首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In face of accumulated reports demonstrating that uptake of some cell-penetrating peptides occurs through previously described endocytic pathways, or is a consequence of cell fixation artifacts, we conducted a systematic analysis on the mechanism responsible for the cellular uptake of the S4(13)-PV karyophilic cell-penetrating peptide. The results reviewed here show that the S4(13)-PV peptide is able to very efficiently accumulate inside live cells in a rapid, non-toxic and dose-dependent manner, through a mechanism distinct from endocytosis. Comparative analysis of peptide uptake by mutant cells lacking heparan sulfate proteoglycans demonstrates that, although not mandatory, their presence at cell surface facilitates the cellular uptake of the S4(13)-PV peptide. Furthermore, we demonstrate that upon interaction with lipid vesicles, the S4(13)-PV peptide undergoes significant conformational changes that are consistent with the formation of helical structures. Such conformational changes occur concomitantly with a penetration of the peptide into the lipid bilayer, strongly suggesting that the resulting helical structures are crucial for the non-endocytic cellular uptake of the S4(13)-PV peptide. Overall, our data support that, rather than endocytosis, the cellular uptake of the S4(13)-PV cell-penetrating peptide is a consequence of its direct translocation through cell membranes following conformational changes induced by peptide-membrane interactions.  相似文献   

2.
In face of accumulated reports demonstrating that uptake of some cell-penetrating peptides occurs through previously described endocytic pathways, or is a consequence of cell fixation artifacts, we conducted a systematic analysis on the mechanism responsible for the cellular uptake of the S413-PV karyophilic cell-penetrating peptide. The results reviewed here show that the S413-PV peptide is able to very efficiently accumulate inside live cells in a rapid, non-toxic and dose-dependent manner, through a mechanism distinct from endocytosis. Comparative analysis of peptide uptake by mutant cells lacking heparan sulfate proteoglycans demonstrates that, although not mandatory, their presence at cell surface facilitates the cellular uptake of the S413-PV peptide. Furthermore, we demonstrate that upon interaction with lipid vesicles, the S413-PV peptide undergoes significant conformational changes that are consistent with the formation of helical structures. Such conformational changes occur concomitantly with a penetration of the peptide into the lipid bilayer, strongly suggesting that the resulting helical structures are crucial for the non-endocytic cellular uptake of the S413-PV peptide. Overall, our data support that, rather than endocytosis, the cellular uptake of the S413-PV cell-penetrating peptide is a consequence of its direct translocation through cell membranes following conformational changes induced by peptide-membrane interactions.  相似文献   

3.
Cell penetrating peptides (CPPs) have been successfully used to mediate the intracellular delivery of a wide variety of molecules of pharmacological interest both in vitro and in vivo, although the mechanisms by which the cellular uptake occurs remain unclear and controversial. Following our previous work demonstrating that the cellular uptake of the S4(13)-PV CPP occurs mainly through an endocytosis-independent mechanism, we performed a detailed biophysical characterization of the interaction of this peptide with model membranes. We demonstrate that the interactions of the S4(13)-PV peptide with membranes are essentially of electrostatic nature. As a consequence of its interaction with negatively charged model membranes, the S4(13)-PV peptide becomes buried into the lipid bilayer, which occurs concomitantly with significant peptide conformational changes that are consistent with the formation of a helical structure. Comparative studies using two related peptides demonstrate that the conformational changes and the extent of cell penetration are dependent on the peptide sequence, indicating that the helical structure acquired by the S4(13)-PV peptide is relevant for its nonendocytic uptake. Overall, our data suggest that the cellular uptake of the S4(13)-PV CPP is a consequence of its direct translocation through cell membranes, following conformational changes induced by peptide-membrane interactions.  相似文献   

