, and 14 kDa judging from their electrophoretic mobilities in the presence of sodium lauryl sulfate. Since the staining intensities of the respective bands are almost proportional to their molecular masses, the monomer complex (87 kDa) of the subunits probably consists of a cytochrome b having two protohemes, a cytochrome c1 and an Fe2-S2-type iron sulfur center. The 29 and 21 kDa subunits were identified as cytochromes c1 and b, respectively, and the 23-kDa subunit is probably an iron-sulfur protein, since the 14-kDa polypeptide can be removed with 3 M urea without reducing the content of non-heme iron. Several characteristics of the subunits and chromophores indicate that the PS3 enzyme is rather similar to cytochrome b6f (a bc1 complex equivalent) of chloroplasts and Cyanobacteria. The PS3 complex catalyzes reduction of cytochrome c with various quinol compounds in the presence of P-lipids and menaquinone. The turnover number at pH 6.8 was about 5 s-1 at 40 degrees C and 50 s-1 at 60 degrees C. The enzyme is heat-stable up to 65 degrees C.  相似文献   

4.
Pyruvate formate-lyase-activating enzyme (PFL-AE) from Escherichia coli (E. coli) catalyzes the stereospecific abstraction of a hydrogen atom from Gly734 of pyruvate formate-lyase (PFL) in a reaction that is strictly dependent on the cosubstrate S-adenosyl-l-methionine (AdoMet). Although PFL-AE is an iron-dependent enzyme, isolation of the enzyme with its metal center intact has proven difficult due to the oxygen sensitivity and lability of the metal center. We report here the first isolation of PFL-AE under nondenaturing, strictly anaerobic conditions. Iron and sulfide analysis as well as UV-visible, EPR, and resonance Raman data support the presence of a [3Fe-4S](+) cluster in the purified enzyme. The isolated native enzyme, but not apo-enzyme, exhibits a high specific activity (31 U/mg) in the absence of added iron, indicating that the native cluster is necessary and sufficient for enzymatic activity.  相似文献   

5.
EPR spectroscopic and chemical analyses of spinach nitrite reductase show that the enzyme contains one reducible iron-sulfur center, and one site for binding either cyanide or nitrite, per siroheme. The heme is nearly all in the high spin ferric state in the enzyme as isolated. The extinction coefficient of the enzyme has been revised to E386 = 7.6 X 10(4) cm-1 (M heme)-1. The iron-sulfur center is reduced with difficulty by agents such as reduced methyl viologen (equilibrated with 1 atm of H2 at pH 7.7 in the presence of hydrogenase) or dithionite. Complexation of the enzyme with CO (a known ligand for nitrite reductase heme) markedly increases the reducibility of the iron-sulfur center. New chemical analyses and reinterpretation of previous data show that the enzyme contains 6 mol of iron and 4 mol of acid-labile S2-/mol of siroheme. The EPR spectrum of reduced nitrite reductase in 80% dimethyl sulfoxide establishes clearly that the enzyme contains a tetranuclear iron-sulfur (Fe4S4) center. The ferriheme and Fe4S4 centers are reduced at similar rates (k = 3 to 4 s-1) by dithionite. The dithionite-reduced Fe4S4 center is rapidly (k = 100 s-1) reoxidized by nitrite. These results indicate a role for the Fe4S4 center in catalysis.  相似文献   

6.
Ribonucleotide reductases from Escherichia coli and from mammalian cells are heterodimeric enzymes. One of the subunits, in the bacterial enzyme protein B2 and in the mammalian enzyme protein M2, contains iron and a tyrosyl free radical that both are essential for enzyme activity. The iron center in protein B2 is an antiferromagnetically coupled pair of high-spin ferric ions. This study concerns magnetic interaction between the tyrosyl radical and the iron center in the two proteins. Studies of the temperature dependence of electron paramagnetic resonance (EPR) relaxation and line shape reveal significant differences between the free radicals in proteins B2 and M2. The observed temperature-dependent enhanced EPR relaxation and line broadening of the enzyme radicals are furthermore completely different from those of a model UV-induced free radical in tyrosine. The results are discussed in terms of magnetic dipolar as well as exchange interactions between the free radical and the iron center in both proteins. The free radical and the iron center are thus close enough in space to exhibit magnetic interaction. For protein M2 the effects are more pronounced than for protein B2, indicating a stronger magnetic interaction.  相似文献   

