首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent studies have suggested that apoptosis and necrosis share common features in their signaling pathway and that apoptosis requires intracellular ATP for its mitochondrial/apoptotic protease-activating factor-1 suicide cascade. The present study was, therefore, designed to examine the role of intracellular energy levels in determining the form of cell death in cardiac myocytes. Neonatal rat cardiac myocytes were first incubated for 1 h in glucose-free medium containing oligomycin to achieve metabolic inhibition. The cells were then incubated for another 4 h in similar medium containing staurosporine and graded concentrations of glucose to manipulate intracellular ATP levels. Under ATP-depleting conditions, the cell death caused by staurosporine was primarily necrotic, as determined by creatine kinase release and nuclear staining with ethidium homodimer-1. However, under ATP-replenishing conditions, staurosporine increased the percentage of apoptotic cells, as determined by nuclear morphology and DNA fragmentation. Caspase-3 activation by staurosporine was also ATP dependent. However, loss of mitochondrial transmembrane potential (DeltaPsi(m)), Bax translocation, and cytochrome c release were observed in both apoptotic and necrotic cells. Moreover, cyclosporin A, an inhibitor of mitochondrial permeability transition, attenuated staurosporine-induced apoptosis and necrosis through the inhibition of DeltaPsi(m) reduction, cytochrome c release, and caspase-3 activation. Our data therefore suggest that staurosporine induces cell demise through a mitochondrial death signaling pathway and that the presence of intracellular ATP favors a shift from necrosis to apoptosis through caspase activation.  相似文献   

2.
Apoptosis and necrosis are considered as conceptually distinct forms of cell death. Nevertheless, there is increasing evidence that classical apoptosis and necrosis represent only the extreme ends of a wide range of possible morphological and biochemical deaths. The two classical types of demise can occur simultaneously in tissues or cell cultures exposed to the same stimulus, and often the intensity of the same initial insult decides the prevalence of either apoptosis or necrosis. This suggests that, while some early events may be common to both types of cell death, a downstream controller may be required to direct cells towards the organised execution of apoptosis. We have recently shown that intracellular energy levels and mitochondrial function are rapidly compromised in necrosis, but not in apoptosis of neuronal cells. Then, we went on to show that pre-emptying human T cells of ATP switches the type of demise caused by two classic apoptotic triggers (staurosporin and CD95 stimulation) from apoptosis to necrosis. Conditions of controlled intracellular ATP depletion, which was obtained by blocking mitochondrial and/or glycolytic ATP generation, were used in combination with repletion of the cytosolic ATP pool with glucose to redirect the death program towards apoptosis or necrosis. At least two distinct steps, the typical nuclear degradation, and the expression of annexin V-recognisable determinants on the cell surface require sufficient ATP generation. This suggests that some upstream regulators of cell death may be common to both types of cell demise, whereas yet unknown downstream processes decide its shape and the implications for the neighbouring tissue.  相似文献   

3.
Under pathological conditions, the mode of cell death, apoptosis or necrosis, is relevant for the subsequent fate of the tissue. Cell demise may be shaped by endogenous mediators such as nitric oxide (NO) which interfere with subroutines of the death program. Here we show that apoptosis of Jurkat cells elicited by either staurosporine (STS) or anti-CD95 antibodies in glucose-free medium is converted to necrosis by NO donors. In the presence of NO, release of mitochondrial cytochrome c was delayed and activation of execution caspases was prevented. Stimulated cells died nonetheless. The switch in the mode of cell death was due to NO-dependent failure of mitochondrial energy production. Restoration of intracellular ATP by glucose supplementation recovered the cells' ability to activate caspases and undergo apoptosis. In this system, the apoptosis/necrosis conversion promoted by NO was not mediated by cyclic guanosine monophosphate-dependent mechanisms, poly-(ADP-ribose)-polymerase (PARP) activation, or inhibition of caspases due to S-nitrosylation and glutathione depletion. In contrast, depleting intracellular ATP with rotenone, an inhibitor of mitochondrial complex I mimicked the effect of NO. The findings presented here suggest that NO can decide the shape of cell death by lowering intracellular ATP below the level required to allow the coordinated execution of apoptosis.  相似文献   