4.
BackgroundCell-penetrating peptides (CPPs) have been extensively exploited in gene therapy approaches as vectors for intracellular delivery of bioactive molecules. The ability of CPPs to be internalized into cells and their capacity to complex nucleic acids depend on their molecular structure, both primary and secondary, namely regarding hydrophobicity/hydrophilicity. CPP acylation has been used as a strategy to improve this structural feature.MethodsAcyl groups (from 6 to 18 carbon atoms) were attached to the S413-PV peptide and their effects on the peptide competence to complex siRNAs and to mediate gene silencing in glioblastoma (GBM) cells were studied. A systematic characterization of membrane interactions with S413-PV acyl-derivatives was also conducted, using different biophysical techniques (surface pressure-area isotherms in Langmuir monolayers, DSC and 31P NMR) to unravel a relationship between CPP biological activity and CPP effects on membrane stability and lipid organization.ResultsA remarkable concordance was noticed between acylated-S413-PV peptide competence to promote gene silencing in GBM cells and disturbance induced in membrane models, the lauroyl- and myristoyl-S413-PV peptides being the most effective. A cut-off effect was described for the first time regarding the influence of acyl-chain length on CPP bioactivity.ConclusionsC12-S413-PV showed high capacity to destabilize lipid bilayers, to escape from lysosomal degradation and to mediate gene silencing without promoting cytotoxicity.General significanceBesides unraveling a new CPP with high potential to be employed as a gene delivery vector, this work emphasizes the benefit from allying biophysical and biological studies towards a proper CPP structural refinement for successful pre-clinical/clinical application.  相似文献   

5.
Pep-1 is a cell-penetrating peptide (CPP) with the ability to translocate across biological membranes and introduce active proteins inside cells. The uptake mechanism used by this CPP is, as yet, unknown in detail. Previous results show that such a mechanism is endocytosis-independent and suggests that physical-chemical interactions between the peptide and lipid bilayers govern the translocation mechanism. Formation of a transmembrane pore has been proposed but this issue has always remained controversial. In this work the secondary structure of pep-1 in the absence/presence of lipidic bilayers was determined by CD and ATR-FTIR spectroscopies and the occurrence of pore formation was evaluated through electrophysiological measurements with planar lipid membranes and by confocal microscopy using giant unilamellar vesicles. Despite pep-1 hydrophobic domain tendency for amphipathic α-helix conformation in the presence of lipidic bilayers, there was no evidence for membrane pores in the presence of pep-1. Furthermore, alterations in membrane permeability only occurred for high peptide/lipid ratios, which induced the complete membrane disintegration. Such observations indicate that electrostatic interactions are of first importance in the pep-1-membrane interactions and show that pores are not formed. A peptide-lipid structure is probably formed during peptide partition, which favours peptide translocation.  相似文献   

6.
Pep-1 is a cell-penetrating peptide (CPP) with the ability to translocate across biological membranes and introduce active proteins inside cells. The uptake mechanism used by this CPP is, as yet, unknown in detail. Previous results show that such a mechanism is endocytosis-independent and suggests that physical-chemical interactions between the peptide and lipid bilayers govern the translocation mechanism. Formation of a transmembrane pore has been proposed but this issue has always remained controversial. In this work the secondary structure of pep-1 in the absence/presence of lipidic bilayers was determined by CD and ATR-FTIR spectroscopies and the occurrence of pore formation was evaluated through electrophysiological measurements with planar lipid membranes and by confocal microscopy using giant unilamellar vesicles. Despite pep-1 hydrophobic domain tendency for amphipathic alpha-helix conformation in the presence of lipidic bilayers, there was no evidence for membrane pores in the presence of pep-1. Furthermore, alterations in membrane permeability only occurred for high peptide/lipid ratios, which induced the complete membrane disintegration. Such observations indicate that electrostatic interactions are of first importance in the pep-1-membrane interactions and show that pores are not formed. A peptide-lipid structure is probably formed during peptide partition, which favours peptide translocation.  相似文献   