7.
Cysteine dioxygenase (CDO) utilizes a 3-His facial triad for coordination of its metal center. Recombinant CDO present in cellular lysate exists primarily in the ferrous form and exhibits significant catalytic activity. Removal of CDO from the reducing cellular environment during purification results in the loss of bound iron and oxidation of greater than 99% of the remaining metal centers. The as-isolated recombinant enzyme has comparable activity as the background level of L-cysteine oxidation confirming that CDO is inactive under the aerobic conditions required for catalysis. Including exogenous ferrous iron in assays resulted in non-enzymatic product formation; however, addition of an external reductant in assays of the purified protein resulted in the recovery of CDO activity. EPR spectroscopy of CDO in the presence of a reductant confirms that the recovered activity is consistent with reduction of iron to the ferrous form. The as-isolated enzyme in the presence of L-cysteine was nearly unreactive with the dioxygen analog, but had increased affinity when pre-incubated with an external reductant. These studies shed light on the discrepancies among reported kinetic parameters for CDO and also juxtapose the stability of the 3-His and 2-His/1-carboxylate ferrous enzymes in the presence of dioxygen.  相似文献   

8.
Purified spinach nitrite reductase, a protein that contains siroheme, is characterized by absorption maxima in the visible region at 385 and 573 nm. On addition of the substrate nitrite, the bands shift to 360 and 570 nm. Dithionite also causes shifts in the maxima of the visible absorption region. Electron paramagnetic resonance studies show that the untreated enzyme contains a high-spin Fe3+ heme and that the addition of cyanide, an inhibitor that is competitive with nitrite, results in a spin-state change of the heme. Electron paramagnetic resonance analysis of the enzyme in the presence of dithionite or dithionite plus cyanide indicates the presence of a reduced iron-sulfur center with rhombic symmetry (g-values of 2.03, 1.94, and 1.91). In contrast, when the enzyme is treated with dithionite plus nitrite, the EPR spectrum of an NO-heme complex (g-values of 2.07 and 2.00) is observed. The presence of an iron-sulfur center has also been confirmed by chemical analyses of the nonheme iron and acid-labile sulfide in nitrite reductase. These results are discussed in terms of a mechanism for nitrite reduction that involves electron transfer between the iron-sulfur center and siroheme.  相似文献   

9.
The lower molecular weight (35 kDa) acid phosphatase from the frog (Rana esculenta) liver is a glycometalloenzyme susceptible to activation by reducing agents and displaying tartrate and fluoride resistance. Metal chelators (EDTA, 1,10-phenanthroline) inactivate the enzyme reversibly in a time- and temperature-dependent manner. The apoenzyme is reactivated by divalent transition metal cations, i. e. cobalt, zinc, ferrous, manganese, cadmium and nickel to 130%, 75%, 63%, 62%, 55% and 34% of the original activity, respectively. Magnesium, calcium, cupric and ferric ions were shown to be ineffective in this process. Metal analysis by the emission spectrometry method (inductively coupled plasma-atomic emission spectrometry) revealed the presence of zinc, iron and magnesium. The time course of the apoenzyme reactivation, the stabilization effect and the relatively high resistance to oxidizing conditions indicate that the zinc ion is crucial for the enzyme activity. The presence of iron was additionally confirmed by the visible absorption spectrum of the enzyme with a shoulder at 417 nm and by the electron paramagnetic resonance line of high spin iron(III) with geff of 2.4. The active center containing only zinc or both zinc and iron ions is proposed. The frog liver lower molecular weight acid phosphatase is a novel metallophosphatase of lower vertebrate origin, distinct from the mammalian tartrate-resistant, purple acid phosphatases.  相似文献   

10.
Superoxide reductase (SOR) is a superoxide detoxification system present in some microorganisms. Its active site consists of an unusual mononuclear iron center with an FeN4S1 coordination which catalyzes the one-electron reduction of superoxide to form hydrogen peroxide. Different classes of SORs have been described depending on the presence of an additional rubredoxin-like, desulforedoxin iron center, whose function has remained unknown until now. In this work, we investigated the mechanism of the reduction of the SOR iron active site using the NADPH:flavodoxin oxidoreductase from Escherichia coli, which was previously shown to efficiently transfer electrons to the Desulfoarculus baarsii SOR. When present, the additional rubredoxin-like iron center could function as an electronic relay between cellular reductases and the iron active site for superoxide reduction. This electron transfer was mainly intermolecular, between the rubredoxin-like iron center of one SOR and the iron active site of another SOR. These data provide the first experimental evidence for a possible role of the rubredoxin-like iron center in the superoxide detoxifying activity of SOR.  相似文献   

