首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
1,2-Diacylglycerol, protein kinase C, and pancreatic enzyme secretion   总被引:5,自引:0,他引:5  
To determine the role of 1,2-diacylglycerol (1,2-DAG) and protein kinase C in pancreatic enzyme secretion, we measured the effect of various pancreatic secretagogues on the cellular mass of 1,2-DAG and amylase release in dispersed pancreatic acini from the guinea pig. In addition, we measured the effect of a recently described protein kinase C inhibitor 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7) (Hidaka, H., Inagaki, M., Kawamoto, S., and Sasaki, Y. (1984) Biochemistry 23, 5036-5041), on secretagogue-stimulated amylase release from the acini. Cholecystokinin-octapeptide (CCK-OP), cholecystokinintetrapeptide, and carbachol each increased 1,2-DAG 2-3-fold but the increases occurred only with concentrations of these secretagogues that were supramaximal for amylase release and that had an inhibitory effect on stimulated amylase release. Supramaximal concentrations of bombesin stimulated only a small increase in 1,2-DAG and did not cause inhibition of stimulated amylase release. When the action of carbachol was terminated with atropine or CCK-OP with dibutyryl cyclic GMP, stimulated amylase release ceased immediately but cellular 1,2-DAG required at least 15 min to return to the basal level. Increasing cytosolic free Ca2+ with the Ca2+ ionophore, A23187, in Ca2+-containing incubation media augmented amylase release stimulated by 4 beta-phorbol 12-myristate 13-acetate but inhibited amylase release stimulated by CCK-OP, carbachol, and bombesin without decreasing the cellular content of 1,2-DAG. H-7 inhibited protein kinase C activity in a pancreatic homogenate but augmented amylase release from acini stimulated by either CCK-OP, carbachol, or 4 beta-phorbol 12-myristate 13-acetate. These findings indicate that 1,2-DAG and protein kinase C do not have a stimulatory role in pancreatic stimulus-secretion coupling but may have an inhibitory one.  相似文献   

2.
In dispersed acini from guinea pig pancreas cholera toxin bound reversibly to specific membrane binding sites to increase cellular cyclic AMP and amylase secretion. Cholera toxin did not alter outflux of 45Ca or cellular cyclic AMP. Binding of 125I-labeled cholera toxin could be detected within 5 min; however, cholera toxin did not increase cyclic AMP or amylase release until after 40 min of incubation. There was a close correlation between the dose vs. response curve for inhibition of binding of 125I-labeled cholera toxin by native toxin and the action of native toxin on cellular cyclic AMP. With different concentrations of cholera toxin, maximal stimulation of amylase release occurred when the increase in cellular cyclic AMP was approximately 35% of maximal. Cholera toxin did not alter the increase in 45Ca outflux or cellular cyclic GMP caused by cholecystokinin or carbachol but significantly augmented the increase in cellular cyclic AMP caused by secretin or vasoactive intestinal peptide. The increase in amylase secretion caused by cholera toxin plus secretin or vasoactive intestinal peptide was the same as that with cholera toxin alone. On the other hand, the increase in amylase secretion caused by cholera toxin plus cholecystokinin or carbachol was significantly greater than the sum of the increases caused by each agent alone.  相似文献   