7.
The cell-penetrating peptide (CPP) Pep-1 presents a great potential in drug delivery due to its intrinsic property to cross plasma membrane. However, its mechanism of entry into the cell remains unresolved. In this study, we compare the selectivity of Pep-1 towards vesicles mimicking normal and cancer cell membranes. The interaction was performed in a wide range of peptide-to-lipid molar ratios using infrared (IR), fluorescence, scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) techniques. At low peptide concentration, fluorescence experiments show that lipid-phosphatidylserine (PS) seems to enable Pep-1 translocation into cancer cell membrane as evidenced by the blue shift of its maximal emission wavelength. DSC data show that Pep-1 induces segregation of lipids. At high peptide concentration, IR data indicate that the interaction of Pep-1 is relatively stronger with normal cell membrane than with cancer cell membrane through the phosphate groups, while the interaction is weaker with normal cell membrane than with cancer cell membrane through the carbonyl groups. TGA and DSC data reveal that vesicles of normal cell membrane are thermally more stable than vesicles of cancer cell membrane. This suggests that the additional lipid PS included in cancer cell membrane has a destabilizing effect on the membrane structure. SEM images reveal that Pep-1 form superstructures including spherical particles and fibrils in the presence of both model membranes. PS seems to enhance peptide transport across cellular membranes. The biophysical techniques in this study provide valuable insights into the properties of CPPs in drug delivery systems.  相似文献   

8.
Abstract

Many important processes in life take place in or around the cell membranes. Lipids have different properties regarding their membrane-forming capacities, their mobility, shape, size and surface charge, and all of these factors influence the way that proteins and peptides interact with the membrane. In order for us to correctly understand these interactions, we need to be able to study all aspects of the interplay between lipids and peptides and proteins. Solution-state NMR offers a somewhat unique possibility to investigate structure, dynamics and location of proteins and peptides in bilayers. This review focuses on solution NMR as a tool for investigating peptide-lipid interaction, and special attention is given to the various membrane mimetics that are used to model the membrane. Examples from the field of cell-penetrating peptides and their lipid interactions will be given. The importance of studying lipid and peptide dynamics, which reflect on the effect that peptides have on bilayers, is highlighted, and in this respect, also the need for realistic membrane models.  相似文献   

9.
Many important processes in life take place in or around the cell membranes. Lipids have different properties regarding their membrane-forming capacities, their mobility, shape, size and surface charge, and all of these factors influence the way that proteins and peptides interact with the membrane. In order for us to correctly understand these interactions, we need to be able to study all aspects of the interplay between lipids and peptides and proteins. Solution-state NMR offers a somewhat unique possibility to investigate structure, dynamics and location of proteins and peptides in bilayers. This review focuses on solution NMR as a tool for investigating peptide-lipid interaction, and special attention is given to the various membrane mimetics that are used to model the membrane. Examples from the field of cell-penetrating peptides and their lipid interactions will be given. The importance of studying lipid and peptide dynamics, which reflect on the effect that peptides have on bilayers, is highlighted, and in this respect, also the need for realistic membrane models.  相似文献   

10.
Penetratin is a short, basic cell-penetrating peptide able to induce cellular uptake of a vast variety of large, hydrophilic cargos. We have reassessed the highly controversial issue of direct permeation of the strongly cationic peptide across negatively charged lipid membranes. Confocal laser scanning microscopy on rhodamine-labeled giant vesicles incubated with carboxyfluorescein-labeled penetratin yielded no evidence of transbilayer movement, in contradiction to previously reported results. Confocal fluorescence spectroscopy on black lipid membranes confirmed this finding, which was also not affected by application of a transmembrane electric potential difference. A novel dialysis assay based on tryptophan absorbance and fluorescence spectroscopy demonstrated that the permeability of small and large unilamellar vesicles to penetratin is <10(-13) m/s. Taken together, the results show that penetratin is not capable of overcoming model membrane systems irrespective of the bilayer curvature or the presence of a transmembrane voltage. Thus, direct translocation across the hydrophobic core of the plasma membrane cannot account for the efficient uptake of penetratin into live cells, which is in accord with recent in vitro studies underlining the importance of endocytosis in the internalization process of cationic cell-penetrating peptides.  相似文献   

