首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
We analyse patterns of genetic diversity and song complexity in the Palaearctic yellow wagtail (Motacilla flava), a highly polytypic species complex. Mitochondrial and nuclear DNA show that the complex is polyphyletic, despite parallel plumage variation in western and eastern clades. In the western clade there is genetic structure among southern subspecies, haplotype diversity decreases with latitude, and northern subspecies show evidence of bottlenecking and rapid expansions, as expected from isolation in glacial refugia followed by postglacial colonization. However, northern subspecies, which have more divergent male plumages, lack genetic structure and sing simpler songs. Loss of song complexity and evolution of plumage in founder populations are consistent with the Kaneshiro model, which posits that variation among species is a consequence of founder-induced shifts in female preference leading to loss of ancestral male sexual traits. Our results suggest possible postglacial founder-effect mechanisms for the morhological diversification of the yellow wagtail complex.  相似文献   

2.
We sequenced 1077 bp of the mitochondrial cytochrome b gene and 511 bp of the nuclear Apolipoprotein B gene in bicoloured shrew (Crocidura leucodon, Soricidae) populations ranging from France to Georgia. The aims of the study were to identify the main genetic clades within this species and the influence of Pleistocene climatic variations on the respective clades. The mitochondrial analyses revealed a European clade distributed from France eastwards to north-western Turkey and a Near East clade distributed from Georgia to Romania; the two clades separated during the Middle Pleistocene. We clearly identified a population expansion after a bottleneck for the European clade based on mitochondrial and nuclear sequencing data; this expansion was not observed for the eastern clade. We hypothesize that the western population was confined to a small Italo-Balkanic refugium, whereas the eastern population subsisted in several refugia along the southern coast of the Black Sea.  相似文献   

3.
In this paper, we performed phylogenetic analyses of Mesotriton alpestris populations from the entire range of species distribution, using fragments of two mtDNA genes, cytochrome b (309bp) and 16S rRNA ( approximately 500bp). Sequence diversity patterns and phylogenetic analyses reveal the existence of a relict lineage (Clade A) of late Miocene origin, comprising populations from south-eastern Serbia. This lineage is proposed to be ancestor to a western and an eastern lineage, which diverged during the middle Pliocene. The western lineage is further divided in two clades (Clades B, C) of middle Pliocene origin that represent populations from Italy (B) and populations from central Europe and Iberia (C). Further subdivision, dated back to the middle-late Pliocene, was found within the eastern lineage, representing southern (Clade D) and central-northern (Clade E) Balkan populations, respectively. Extensive sequence divergence, implying greater isolation in multiple refugia, is found within eastern clades, while the western clades seem to have been involved in the colonization of central, western and north-eastern Europe from a hypothetical refugium in central Europe. The extent of divergence does not support the current taxonomy indicating cryptic speciation in the Balkans, while paedomorphic lineages were found to have been evolved during early-middle Pleistocene probably as a response to the ongoing dramatic climatic oscillations.  相似文献   

4.
Brito PH 《Molecular ecology》2005,14(10):3077-3094
The glacial refugia hypothesis indicates that during the height of the Pleistocene glaciations the temperate species that are today widespread in western Europe must have survived in small and climatically favourable areas located in the southern peninsulas of Iberia, Italy and Balkans. One such species is the tawny owl, a relatively sedentary, nonmigratory bird presently distributed throughout Europe. It is a tree-nesting species closely associated with deciduous and mixed coniferous woodlands. In this study I used control region mtDNA sequences from 187 individuals distributed among 14 populations to determine whether current genetic patterns in tawny owl populations were consistent with postglacial expansion from peninsular refugia. European, North African and Asian tawny owls were found to represent three distinct lineages, where North Africa is the sister clade to all European owls. Within Europe, I found three well-supported clades that correspond to each of the three allopatric refugia. Expansion patterns indicate that owls from the Balkan refugium repopulated most of northern Europe, while expansion out of Iberia and Italy had only regional effects leading to admixture in France. Estimates of population divergence times between refugia populations are roughly similar, but one order of magnitude smaller between Greece and northern Europe. Based on a wide range of mutation rates and generation times, divergence between refugia appears to date to the Pleistocene.  相似文献   