3.
In dispersed acinar cells from guinea pig pancreas we found that chelating extracellular calcium with EDTA did not alter cellular cyclic GMP but caused a 50% reduction in the increase in cyclic GMP caused by the synthetic C-terminal octapeptide of porcine cholecystokinin (cholecystokinin octapeptide). This effect was maximal within 2 min and preincubating the cells with EDTA for as long as 30 min caused no further reduction in the action of cholecystokinin octapeptide. In acinar cells preincubated without calcium, adding calcium caused a time dependent increase in the action of cholecystokinin octapeptide and this increase was maximal after 10 min of incubation. An effect of extracellular calcium on the action of cholecystokinin octapeptide could be detected with 0.5 mM calcium and was maximal with 2.0 mM calcium. Magnesium alone or with calcium did not alter the action of cholecystokinin octapeptide. Extracellular calcium did not alter the time course or the configuration of the dose vs. response curve for the action of cholecystokinin octapeptide on cellular cyclic GMP. Low concentrations of EGTA (0.1 mM) decreased the effect of cholecystokinin octapeptide on cellular cyclic GMP to the same extent as did EDTA or preincubating acinar cells without calcium. Increasing EGTA above 0.1 mM caused progressive augmentation of the action of cholecystokinin octapeptide on cellular cyclic GMP and this augmentation did not require extracellular calcium or magnesium. Results similar to those obtained with cholecystokinin octapeptide were also obtained with bombesin, carbamylcholine, litorin and eledoisin. In contrast, the action of sodium nitroprusside on cyclic GMP in pancreatic acinar cells was not altered by adding EDTA or EGTA. These results indicate that the ability of extracellular calcium to influence the action of cholecystokinin octapeptide and other agents on cyclic GMP results from changes in cellular calcium and not from effects of extracellular calcium per se. The action of low concentrations of EGTA on the increase in cyclic GMP caused by various agents reflects the ability of EGTA to chelate extracellular calcium. The actions of high concentrations of EGTA were independent of extracellular calcium or magnesium and appear to reflect a direct action of EGTA on pancreatic acinar cells.  相似文献   

4.
In dispersed acinar cells from guinea pig pancreas we found that chelating extracellular calcium with EDTA did not alter cellular cyclic GMP but caused a 50% reduction in the increase in cyclic GMP caused by the synthetic C-terminal octapeptide of porcine cholecystokinin (cholecystokinin octapeptide). This effect was maximal within 2 min and preincubating the cells with EDTA for as long as 30 min caused no further reduction in the action of cholecystokinin octapeptide. In acinar cells preincubated without calcium, adding calcium caused a time dependent increase in the action of cholecystokinin octapeptide and this increase was maximal after 10 min of incubation. An effect of extracellular calcium on the action of cholecystokinin octapeptide could be detected with 0.5 mM calcium and was maximal with 2.0 mM calcium. Magnesium alone or with calcium did not alter the action of cholecystokinin octapeptide. Extracellular calcium did not alter the time course or the configuration of the dose vs. response curve for the action of cholecystokinin octapeptide on cellular cyclic GMP. Low concentrations of EGTA (0.1 mM) decreased the effect of cholecystokinin octapeptide on cellular cyclic GMP to the same extent as did EDTA or preincubating acinar cells without calcium. Increasing EGTA above 0.1 mM caused progressive augmentation of the action of cholecystokinin octapeptide on cellular cyclic GMP and this augmentation did not require extracellular calcium or magnesium. Results similar to those obtained with cholecystokinin octapeptide were also obtained with bombesin, carbamylcholine, litorin and eledoisin. In contrast, the action of sodium nitroprusside on cyclic GMP in pancreatic acinar cells was not altered by adding EDTA or EGTA.These results indicate that the ability of extracellular calcium to influence the action of cholecystokinin octapeptide and other agents on cyclic GMP results from changes in cellular calcium and not from effects of extracellular calcium per se. The action of low concentrations of EGTA on the increase in cyclic GMP caused by various agents reflects the ability of EGTA to chelate extracellular calcium. The actions of high concentrations of EGTA were independent of extracellular calcium or magnesium and appear to reflect a direct action of EGTA on pancreatic acinar cells.  相似文献   