11.
This review summarizes the contribution of MALDI-TOF mass spectrometry in the study of cell-penetrating peptide (CPP) internalization in eukaryote cells. This technique was used to measure the efficiency of cell-penetrating peptide cellular uptake and cargo delivery and to analyze carrier and cargo intracellular degradation. The impact of thiol-containing membrane proteins on the internalization of CPP–cargo disulfide conjugates was also evaluated by combining MALDI-TOF MS with simple thiol-specific reactions. This highlighted the formation of cross-linked species to cell-surface proteins that either remained trapped in the cell membrane or led to intracellular delivery. MALDI-TOF MS is thus a powerful tool to dissect CPP internalization mechanisms.  相似文献   

12.
Although cell-penetrating peptides are widely used as molecular devices to cross membranes and transport molecules or nanoparticles inside cells, the underlying internalization mechanism for such behavior is still studied and discussed. One of the reasons for such a debate is the wide panel of chemically different cell-penetrating peptides or cargo that is used. Indeed the intrinsic physico-chemical properties of CPP and conjugates strongly affect the cell membrane recognition and therefore the internalization pathways. Altogether, the mechanisms described so far should be shared between two general pathways: endocytosis and direct translocation. As it is established now that one cell-penetrating peptide can internalize at the same time by these two different pathways, the balance between the two pathways relies on the binding of the cell-penetrating peptide or conjugate to specific cell membrane components (carbohydrates, lipids). Like endocytosis which includes clathrin- and caveolae-dependent processes and macropinocytosis, different translocation mechanisms could co-exist, an idea that emerges from recent studies. In this review, we will focus solely on penetratin membrane interactions and internalization mechanisms.  相似文献   

13.
pH-sensitive HA2 fusion peptides from influenza virus hemagglutinin have potential as endosomal escape-inducing components in peptide-based drug delivery. Polarized light spectroscopy and tryptophan fluorescence were used to assess the conformation, orientation, effect on lipid order, and binding kinetics of wild-type peptide HA2(1-23) and a glutamic acid-enriched analogue (INF7) in large unilamellar POPC or POPC/POPG (4:1) lipid vesicles (LUVs). pH-sensitive membrane leakage was established for INF7 but not HA2(1-23) using an entrapped-dye assay. A correlation is indicated between leakage and a low degree of lipid chain order (assessed by linear dichroism, LD, of the membrane orientation probe retinoic acid). Both peptides display poor alignment in zwitterionic POPC LUVs compared to POPC/POPG (4:1) LUVs, and it was found that peptide-lipid interactions display slow kinetics (hours), resulting in reduced lipid order and increased tryptophan shielding. At pH 7.4, INF7 displays tryptophan emission and LD features indicative of a surface-orientated peptide, suggesting that its N-terminal glutamic acid residues prevent deep penetration into the hydrocarbon core. At pH 5.0, INF7 displays weaker LD signals, indicating poor orientation, possibly due to aggregation. By contrast, the orientation of the HA2(1-23) peptide backbone supports previously reported oblique insertion ( approximately 60-65 degrees relative to the membrane normal), and aromatic side-chain orientations are consistent with an interfacial (pH-independent) location of the C-terminus. We propose that a conformational change upon reduction of pH is limited to minor rearrangements of the peptide "hinge region" around Trp14 and repositioning of this residue.  相似文献   

14.
Cell-penetrating peptides (CPPs) are widely used as drug carriers, owing to their superior ability to cross cell membrane both alone and with cargos, such as genes and other particles. Understanding the translocation mechanism of CPP is significant for many therapeutic purposes, including targeting drug and gene delivery. In this study, we performed a coarse-grained molecular dynamics simulation to investigate the interaction mechanism between polyarginine peptides and asymmetric membranes. Results showed that peptides can penetrate through the lipid bilayer by inducing a hydrophilic hole formation in the asymmetric membrane. Furthermore, the lengthy peptide chain length (R4–R16 peptides) and high membrane asymmetry positively affect peptide penetration. Our study provides insights into the molecular-level interactions between peptides and asymmetric membranes, as well as suggestions for targeted gene and drug delivery.  相似文献   