11.
D-Altronate hydratase and D-mannonate hydratase belong to a class of Fe2+-requiring enzymes, but the function of iron in these enzymes is largely unknown. Methods are described for the convenient preparation of both these hydratases from Escherichia coli and studies related to metal activation are presented. The enzymes are inactive in the absence of a bivalent metal and a reducing agent such as dithiothreitol. Fe2+ at low concentrations activates the enzymes efficiently, but inhibits them over 2 mM. Furthermore Mn2+ is also capable of activating aldonic acid hydratases and appears to be a constituent of the enzyme active center. A marked synergistic activation is observed in the presence of both ions, raising the possibility that the enzyme has two binding sites for ions. Upon activation, the two aldonic acid hydratases incorporate a single Fe atom and contain no Fe-S core, in contrast to other characterized Fe-hydratases, such as aconitase or maleic acid hydratase. The incorporated iron is losely bound (with Kd about 4.5 mM and 20 mM for mannonate and altronate hydratase, respectively) and can be readily removed with EDTA. The enzymes exhibit no requirement for sulphide ions and are insensitive to thiol reagents. A first-order inhibition is observed with iron chelators and can be removed by competition with excess metal ions. No change in the absorption spectra is observed upon oxidation-reduction or activation with metals. The activated enzymes exhibit no electron paramagnetic (EPR) spectrum under anaerobic conditions; in the presence of oxygen, an intense EPR spectrum develops in Fe2+-activated samples with signal at g = 1.98, which upon reaction of the enzyme with the substrate moves into a species with signals at g = 4.15 and g = 9.07, with EPR parameters very similar to those of oxidized rubredoxins.  相似文献   

12.
Various metals have been shown to inhibit porcine brain lipoamidase activity at 0.1 mM, but not ferrous and ferric ions. However, in the presence of ethylenediamine tetraacetic acid (EDTA) 0.1 mM iron ions did inhibit the activity. No other metals exhibited this type of increased inhibition with the addition of EDTA. The ferric- and ferrous-EDTA compounds were equally effective. Various Fe-containing compounds also inhibited the enzyme activity, the order of inhibition being: EDTA greater than o-phenanthroline greater than azide greater than citrate. Hemin also inhibited the enzyme activity strongly. However, Fe-proteins, e.g. cytochrome c, transferrin and peroxidases, were not inhibitory. These results indicate the importance of Fe ion chelates with structural and molecular size differences for interaction with the reaction center of this enzyme.  相似文献   

13.
The protein components of the 2-nitrotoluene (2NT) and nitrobenzene dioxygenase enzyme systems from Acidovorax sp. strain JS42 and Comamonas sp. strain JS765, respectively, were purified and characterized. These enzymes catalyze the initial step in the degradation of 2-nitrotoluene and nitrobenzene. The identical shared reductase and ferredoxin components were monomers of 35 and 11.5 kDa, respectively. The reductase component contained 1.86 g-atoms iron, 2.01 g-atoms sulfur, and one molecule of flavin adenine dinucleotide per monomer. Spectral properties of the reductase indicated the presence of a plant-type [2Fe-2S] center and a flavin. The reductase catalyzed the reduction of cytochrome c, ferricyanide, and 2,6-dichlorophenol indophenol. The ferredoxin contained 2.20 g-atoms iron and 1.99 g-atoms sulfur per monomer and had spectral properties indicative of a Rieske [2Fe-2S] center. The ferredoxin component could be effectively replaced by the ferredoxin from the Pseudomonas sp. strain NCIB 9816-4 naphthalene dioxygenase system but not by that from the Burkholderia sp. strain LB400 biphenyl or Pseudomonas putida F1 toluene dioxygenase system. The oxygenases from the 2-nitrotoluene and nitrobenzene dioxygenase systems each had spectral properties indicating the presence of a Rieske [2Fe-2S] center, and the subunit composition of each oxygenase was an alpha(3)beta(3) hexamer. The apparent K(m) of 2-nitrotoluene dioxygenase for 2NT was 20 muM, and that for naphthalene was 121 muM. The specificity constants were 7.0 muM(-1) min(-1) for 2NT and 1.2 muM(-1) min(-1) for naphthalene, indicating that the enzyme is more efficient with 2NT as a substrate. Diffraction-quality crystals of the two oxygenases were obtained.  相似文献   