5.
During 10-min incubation with increasing concentrations of carbamylcholine (carbachol), amylase release from dispersed rat pancreatic acini increased, became maximal at 2 X 10(-6)M and then decreased. In the concentration range of 10(-7)M to 10(-4)M, 8-(N,N-diethylamino)-octyl 3,4,5-trimethoxybenzoate hydrochloride (TMB-8) caused a dose-dependent inhibition of amylase release induced by a submaximal concentration of carbachol. No inhibitory effect was observed on basal and secretin-stimulated amylase release. TMB-8 showed a significantly greater ability of blocking the action of carbachol than verapamil and diltiazem. TMB-8 could reverse the submaximal stimulation of amylase release caused by supramaximal concentrations of carbachol to a maximal stimulation, while verapamil and diltiazem could not. These results confirm the hypothesis that mobilization of intracellular calcium is the primary step in the action of carbachol on pancreatin acinar cells and contributes to the submaximal secretory response of acinar cells induced by high concentrations of carbachol.  相似文献   

6.
Action of cholera toxin on dispersed acini from guinea pig pancreas   总被引:1,自引:0,他引:1  
In dispersed acini from guinea pig pancreas cholera toxin bound reversibly to specific membrane binding sites to increase cellular cyclic AMP and amylase secretion. Cholera toxin did not alter outflux of 45Ca or cellular cyclic AMP. Binding of 125I-labeled cholera toxin could be detected within 5 min; however, cholera toxin did not increase cyclic AMP or amylase release until after 40 min of incubation. There was a close correlation between the dose vs. response curve for inhibition of bindind of 125I-labeled cholera toxin by native toxin and the action of native toxin on cellular cyclic AMP. With different concentrations of cholera toxin, maximal stimulation of amylase release occurred when the increase in cellular cyclic AMP was approximately 35% of maximal. Cholera toxin did not alter the increase in 45Ca outflux or cellular cyclic GMP caused by cholecystokinin or carbachol but significantly augmented the increase in cellular cyclic AMP caused by secretion or vasoactive intestinal peptide. The increase in amylase secretion caused by cholera toxin plus secretin or vasoactive intestinal peptide was the same as that with cholera toxin alone. On the other hand, the increase in amylase secretion caused by cholera toxin plus cholecystokinin or carbachol was significantly greater than the sum of the increases caused by each agent alone.  相似文献   

7.
The cellular and molecular effects of forskolin, a direct, nonhormonal activator of adenylate cyclase, were assessed on the enzyme secretory process in dispersed rat pancreatic acinar cells. Forskolin stimulated adenylate cyclase activity in the absence of guanyl nucleotide. It promoted a rapid and marked increase in cellular accumulation of cyclic AMP alone or in combination with vasoactive intestinal peptide (VIP) but was itself a weak pancreatic agonist and did not increase the secretory response to VIP or other cyclic AMP dependent agonists. Somatostatin was a partial antagonist of forskolin stimulated cyclic AMP synthesis and forskolin plus cholecystokinin-octapeptide (CCK-OP) induced amylase release. Forskolin potentiated amylase secretion in response to calcium-dependent agonists such as CCK-OP, carbachol and A-23187, but did not affect the ability of CCK-OP and (or) carbachol to mobilize 45Ca from isotope preloaded cells; forskolin alone did not stimulate 45Ca release. In calcium-poor media, the secretory response to forskolin and CCK-OP was reduced in a both absolute and relative manner. The data suggests that calcium plays the primary role as intracellular mediator of enzyme secretion and that the role of cyclic AMP may be to modulate the efficiency of calcium utilization.  相似文献   

8.
In dispersed acini from guinea-pig pancrease several pancreatic secretagogues increased calcium outflux, cyclic GMP and amylase secretion, whereas nitroprusside and hydroxylamide increased cyclic GMP but did not increase calcium outflux or amylase secretion and did not alter the action of secretagogues on calcium outflux or amylase secretion. Secretin and vasoactive intestinal peptide increased cyclic AMP and increased secretion but did not alter cyclic GMP. Nitroprusside and hydroxylamine did not alter cyclic AMP or the action of secretin or vasoactive intestinal peptide on cyclic AMP and enzyme secretion. Agents that increased cyclic GMP also caused release of the nucleotide into the extracellular medium; however, this release did not correlate with secretion of amylase into the extracellular medium. 8-Bromo cyclic AMP as well as 8-bromo cyclic GMP increased enzyme secretion and potentiated the increase in enzyme secretion caused by cholecystokinin or carbachol. The increase in amylase secretion caused by vasoactive intestinal peptide or secretin plus either of the cyclic nucleotide derivatives was the same as that caused by the peptide alone. These results indicate that cyclic GMP does not mediate the action of secretagogues on pancreatic enzyme secretion, that the release of cyclic GMP into the extracellular medium does not occur by exocytosis and that the increase in enzyme secretion caused by 8-bromo cyclic GMP results from its stability to mimic the action of endogenous cyclic AMP.  相似文献   