15.
Omiganan pentahydrochloride (ILRWPWWPWRRK-NH(2).5Cl) is an antimicrobial peptide currently in phase III clinical trials. This study aims to unravel the mechanism of action of this drug at the membrane level and address the eventual protective role of peptidoglycan in cell walls. The interaction of omiganan pentahydrochloride with bacterial and mammalian membrane models - large unilamellar vesicles of different POPC:POPG proportions - was characterized by UV-Vis fluorescence spectroscopy. The molar ratio partition constants obtained for the two anionic bacterial membrane models were very high ((18.9+/-1.3)x10(3) and (43.5+/-8.7)x10(3)) and about one order of magnitude greater than for the neutral mammalian models ((3.7+/-0.4)x10(3) for 100% POPC bilayers). At low lipid:peptide ratios there were significant deviations from the usual hyperbolic-like partition behavior of peptide vesicle titration curves, especially for the most anionic systems. Membrane saturation can account for such observations and mathematical models were derived to further characterize the peptide-lipid interaction under those conditions; a possible relation between saturation and MIC was deduced; this was supported by differential quenching studies of peptide internalization. Interaction with the bacterial cell wall was assessed using Staphylococcus aureus peptidoglycan extracts as a model. A strong partition towards the peptidoglycan mesh was observed, but not as large as for the membrane models.  相似文献   

16.
The simian immunodeficiency virus fusion peptide constitutes a 12-residue N-terminal segment of the gp32 protein that is involved in the fusion between the viral and cellular membranes, facilitating the penetration of the virus in the host cell. Simian immunodeficiency virus fusion peptide is a hydrophobic peptide that in Me(2)SO forms aggregates that contain beta-sheet pleated structures. When added to aqueous media the peptide forms large colloidal aggregates. In the presence of lipidic membranes, however, the peptide interacts with the membranes and causes small changes of the membrane electrostatic potential as shown by fluorescein phosphatidylethanolamine fluorescence. Thioflavin T fluorescence and Fourier transformed infrared spectroscopy measurements reveal that the interaction of the peptide with the membrane bilayer results in complete disassembly of the aggregates originating from an Me(2)SO stock solution. Above a lipid/peptide ratio of about 5, the membrane disaggregation and water precipitation processes become dependent on the absolute peptide concentration rather than on the lipid/peptide ratio. A schematic mechanism is proposed, which sheds light on how peptide-peptide interactions can be favored with respect to peptide-lipid interactions at various lipid/peptide ratios. These studies are augmented by the use of the fluorescent dye 1-(3-sulfonatopropyl)-4-[beta[2-(di-n-octylamino)-6-naphthyl]vinyl ] pyridinium betaine that shows the interaction of the peptide with the membranes has a clear effect on the magnitude of the so-called dipole potential that arises from dipolar groups located on the lipid molecules and oriented water molecules at the membrane-water interface. It is shown that the variation of the membrane dipole potential affects the extent of the membrane fusion caused by the peptide and implicates the dipolar properties of membranes in their fusion.  相似文献   

17.
The effect of peptides on bilayer----non-bilayer phase transitions can be used as a tool to investigate the molecular aspects of peptide-lipid interactions. In this contribution the action on membranes of the peptide antibiotic gramicidin A and the bee venom component melittin are compared. Although the known structures and locations of these peptides upon membrane binding are very different, their actions on membranes show striking parallels. A general model is proposed that explains the seemingly complex peptide-lipid interactions by making use of simple concepts.  相似文献   