14.
All organisms utilize ferrochelatase (EC 4.99.1.1) to catalyze the insertion of ferrous iron into protoposphyrin IX in the terminal step of the heme biosynthetic pathway. Different metal-binding affinity for the enzyme leads to changes in enzyme activity. In this work, we have cloned and over-expressed the enzyme from chironomidae in E. coli. The enzyme was purified and characterized. The recombinant enzyme showed higher enzymatic activity (four-fold increase) in the presence of copper ions and unaffected by calcium ions. Other divalent metal ions including magnesium, manganese, lead, reduced the enzyme activity by >60%. Over 90% of the enzyme activity was inhibited by Zn2+. The sequence alignment of amino acid residues reveals 83% homology with other ferrochelatases. The results of electron proton resonance (EPR) analysis showed that Fe2+ ion was present in the cluster of the recombinant enzyme complex. The recombinant enzyme also contained the [2Fe-2S] center with two-fold higher enzymatic activity than human ferrochelatase.  相似文献   

15.
The Rieske dioxygenase, anthranilate 1,2-dioxygenase, catalyzes the 1,2-dihydroxylation of anthranilate (2-aminobenzoate). As in all characterized Rieske dioxygenases, the catalytic conversion to the diol occurs within the dioxygenase component, AntAB, at a mononuclear iron site which accepts electrons from a proximal Rieske [2Fe-2S] center. In the related naphthalene dioxygenase (NDO), a conserved aspartate residue lies between the mononuclear and Rieske iron centers, and is hydrogen-bonded to a histidine ligand of the Rieske center. Engineered substitutions of this aspartate residue led to complete inactivation, which was proposed to arise from elimination of a productive intersite electron transfer pathway [Parales, R. E., Parales, J. V., and Gibson, D. T. (1999) J. Bacteriol. 181, 1831-1837]. Substitutions of the corresponding aspartate, D218, in AntAB with alanine, asparagine, or glutamate also resulted in enzymes that were completely inactive over a wide pH range despite retention of the hexameric quaternary structure and iron center occupancy. The Rieske center reduction potential of this variant was measured to be approximately 100 mV more negative than that for the wild-type enzyme at neutral pH. The wild-type AntAB became completely inactive at pH 9 and exhibited an altered Rieske center absorption spectrum which resembled that of the D218 variants at neutral pH. These results support a role for this aspartate in maintaining the protonated state and reduction potential of the Rieske center. Both the wild-type and D218A variant AntABs exhibited substrate-dependent rapid phases of Rieske center oxidations in stopped-flow time courses. This observation does not support a role for this aspartate in a facile intersite electron transfer pathway or in productive substrate gating of the Rieske center reduction potential. However, since the single turnovers resulted in anthranilate dihydroxylation by the wild-type enzyme but not by the D218A variant, this aspartate must also play a crucial role in substrate dihydroxylation at or near the mononuclear iron site.  相似文献   

16.
[Fe]-hydrogenase is one of three types of enzymes known to activate H2. Crystal structure analysis recently revealed that its active site iron is ligated square-pyramidally by Cys176-sulfur, two CO, an “unknown” ligand and the sp2-hybridized nitrogen of a unique iron-guanylylpyridinol-cofactor. We report here on the structure of the C176A mutated enzyme crystallized in the presence of dithiothreitol (DTT). It suggests an iron center octahedrally coordinated by one DTT-sulfur and one DTT-oxygen, two CO, the 2-pyridinol’s nitrogen and the 2-pyridinol’s 6-formylmethyl group in an acyl-iron ligation. This result led to a re-interpretation of the iron ligation in the wild-type.  相似文献   

17.
Use of a revised purification procedure that maintains the enzyme in a high-salt environment has resulted in the isolation of a new form of the bovine spleen purple acid phosphatase. This enzyme cannot be distinguished from that previously described [Davis, J. C., Lin, S. S., & Averill, B. A. (1981) Biochemistry 20, 4062] by electrophoresis, isoelectric focusing, Western blot analysis, or N-terminal amino acid sequence and exhibits identical catalytic properties and EPR spectra in the reduced (pink) form. It does, however, possess a much more highly ordered structure as shown by CD spectra and exhibits markedly different reactivity upon oxidation and different visible spectra upon binding of inhibitory anions or changing pH. The properties of the new high-salt-stabilized form of the enzyme have permitted an extensive examination of the visible absorption spectra of complexes of the oxidized and reduced enzyme with inhibitory anions. It is found that these anions may be grouped into three classes on the basis of their effect on the visible absorption maximum and their sensitivity to pH: phosphate, arsenate, and AMP; tungstate and molybdate; and fluoride. This grouping is reinforced by a detailed examination of the steady-state kinetics of the enzyme in the presence of these inhibitors, which reveals that the first class exhibits mixed-type inhibition due to the presence of competitive and noncompetitive binding sites, while the second class exhibits simple non-competitive inhibition. Fluoride exhibits complex inhibition behavior characterized by curved Lineweaver-Burk plots; this behavior cannot be attributed to the presence of inhibitory aluminum fluoride complexes. Taken together, the spectral and kinetics data are consistent with a picture in which tetrahedral oxyanions bind in a noncompetitive fashion by bridging the two iron atoms in the dinuclear center, with the smaller anions also being able to bind in a competitive manner at a single iron atom.  相似文献   