9.
L Larose  J Morisset 《Life sciences》1985,37(3):255-261
Dispersed rat pancreatic acini were incubated in 0.5mM calcium medium with increasing concentrations of carbamylcholine, with or without the ionophore A23187 (10(-6)M). Addition of the ionophore reduced maximal amylase release, increased the maximal effective concentration of carbamylcholine and dramatically impaired the agonist's capacity to induce enzyme secretion at low concentration. The ionophore also abolished the inhibition of secretion observed at high carbamylcholine concentrations. These effects of the ionophore on the cholinergic secretory response cannot be explained by interaction at the muscarinic receptor since neither the Bmax, the affinity of the receptor for the [3H]QNB nor the binding of carbamylcholine were affected by the ionophore. It is suggested that for the conditions studied, the ionophore can interact with the secretory process at one or several points ulterior to the initial recognition site of carbamylcholine on its receptor.  相似文献   

10.
We examined the actions of exendin-4, a new peptide isolated from Heloderma suspectum venom, on dispersed acini from rat pancreas. Exendin-4 caused a 3-fold increase in cAMP but did not alter cellular calcium concentration. Exendin-4-induced increases in cAMP were inhibited by an exendin-receptor antagonist, exendin (9-39)NH2, but not by VIP-receptor antagonists. Whereas up to 1 microM exendin-4 alone did not alter amylase release, potentiation of enzyme release was observed when the peptide (greater than 30 pM) was combined with cholecystokinin. Potentiation of amylase release was also observed when exendin-4 was combined with carbamylcholine, bombesin or a calcium ionophore, A23187. These results indicate that stimulation of exendin receptors on rat pancreatic acini causes an increase in cellular cAMP. Although this increase in cAMP alone does not result in amylase release, combination of exendin-4 with agents that increase cell calcium results in potentiation of amylase release.  相似文献   

11.
In dispersed acini from rat pancreas, cholera toxin caused a significant increase in cellular cyclic AMP but little or no change in amylase secretion. The presence of a secretagogue that causes mobilization of cellular calcium (e.g., cholecystokinin, carbamylcholine, bombesin or ionophore A23187) caused a substantial increase in the effect of cholera toxin on enzyme secretion. Cholera toxin did not alter calcium transport or the changes in calcium transport caused by other secretagogues, and secretagogues that mobilize cellular calcium did not alter cellular cyclic AMP or the increase in cyclic AMP caused by cholera toxin. These results indicate that in dispersed acini from rat pancreas there is post-receptor modulation of the action of cholera toxin by secretagogues that mobilize cellular calcium and that this modulation is a major determinant of the effect of the toxin on enzyme secretion.  相似文献   

12.
In dispersed acini from rat pancreas, cholera toxin caused a significant increase in cellular cyclic AMP but little or no change in amylase secretion. The presence of a secretagogue that causes mobilization of cellular calcium (e.g., cholecystokinin, carbamylcholine, bombesin or ionophore A23187) caused a substantial increase in the effect of cholera toxin on enzyme secretion. Cholera toxin did not alter calcium transport or the changes in calcium transport caused by other secretagogues, and secretagogues that mobilize cellular calcium did not alter cellular cyclic AMP or the increase in cyclic AMP caused by cholera toxin. These results indicate that in dispersed acini from rat pancreas there is post-receptor modulation of the action of cholera toxin by secretagogues that mobilize cellular calcium and that this modulation is a major determinant of the effect of the toxin on enzyme secretion.  相似文献   