5.
We present a range-wide synthesis of our own research and related work on the complex postglacial history of Abies alba Mill. It is based on macroremains, fossil pollen records as well as on different genetic markers. The geographic distribution of genetic lineages and allele frequencies together with the fossil records confirm multiple refugia with at least three of them being sources for the Holocene range expansion into Central Europe, representing so-called effective refugia. One is located in the northern Apennines. A long-term refugium in the southern Balkans contributes to northward expansion with a branch along the Carpathians in the East and the Dinaric Alps in the West. Furthermore, new allozyme data indicate a third effective refugium in the northern or western Balkans, respectively. Using different genetic marker categories the differentiation of A. alba populations could be attributed to different time scales. A separation of maternal lineages took place in previous glacial cycles of the Quaternary, while a second pattern of genetic differentiation is the result of isolation processes during the last glaciation and subsequent gene flow after range expansion. Suture and introgression zones of refugial gene pools were clearly recognised. The patterns of genetic variation and genetic diversity spanning between rear and leading edges of the present range are discussed for evolutionary implications and conservation strategies.  相似文献   

6.
The phylogeographic structures of taiga species often support the hypothesis of East Palaearctic refugia for these taxa, but the phylogeographic structures of northern temperate and southern boreal bog species are still poorly understood. Therefore, we analysed the genetic diversity and differentiation of a stenotopic damselfly, Nehalennia speciosa, across its trans‐Palaearctic range by means of sequencing two mitochondrial gene fragments, 16S rRNA‐ND1 and cytochrome c oxidase II. Only four single nucleotide polymorphisms were detected over the 1130 sequenced nucleotides. This low genetic diversity and differentiation and thus the lack of phylogeographic structure imply postglacial expansion from a single Würm Ice Age refugium, most likely located in the Far East of Asia, i.e. Manchurian refugium. From here, the species could have colonized large parts of the Palaearctics, including Europe, during the postglacial.  相似文献   

7.
Grass snakes (Natrix natrix) represent one of the most widely distributed snake species of the Palaearctic region, ranging from the North African Maghreb region and the Iberian Peninsula through most of Europe and western Asia eastward to the region of Lake Baikal in Central Asia. Within N. natrix, up to 14 distinct subspecies are regarded as valid. In addition, some authors recognize big‐headed grass snakes from western Transcaucasia as a distinct species, N. megalocephala. Based on phylogenetic analyses of a 1984‐bp‐long alignment of mtDNA sequences (ND4+tRNAs, cyt b) of 410 grass snakes, a nearly range‐wide phylogeography is presented for both species. Within N. natrix, 16 terminal mitochondrial clades were identified, most of which conflict with morphologically defined subspecies. These 16 clades correspond to three more inclusive clades from (i) the Iberian Peninsula plus North Africa, (ii) East Europe and Asia and (iii) West Europe including Corso‐Sardinia, the Apennine Peninsula and Sicily. Hypotheses regarding glacial refugia and postglacial range expansions are presented. Refugia were most likely located in each of the southern European peninsulas, Corso‐Sardinia, North Africa, Anatolia and the neighbouring Near and Middle East, where the greatest extant genetic diversity occurs. Multiple distinct microrefugia are inferred for continental Italy plus Sicily, the Balkan Peninsula, Anatolia and the Near and Middle East. Holocene range expansions led to the colonization of more northerly regions and the formation of secondary contact zones. Western Europe was invaded from a refuge within southern France, while Central Europe was reached by two distinct range expansions from the Balkan Peninsula. In Central Europe, there are two contact zones of three distinct mitochondrial clades, and one of these contact zones was theretofore completely unknown. Another contact zone is hypothesized for Eastern Europe, which was colonized, like north‐western Asia, from the Caucasus region. Further contact zones were identified for southern Italy, the Balkans and Transcaucasia. In agreement with previous studies using morphological characters and allozymes, there is no evidence for the distinctiveness of N. megalocephala. Therefore, N. megalocephala is synonymized with N. natrix.  相似文献   