18.
The peptide-lipid interaction of a beta-hairpin antimicrobial peptide tachyplesin-1 (TP-1) and its linear derivatives are investigated to gain insight into the mechanism of antimicrobial activity. (31)P and (2)H NMR spectra of uniaxially aligned lipid bilayers of varying compositions and peptide concentrations are measured to determine the peptide-induced orientational disorder and the selectivity of membrane disruption by tachyplesin. The disulfide-linked TP-1 does not cause any disorder to the neutral POPC and POPC/cholesterol membranes but induces both micellization and random orientation distribution to the anionic POPE/POPG membranes above a peptide concentration of 2%. In comparison, the anionic POPC/POPG bilayer is completely unaffected by TP-1 binding, suggesting that TP-1 induces negative curvature strain to the membrane as a mechanism of its action. Removal of the disulfide bonds by substitution of Cys residues with Tyr and Ala abolishes the micellization of POPE/POPG bilayers but retains the orientation randomization of both POPC/POPG and POPE/POPG bilayers. Thus, linear tachyplesin derivatives have membrane disruptive abilities but use different mechanisms from the wild-type peptide. The different lipid-peptide interactions between TP-1 and other beta-hairpin antimicrobial peptides are discussed in terms of their molecular structure.  相似文献   

19.
The clinical use of efficient therapeutic agents is often limited by the poor permeability of the biological membranes. In order to enhance their cell delivery, short amphipathic peptides called cell-penetrating peptides (CPPs) have been intensively developed for the last two decades. CPPs are based either on protein transduction domains, model peptide or chimeric constructs and have been used to deliver cargoes into cells through either covalent or non-covalent strategies. Although several parameters are simultaneously involved in their internalization mechanism, recent focuses on CPPs suggested that structural properties and interactions with membrane phospholipids could play a major role in the cellular uptake mechanism. In the present work, we report a comparative analysis of the structural plasticity of 10 well-known CPPs as well as their ability to interact with phospholipid membranes. We propose a new classification of CPPs based on their structural properties, affinity for phospholipids and internalization pathways already reported in the literature.  相似文献   

20.
There is an active interest in peptides that readily cross cell membranes without the assistance of cell membrane receptors(1). Many of these are referred to as cell-penetrating peptides, which are frequently noted for their potential as drug delivery vectors(1-3). Moreover, there is increasing interest in antimicrobial peptides that operate via non-membrane lytic mechanisms(4,5), particularly those that cross bacterial membranes without causing cell lysis and kill cells by interfering with intracellular processes(6,7). In fact, authors have increasingly pointed out the relationship between cell-penetrating and antimicrobial peptides(1,8). A firm understanding of the process of membrane translocation and the relationship between peptide structure and its ability to translocate requires effective, reproducible assays for translocation. Several groups have proposed methods to measure translocation into large unilamellar lipid vesicles (LUVs)(9-13). LUVs serve as useful models for bacterial and eukaryotic cell membranes and are frequently used in peptide fluorescent studies(14,15). Here, we describe our application of the method first developed by Matsuzaki and co-workers to consider antimicrobial peptides, such as magainin and buforin II(16,17). In addition to providing our protocol for this method, we also present a straightforward approach to data analysis that quantifies translocation ability using this assay. The advantages of this translocation assay compared to others are that it has the potential to provide information about the rate of membrane translocation and does not require the addition of a fluorescent label, which can alter peptide properties(18), to tryptophan-containing peptides. Briefly, translocation ability into lipid vesicles is measured as a function of the Foster Resonance Energy Transfer (FRET) between native tryptophan residues and dansyl phosphatidylethanolamine when proteins are associated with the external LUV membrane (Figure 1). Cell-penetrating peptides are cleaved as they encounter uninhibited trypsin encapsulated with the LUVs, leading to disassociation from the LUV membrane and a drop in FRET signal. The drop in FRET signal observed for a translocating peptide is significantly greater than that observed for the same peptide when the LUVs contain both trypsin and trypsin inhibitor, or when a peptide that does not spontaneously cross lipid membranes is exposed to trypsin-containing LUVs. This change in fluorescence provides a direct quantification of peptide translocation over time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号