18.
The resonance Raman spectrum of protein B2 of ribonucleotide reductase from Escherichia coli shows several features to its oxo-bridged binuclear iron center. A peak at 492 cm-1 is assigned to the symmetric stretch of the Fe-O-Fe moiety on the basis of its 13-cm-1 shift to lower energy upon 18O substitution. The 18O species shows an additional peak at 731 cm-1, which is a good candidate for the asymmetric stretch of the Fe-O-Fe moiety. Its exact location in the 16O species is obscured by the presence of a protein tryptophan vibration at 758 cm-1. A third resonance-enhanced peak at 598 cm-1 is identified as an Fe-OH vibration on the basis of its 24-cm-1 shift to lower energy in H2 18O, its 2-cm-1 shift to lower energy in D2O, and its pH-dependent intensity. A hydrogen-bonded mu-oxo bridge similar to that in hemerythrin is suggested by the unusually low frequency for the Fe-O-Fe symmetric stretch and the 3-cm-1 shift to higher energy of vs(Fe-O-Fe) in D2O. From the oxygen isotope dependence of vs(Fe-O-Fe), an Fe-O-Fe angle of 138 degrees can be calculated. This small angle suggests that the iron center consists of a tribridged core as in hemerythrin. A model for the binuclear iron center of ribonucleotide reductase is presented in which the hydroxide ligand sites provide an explanation for the half-of-sites reactivity of the enzyme.  相似文献   

19.
Cytochrome P450 BM-3 from Bacillus megaterium is an extensively studied enzyme for industrial applications. A major focus of current protein engineering research is directed to improving the catalytic performance of P450 BM-3 toward nonnatural substrates of industrial importance in the presence of organic solvents or cosolvents. For the latter reason, it is important to study the effect of organic cosolvent molecules on the structure and dynamics of the enzyme, in particular, the effect of cosolvent molecules on the active site's structure and dynamics. In this paper, we have studied, using molecular dynamics (MD) simulations, the F87A mutant of P450 BM-3 in the presence of DMSO as cosolvent, to understand the role of the F87A substitution for its catalytic activity. This mutant exhibits an altered regioselectivity and substrate specificity compared with wild-type; however, it has lower tolerance toward DMSO. The simulation results offer an explanation for the DMSO sensitivity of the F87A mutant. Our simulation results show that the F87 side chain prevents the disturbance of the water molecule bound to the heme iron by DMSO molecules. The absence of the phenyl ring in F87A mutant promotes interactions of the DMSO molecule with the heme iron resulting in water displacement by DMSO at the catalytic heme center.  相似文献   

20.
The purification and initial characterization of arsenite oxidase from Alcaligenes faecalis are described. The enzyme consists of a monomer of 85 kDa containing one molybdenum, five or six irons, and inorganic sulfide. In the presence of denaturants arsenite oxidase releases a fluorescent material with spectral properties identical to the pterin cofactor released by the hydroxylase class of molybdenum-containing enzymes. Azurin and a c-type cytochrome, both isolated from A. faecalis, each serves as an electron acceptor to arsenite oxidase and may form a periplasmic electron transfer pathway for arsenite detoxification. Full reduction of arsenite oxidase requires 3-4 reducing equivalents, using either arsenite or dithionite as the electron source. Below 20 K, oxidized arsenite oxidase exhibits an EPR signal with g values of 2.03, 2.01, and 2.00, which integrates to approximately 0.4 spins/protein. Since enrichment in 57Fe results in broadening of this EPR signal, the center giving rise to this signal must contain iron. The most plausible candidates are a [4Fe-4S] high potential iron protein center or a [3Fe-4S] center. The EPR signal observed in oxidized arsenite oxidase disappears upon reduction of the protein with either arsenite or dithionite. Concomitantly, a rhombic EPR signal (g = 2.03, 1.89, 1.76) appears which is similar to that of Rieske-type [2Fe-2S] clusters and spin quantifies to one spin/protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号