8.
To test the hypothesis that host-switching can be an important step in the speciation of gyrodactylid monogenean flatworms, we inferred the phylogeny within a cluster of parasites morphologically close to Gyrodactylus salaris Malmberg 1957, collected from Atlantic, Baltic and White Sea salmon (Salmo salar), farmed rainbow trout (Oncorhynchus mykiss), and grayling (Thymallus thymallus) from Northern Europe. The internal transcribed spacer region of the nuclear ribosomal gene was sequenced for taxonomic identification. Parasites on grayling from the White Sea Basin differed from the others by one nucleotide (0.08%), the remainder were identical to the sequence published earlier from Norway (G. salaris on salmon), England (Gyrodactylus thymalli on grayling), and the Czech Republic (unidentified salaris/thymalli on trout). For increased resolution, 813 nucleotides of the mitochondrial COI gene of 88 parasites were sequenced and compared with 76 published sequences using phylogenetic analysis. For all tree building algorithms (NJ, MP), the parasites formed a star-like phylogeny of six definite sister clades, indicating nearly simultaneous radiation. Average K2P distances between clades were 1.8-2.6%, and internal mean distances 0.2-1.1%. The genetic distance to the nearest known relative, Gyrodactylus lavareti Malmberg, was 24%. A variable salmon-specific mitochondrial Clade I was observed both in the Baltic Basin and in pathogenic populations introduced to the Atlantic and White Sea coasts. An invariable Clade II was common in rainbow trout farms in Sweden, Denmark and Finland; the same haplotype was also infecting salmon in a landlocked population in Russian Karelia, and in Oslo fjord and Sognefjord in Norway. Four geographically vicariant sister clades were observed on graylings: Clade III in the Baltic Sea Basin; Clade IV in Karelian rivers draining to the White Sea; Clade V in Norwegian river draining to Swedish lake V?nern; and Clade VI in rivers draining to Oslo fjord. The pattern fitted perfectly with the postglacial history of grayling distribution. Widely sampled clades from salmon and Baltic grayling had basal haplotypes in populations, which were isolated early during the postglacial recolonisation. The divergence between the six clades was clear and linked with their hosts, but not wide enough to support a species status for them. Parasites from the Slovakian type population of G. thymalli were not available, so this result does not mean that G. salaris and G. thymalli are synonyms. It is suggested that the plesiomorphic host of the parasite cluster was grayling, and the switch to salmon occurred at least once when the continental ice isolated Baltic salmon in an eastern freshwater refugium, 130,000 years ago. At the same time, parasites on grayling were split geographically and isolated into several allopatric refugia. The divergence among the parasite clades allowed a tentative calibration of the evolutionary rate, leading to an estimate of the divergence of 13.7-20.3% per million years for COI coding mtDNA. The results supported the hypothesis that parallel to the allopatric mode, host switch and instant isolation by host specificity can be operated as a speciation mechanism.  相似文献   

9.
Despite not having been fully recognized, the cryptic northern refugia of temperate forest vegetation in Central and Western Europe are one of the most important in the Holocene history of the vegetation on the subcontinent. We have studied a forest grass Bromus benekenii in 39 populations in Central, Western and Southern Europe with the use of PCR-ISSR fingerprinting. The indices of genetic population diversity, multivariate, and Bayesian analyses, supplemented with species distribution modelling have enabled at least three putative cryptic northern refugial areas to be recognized: in Western Europe—the Central and Rhenish Massifs, in Central Europe—the Bohemia–Moravia region and in the Eastern/Western Carpathians. Central Poland is the regional genetic melting-pot where several migratory routes might have met. Southern Poland had a different postglacial history and was under the influence of an Eastern/Western Carpathian cryptic refugium. More forest species should be checked in a west–east gradient in Europe to corroborate the hypothesis on the Western European glacial refugia.  相似文献   

10.
The Pleistocene was an epoch of extreme climatic and environmental changes. How individual species responded to the repeated cycles of warm and cold stages is a major topic of debate. For the European fauna and flora, an expansion–contraction model has been suggested, whereby temperate species were restricted to southern refugia during glacial times and expanded northwards during interglacials, including the present interglacial (Holocene). Here, we test this model on the red deer (Cervus elaphus) a large and highly mobile herbivore, using both modern and ancient mitochondrial DNA from the entire European range of the species over the last c. 40 000 years. Our results indicate that this species was sensitive to the effects of climate change. Prior to the Last Glacial Maximum (LGM) haplogroups restricted today to South‐East Europe and Western Asia reached as far west as the UK. During the LGM, red deer was mainly restricted to southern refugia, in Iberia, the Balkans and possibly in Italy and South‐Western Asia. At the end of the LGM, red deer expanded from the Iberian refugium, to Central and Northern Europe, including the UK, Belgium, Scandinavia, Germany, Poland and Belarus. Ancient DNA data cannot rule out refugial survival of red deer in North‐West Europe through the LGM. Had such deer survived, though, they were replaced by deer migrating from Iberia at the end of the glacial. The Balkans served as a separate LGM refugium and were probably connected to Western Asia with genetic exchange between the two areas.  相似文献   