13.
Carbamylcholine, caerulein and cholecystokinin octapeptide rapidly increased the cyclic GMP concentration and amylase secretion in isolated guinea pig pancreatic slices. The cyclic GMP concentration was increased eight-fold over the basal concentration in 30 s, with concomitant increase in the rate of amylase secretion. The tissue concentration of cyclic GMP then rapidly declined to a plateau value of approx. 16% of the peak level within 10 min and was maintained at that concentration for the duration of the experiment. We have shown earlier (Kapoor, C.L. and Krishna, G. (1977) Science 196, 1003–1005) that the decrease of tissue cyclic GMP was due mainly to the secretion of cyclic GMP into the medium. The cyclic AMP concentration in the tissue was not changed, nor was it secreted into the medium.There was a correlation between the concentration response to various agents for the increase in cyclic GMP concentration and amylase secretion in pancreatic slices. Carbamylcholine increased both the cyclic GMP concentration and amylase secretion; the half-maximal effect was achieved at 1.5 μM concentration. Caerulein and cholecystokinin octapeptide were 5000 times more potent than carbamylcholine in increasing cyclic GMP concentration and amylase secretion; the half-maximal effect was achieved at 0.3 nM concentration. Atropine, which completely inhibited the increase in cyclic GMP and amylase secretion induced by carbamylcholine, did not block the effects of caerulein or cholecystokinin octapeptide. These results suggest that various secretagogues induced amylase secretion by increasing the cyclic GMP concentration, but the mechanism by which cyclic GMP caused amylase secretion remains to be elucidated.  相似文献   

14.
Carbamylcholine, caerulein and cholecystokinin octapeptide rapidly increased the cyclic GMP concentration and amylase secretion in isolated guinea pig pancreatic slices. The cyclic GMP concentration was increased eight-fold over the basal concentration in 30 s, with concomitant increase in the rate of amylase secretion. The tissue concentration of cyclic GMP then rapidly declined to a plateau value of approx. 16% of the peak level within 10 min and was maintained at that concentration for the duration of the experiment. We have shown earlier (Kapoor, CL. and Krishna, G. (1977) Science 196, 1003--1005) that the decrease of tissue cyclic GMP was due mainly to the secretion of cyclic GMP into the medium. The cyclic AMP concentration in the tissue was not changed, nor was it secreted into the medium. There was a correlation between the concentration response to various agents for the increase in cyclic GMP concentration and amylase secretion in pancreatic slices. Carbamylcholine increased both the cyclic GMP concentration and amylase secretion; the half-maximal effect was achieved at 1.5 micrometer concentration. Caerulein and cholecystokinin octapeptide were 5000 times more potent than carbamylcholine in increasing cyclic GMP concentration and amylase secretion; the half-maximal effect was achieved at 0.3 nM concentration. Atropine, which completely inhibited the increase in cyclic GMP and amylase secretion induced by carbamylcholine, did not block the effects of caerulein or cholecystokinin octapeptide. These results suggest that various secretagogues induced amylase secretion by increasing the cyclic GMP concentration, but the mechanism by which cyclic GMP caused amylase secretion remains to be elucidated.  相似文献   