11.
A substantial portion of today’s biodiversity is attributed to the climatic oscillations of the Pleistocene Ice Ages. Gradual but dramatic climate changes were accompanied by expansion, contraction, and isolation of populations, promoting the accumulation of genome differences and adaptations in refugial populations and resulting in allopatric differentiation in a variety of taxa. In the present study, partial mitochondrial DNA sequences of the widely distributed European brown hare (Lepus europaeus) were analyzed to test whether the species’ present genetic structure is the result of postglacial re-colonization of Europe from Asia Minor (clade A) and the Balkans (clade B) only, as suggested previously, or if additional refugia are likely. Analyses indicated the presence of an additional refugium (Italy, clade I). The genealogic network of Italian hares displayed the tree-like structure expected from refugial populations, whereas central European brown hare haplotypes revealed a clear star-phylogeny indicative of past-bottleneck population growth. This population size expansion, which was confirmed by mismatch analysis, was estimated to have occurred ∼50–55 thousand years ago (kya). The divergence of clade A* from the remaining matrilines is estimated at 239 kya, whereas the divergence of the ancestors of clades B* and I from A* occurred about 128 kya. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
We sequenced 704 mitochondrial DNA (mtDNA) control-region nucleotides and genotyped 11 autosomal microsatellites (STR) in 617 European roe deer (Capreolus capreolus) samples, aiming to infer the species' phylogeographical structure. The mtDNA sequences were split in three distinct haplogroups, respectively, named: Clade West, sampled mainly in Iberia; Clade East, sampled mainly in Greece and in the Balkans; and Clade Central, which was widespread throughout Europe, including the eastern countries and Iberia, but not Greece. These clades might have originated in distinct Iberian and Balkanic refuges during the penultimate or the last glaciations. Clades East and West contributed little to the current postglacial mtDNA diversity in central Europe, which apparently was recolonized mainly by haplotypes belonging to Clade Central. A unique subclade within Clade Central grouped all the haplotypes sampled from populations of the Italian subspecies C. c. italicus. In contrast, haplotypes sampled in central and southern Spain joined both Clade Central and Clade West, suggesting that subspecies C. c. garganta has admixed origin. STR data support a genetic distinction of peripheral populations in north Iberia and southern Italy, and show the effects of anthropogenic disturbance in fragmented populations, which were recently reintroduced or restocked and not may be in mutation-drift equilibrium. Roe deer in central Europe are mainly admixed, while peripheral populations in north Portugal, the southern Italian Apennines and Greece represent the remains of refugial populations and should be managed accordingly.  相似文献   

13.
Aim  Middle East brown bears ( Ursus arctos syriacus Hemprich and Ehrenberg, 1828) are presently on the edge of extinction. However, little is known of their genetic diversity. This study investigates that question as well as that of Middle East brown bear relationships to surrounding populations of the species.
Location  Middle East region of south-western Asia.
Methods  We performed DNA analyses on 27 brown bear individuals. Twenty ancient bone samples (Late Pleistocene to 20th century) from natural populations and seven present-day samples obtained from captive individuals were analysed.
Results  Phylogenetic analyses of the mitochondrial sequences obtained from seven ancient specimens identify three distinct maternal clades, all unrelated to one recently described from North Africa. Brown bears from Iran exhibit striking diversity (three individuals, three haplotypes) and form a unique clade that cannot be linked to any extant one. Individuals from Syria belong to the Holarctic clade now observed in Eastern Europe, Turkey, Japan and North America. Specimens from Lebanon surprisingly appear as tightly linked to the clade of brown bears now in Western Europe. Moreover, we show that U. a. syriacus in captivity still harbour haplotypes closely linked to those found in ancient individuals.
Main conclusion  This study brings important new information on the genetic diversity of brown bear populations at the crossroads of Europe, Asia and Africa. It reveals a high level of diversity in Middle East brown bears and extends the historical distribution of the Western European clade to the East. Our analyses also suggest the value of a specific breeding programme for captive populations.  相似文献   

14.
Aim This study aims to elucidate the phylogeography of the murid rodent Praomys misonnei and to document whether or not rain forest refugia and rivers structure patterns of diversity within this species. Location Tropical Africa, from Ghana to Kenya. Methods Patterns of genetic structure and signatures of population history (cytochrome b gene) were assessed in a survey of 229 individuals from 54 localities. Using maximum likelihood, Bayesian, network and genetic structure analyses, we inferred intra‐specific relationships and tested hypotheses for historical patterns of gene flow within P. misonnei. Results Our phylogenetic analyses reveal a strong phylogeographical structure. We identified four major geographical clades within P. misonnei: one clade in Ghana and Benin, a Nigerian clade, a West Central African clade and a Central and East African clade. Several subclades were identified within these four major clades. A signal of population expansion was detected in most clades or subclades. Coalescence within all of the major clades of P. misonnei occurred during the Middle Pleistocene and/or the beginning of Late Pleistocene. Main conclusions Our results suggest a role for both Pleistocene refugia and rivers in structuring genetic diversity in P. misonnei. This forest‐dwelling rodent may have been isolated in a number of forest fragments during arid periods and expanded its range during wetter periods. Potential forest refugia may have been localized in Benin–Ghana, south‐western Cameroon, southern Gabon, northern Gabon and eastern Democratic Republic of Congo–western Uganda. The Niger and/or the Cross Rivers, the Oubangui‐Congo, Sanaga, Ogooue and/or Ivindo Rivers probably stopped the re‐expansion of the species from relict areas.  相似文献   

15.
The exact location of glacial refugia and the patterns of postglacial range expansion of European mammals are not yet completely elucidated. Therefore, further detailed studies covering a large part of the Western Palearctic region are still needed. In this order, we sequenced 972 bp of the mitochondrial DNA cytochrome b (mtDNA cyt b) from 124 yellow-necked fieldmice (Apodemus flavicollis) collected from 53 European localities. The aims of the study were to answer the following questions: Did the Mediterranean peninsulas act as the main refuge for yellow-necked fieldmouse or did the species also survive in more easterly refugia (the Caucasus or the southern Ural) and in Central Europe? What is the role of Turkey and Near East regions as Quaternary glacial refuges for this species and as a source for postglacial recolonisers of the Western Palearctic region? The results provide a clear picture of the impact of the quaternary glaciations on the genetic and geographic structure of the fieldmouse. This species survived the ice ages in two main refuges, the first one in the Italo-Balkan region; the second one in Turkey and the Near East regions. It is from the Balkan refuge that it recolonised all European regions at the end of the last glaciation. The Turkish and Near East populations are distinct from the European ones and they did not recolonise the Palearctic region probably because: (i) they were blocked by the Black Sea and the Caucasus, (ii) the long term presence of fieldmice populations in the Balkans prevented their expansion. These are genetically differentiated from the European and Russian ones and could be described as a particular subspecies. This result emphasises the importance of Turkey and the Near and Middle East regions as a refuge for Palearctic mammals.  相似文献   

16.
Phylogeography can help to determine LGM refugia and postglacial migration routes. However, the locations of LGM refugial areas in eastern Europe are not clear. Moose (Alces alces) is presently a common species in central and north-eastern Europe, but there are no studies showing its phylogenetic pattern and genetic diversity across its whole continuous range. Moose never became extinct in the eastern part of its range, and the eastern mtDNA lineage has the largest effective population size. The present study shows the phylogeographic pattern and genetic diversity of European moose and compares the results of mtDNA analyses with the archaeological record of the species to identify its LGM refugia and postglacial migration routes. I combined the mtDNA control region sequences obtained in all studies of moose in Europe and western Asia. The genetic data were then compared with the archaeological records of the species dated to the LGM. I found that the European moose lineage inhabits Europe and western Asia. It is composed of two clades: the eastern and the central-western, consisting of a total of six discrete haplogroups. The most complex, the eastern clade, has the largest range. Some of the haplogroups have narrow or scattered distributions and two are common in almost the whole range. Genetic diversity hotspots were detected in contact zones of different mtDNA haplogroups rather than in the LGM refugial areas of moose. Archaeological records dated to the LGM were found in several localities in central, southern and eastern Europe as well as in western Asia. The range of the moose during the LGM was much larger than previously thought. The eastern clade survived the LGM in western Siberia, the Ural Mountains and Russian plain. LGM refugia of moose were also located in the Caucasus, Carpathians, Balkans and northern Italy.  相似文献   