15.
Amylase secretion and changes in the levels of cyclic AMP and GMP were studied in rabbit parotid gland slices incubated in vitro with a variety of neurohumoral transmitters, their analogs and inhibitors. Cyclic GMP levels increased 8-fold 5 min after exposure to carbachol (10(-4) M), without a change in cyclic AMP levels; amylase output also rose. These effects were completely inhibited by muscarinic blockade with atropine, but were unaffected by alpha-adrenergic blockade with phenoxybenzamine. Epinephrine (4 - 10(-5) M) produced a rapid increase in the levels of both cyclic nucleotides and in amylase release. The increase in cyclic GMP level was inhibited by previous exposure of the slices to phenoxybenzamine, while the cyclic AMP rise was prevented by the beta-blocking agent, propranolol. Pure alpha-adrenergic stimulation with methoxamine (4 - 10(-4) M) produced modest elevations in cyclic GMP content and amylase output, effects blocked by pre-treatment of slices with either atropine or phenoxybenzamine. At a concentration of 4 - 10(-6) M, isoproterenol (a beta-agonist) failed to affect cyclic GMP levels, but promptly stimulated increases in cyclic AMP levels, and after a short lag, amylase secretion. At a higher dose (4 - 10(-5) M) isoproterenol produced elevations in the levels of both nucleotides. The carbachol-induced effects on cyclic GMP content and amylase release were greatly potentiated by the addition of isoproterenol (4 - 10(-6) M). These data strongly suggest that cholinergic muscarinic agonists and alpha-adrenergic agonists stimulate amylase output in rabit parotid gland by mechanisms involving cyclic GMP. The atropine-sensitive intracellular events effected by alpha-stimulation may be dependent upon endogenous generation of acetylcholine. Both cyclic nucleotides seem to be required for the early rapid secretion of amylase. The unique responses achieved by the combination of carbachol and isoproterenol suggest that isoproterenol may increase the sensitivity of this tissue to the effects of cholinergic stimuli.  相似文献   

16.
Elevated concentrations of potassium chloride (50 to 120 mM) in the incubation medium stimulated in vitro discharge of secretory protein from guinea pig pancreatic lobules. The effect of potassium was not inhibited by 10(-4) M atropine, sodium substitutes, or 10(-5) M tetrodotoxin. Exposure of lobules to elevated concentrations of potassium chloride did not increase the release of tissue lactic dehydrogenase and resulted in the appearance of exocytotic images detected by electron microscopy. The time course and extent of discharge due to 75 mM KCl were similar to those caused by the ionophore A23187 and the secretory effect of both agents depended on extracellular calcium and intracellular energy reserves. Potassium chloride stimulation of 75 mM increased the influx of extracellular calcium by 49%, as measured by net 45Ca uptake. Optimal carbamylcholine chloride or pancreozymin stimulation consistently showed a greater effect on discharge than optimal KCl or A23187 stimulation and the additional effect depended on the ability of these physiological secretagogues to recruit calcium from intracellular sources. Potassium chloride stimulation did not result in cyclic GMP elevations in the presence of atropine and those elevations due to A23187 stimulation were small (21 to 30%) and dissimilar both in character (calcium dependence) and time course compared to those resulting from the physiological secretagogues. These findings allow us to define two interrelated pathways which couple hormonal stimulation and discharge of secretory protein in the exocrine pancreas.  相似文献   

17.
In rat pancreatic fragments, stimulation of amylase and labeled protein release by carbachol, caerulein, and ionophore A 23187 results within minutes in a short rise in cyclic GMP levels. Cyclic AMP levels do not change significantly. The secretory response elicited by each secretagogue is not modified when combined in pairs. Under intracellular calcium depleting conditions, both the cyclic GMP and the secretory responses to secretagogues are inhibited in parallel, suggesting a good correlation between both processes. Furthermore, 8-Bromocyclic GMP induces pancreatic secretion, but to a lesser extent, and fails to alter the increase in secretion caused by the various secretagogues. However, other agents such as imidazole, ascorbic acid, phenylhydrazine, and sodium azide also increase cyclic GMP levels but fail to stimulate pancreatic secretion. On the other hand, dibutyryl cyclic AMP also stimulates amylase and labeled protein discharge and potentiates the increase caused by cabachol, caerulein, and ionophore A 23187. These results do not permit conclusions regarding a cause and effect relationship between cyclic GMP and secretion. A role for calcium seems to be the most likely.  相似文献   