17.
We sequenced 998 base pairs (bp) of mitochondrial DNA cytochrome b and 799 bp of nuclear gene BRCA1 in the Lesser white-toothed shrew (Crocidura suaveolens group) over its geographic range from Portugal to Japan. The aims of the study were to identify the main clades within the group and respective refugia resulting from Pleistocene glaciations. Analyses revealed the Asian lesser white-toothed shrew (C. shantungensis) as the basal clade, followed by a major branch of C. suaveolens, subdivided sensu stricto into six clades, which split-up in the Upper Pliocene and Lower Pleistocene (1.9-0.9 Myr). The largest clade, occurring over a huge range from east Europe to Mongolia, shows evidence of population expansion after a bottleneck. West European clades originated from Iberian and Italo-Balkanic refugia. In the Near East, three clades evolved in an apparent hotspot of refugia (west Turkey, south-west and south-east of the Caucasus). Most clades include specimens of different morphotypes and the validity of many taxa in the C. suaveolens group has to be re-evaluated.  相似文献   

18.
Schmitt T  Seitz A 《Heredity》2002,89(1):20-26
The genetic population structure of Polyommatus coridon (Poda, 1761) (Chalk-hill blue) was studied by means of allozyme electrophoresis in north-eastern Germany, the Czech Republic, Slovakia and Hungary. All analysed parameters showed high genetic diversity within populations (number of alleles: 2.61; observed and expected heterozygosity: 18.6% and 19.7%, respectively; percentage of polymorphic loci: total: 73.6%, on 95% level: 56.1%), whereas genetic differentiation between populations was comparatively low (F(ST) = 0.028 +/- 0.005 s.d.). Hierarchical variance analysis revealed significant structuring among five regional population clusters. A significant isolation-by-distance structure exists (r = 0.39; P < 0.05). The mean number of alleles per locus declined significantly from south to north and showed a strong correlation with the geographical latitude (r = -0.88, P < 0.0001). We suggest that this reflects the loss of alleles during the postglacial colonisation of eastern Central Europe from an ice-age refugium in the Balkans. A possible scenario for the postglacial expansion process in eastern Central Europe is discussed using these data: coming from the north-western part of the Balkans, P. coridon may have reached the western tip of Hungary, and consecutively colonised eastern Central Europe using two alternative expansion routes.  相似文献   

19.
There is a general perception that central and northern Europe were colonized by range expansion from Mediterranean refugia at the end of the last glaciation. Data from various species support this scenario, but we question its universality. Our mitochondrial DNA studies on three widespread species of small mammal suggest that colonization may have occurred from glacial refugia in central Europe-western Asia. The haplotypes on the Mediterranean peninsulae are distinctive from those found elsewhere. Rather than contributing to the postglacial colonization of Europe, Mediterranean populations of widespread small mammals may represent long-term isolates undergoing allopatric speciation. This could explain the high endemism of small mammals associated with the Mediterranean peninsulae.  相似文献   

20.
Patterns of common recolonization routes from glacial refugia to Central Europe during the Pleistocene are generalized to paradigms of postglacial recolonization in Europe. Recent studies indicate, however, that the actual phylogeographic history of many species might be more complex and cannot be simplified to generalized patterns. Burnet moths of the Zygaena transalpina complex represent a group of closely related taxa, which are considered as a typical example for these generalized patterns. At present, three groups are recognized that are assumed to have spread from three classical refugia in Western Europe, Italy and the Balkans to Central Europe. Here, we re‐investigate their phylogeography using a combined molecular and morphometric approach. Phylogenetic and nested clade phylogeographic analyses of 476 samples from 55 localities taken from Southern and Central Europe reveal that the Zygaena transalpina complex consists of three distinct haplotype clusters, which geographically roughly correspond to possible refugia in Western Europe, Italy and the Balkans. A synthesis of the data with a geometric morphometry dataset of 425 specimens from 46 localities corroborates this molecular result but differs in several aspects. Important new aspects are multiple refugia of the western ‘hippocrepidis’ branch and micro‐habitats within the Alps of the central ‘transalpina’ branch. Further, our results display a more complex phylogeographic pattern for this species complex, which is not tractable with a rigid, generalized pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号