18.
The sources of calcium for cholecystokinin octapeptide (CCK-OP)-induced gallbladder smooth muscle contraction are considered both extracellular and intracellular, but the relative need for intracellular calcium especially at low, physiological concentrations is not clear. To better define the calcium sources responsible for guinea-pig gallbladder contractions in vitro, we inhibited calcium influx using the calcium channel blocker, methoxyverapamil, and a calcium-free Krebs' solution. Availability and release of intracellular calcium stores were depleted by strontium substitution and ryanodine. CCK-OP was compared to bethanechol and potassium chloride (KCl). Preventing calcium influx with 10(-5) M methoxyverapamil depressed the responses to CCK-OP, bethanechol and KCl. Methoxyverapamil, however, had little effect on the time-dependent generation of tension to CCK-OP, but significantly reduced the response to bethanechol and KCl, each at ED50. The duration of the contractile response in the calcium-free Krebs' solution to CCK-OP was longer than that for bethanechol. Strontium (2.5 mM) significantly attenuated the response to CCK-OP and bethanechol, but not to KCl. Ryanodine significantly reduced contractions induced by CCK-OP but not for bethanechol, both at low dose ED25. These results indicate that contraction of the guinea-pig gallbladder induced by CCK-OP, bethanechol and KCl requires extracellular calcium influx. Further, the initiation and maintenance of contraction by CCK-OP and bethanechol necessitates calcium mobilisation from intracellular stores. CCK-OP may have a greater penchant for these calcium stores, particularly at physiological doses.  相似文献   

19.
M Ikeda  S Suzuki  H Oka  H Niwa  M Fujino 《Life sciences》1983,32(18):2107-2114
Dispersed acini from rat pancreas, incubated in the presence of KH2(32)PO4 to steady state 32P incorporation into cellular proteins, were exposed to secretin. 32P incorporated into selected proteins, separated by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis, reached a plateau by 150 min. Effect of secretin on amylase release, cellular cyclic AMP levels and protein phosphorylation was then examined. Stimulation of amylase release was apparent with 10(-10)M and was maximal with 10(-7)M by 10 min incubation. Almost maximal increase in cellular cyclic AMP levels and 32P incorporation into selected proteins was also observed with 10(-7)M secretin by 10 min in the presence of 10 mM theophyllin. Both secretin (10(-8)M) and dibutyryl cyclic AMP (10(-3)M) induced the phosphorylation of similar proteins analyzed by counting 32P content in each peptide band after SDS gel electrophoresis. Addition of cyclic AMP (10(-6)M) to homogenates of acini also augmented 32P incorporation from [gamma-32P]ATP into similar proteins. These results indicate that secretin enhances protein phosphorylation in pancreatic acinar cells and cyclic AMP may mediate the action of secretin on protein phosphorylation.  相似文献   

20.
In the presence of 10(-9) M calcium, rod outer segments freshly detached from dark-adapted frog retinas contain between 0.01 and 0.02 moles of guanosine 3',5'-cyclic monophosphate (cyclic GMP) per mole of rhodopsin. The dark level of cyclic GMP is reduced approximately 50% by illumination that bleaches 5 x 10(5) rhodopsin molecules/outer segments. The dark levels of cyclic GMP also can be suppressed to approximately 0.007 mol/mol of rhodopsin by increasing the concentration of calcium from 10(-9) M to 2 x 10(-9) M, and they remain at this level as calcium concentration is raised to 10(-3) M. The final level to which illumination reduces cyclic GMP in unaffected by the calcium concentration between 10(-9) and 10(-3) M. The maximal light-induced decrease in cyclic GMP occurs within 1 s from the onset of illumination at all calcium concentrations. The magnitude and time-course of the light-induced decrease in cyclic GMP measured in these experiments are comparable to values obtained previously (Woodruff et al. 1977. J. Gen. Physiol. 69:677-679; Woodruff and Bownds. 1979. J. Gen. Physiol. 73:629-653). The data are consistent with a role for cyclic GMP in visual transduction irrespective of the calcium concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号