4.
Apoptotic cell death has been observed in many in vivo and in vitro models of ischemia. However, the molecular pathways involved in ischemia-induced apoptosis remain unclear. We have examined the role of Bcl-2 family of proteins in mediating apoptosis of PC12 cells exposed to the conditions of oxygen and glucose deprivation (OGD) or OGD followed by restoration of oxygen and glucose (OGD-restoration, OGD-R). OGD decreased mitochondrial membrane potential and induced necrosis of PC12 cells, which were both prevented by the overexpression of Bcl-2 proteins. OGD-R caused apoptotic cell death, induced cytochrome C release from mitochondria and caspase-3 activation, decreased mitochondrial membrane potential, and increased levels of pro-apoptotic Bax translocated to the mitochondrial membrane, all of which were reversed by overexpression of Bcl-2. These results demonstrate that the cell death induced by OGD and OGD-R in PC12 cells is potentially mediated through the regulation of mitochondrial membrane potential by the Bcl-2 family of proteins. It also reveals the importance of developing therapeutic strategies for maintaining the mitochondrial membrane potential as a possible way of reducing necrotic and apoptotic cell death that occurs following an ischemic insult.  相似文献   

5.
Zhu LP  Yu XD  Ling S  Brown RA  Kuo TH 《Cell calcium》2000,28(2):107-117
Using distinct models of apoptosis and necrosis, we have investigated the effect of mitochondrial Ca(2+)(Ca(m)) homeostasis in the regulation of cell death in neuroblastoma cells as well as cardiac myocytes. The steady state level of Ca(m)was determined as the FCCP-releasable Ca(2+). Culturing cells with low concentration of extracellular Ca(2+)(Ca(o)) or with EGTA triggered an early reduction in both the Ca(m)store and the membrane potential (DeltaPsi(m)). This was followed by the detection of cytochrome c release, caspase activation, and apoptosis. Inhibitors of the mitochondrial permeability transition pore such as cyclosporin A and Bcl-2 blocked the release of Ca(m)and inhibited apoptosis. In contrast, mitochondrial Ca(2+)overload resulted in necrotic cell death. Culturing cells in the presence of excess Ca(o)led to increased Ca(m)load together with a decrease of DeltaPsi(m)that reached maximum at 1 h, with necrosis occurring at 2 h. While the decline of Ca(m)and DeltaPsi(m)was a coupled reaction for apoptosis, this relationship was uncoupled during necrosis. Clonazepam, a relatively specific inhibitor of the mitochondrial Na/Ca exchanger, was able to protect the cells from necrosis by reducing Ca(m)overload. Importantly, combination of clonazepam and cyclosporin showed a cooperative effect in further reducing the Ca(m)overload and abolished cell death. The data imply the participation of Ca(m)homeostasis in the regulation of apoptosis and necrosis.  相似文献   

6.
We investigated the effect of altered extracellular pH, mitochondrial function, and ATP content on development of apoptosis in human pulmonary artery endothelial cells after treatment with staurosporine (STS). STS produced a concentration- and time-dependent increase in caspase-3 activity in pH 7.4 medium that reached a peak at 6 h. The increase in caspase activity was associated with significant DNA fragmentation. Fluorescent imaging of treated monolayers in pH 7.4 medium with Hoechst-33342-propidium iodide demonstrated a large percentage of apoptotic cells ( approximately 40%) with no evidence of necrosis. Caspase activity, DNA fragmentation, and percentage of apoptotic cells were reduced after STS treatment in acidic media (pH 7.0 and 6.6). The Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-AM inhibited STS-induced apoptosis, whereas the rise in intracellular Ca2+concentration in STS-treated cells in pH 7.4 medium was reduced in pH 7.0 medium. These results suggest that one mechanism for inhibitory effects of acidosis may be a pH-induced alteration in Ca2+ signaling. Treatment with STS in the presence of oligomycin (10 microM), an inhibitor of the mitochondrial F(0)F(1)-ATPase, in glucose-free media abolished caspase activation and DNA fragmentation in association with severe ATP depletion ( approximately 2% of control cells). Imaging demonstrated a change in the mode of cell death from apoptosis to necrosis under these conditions. This change was linked to the level of ATP depletion, because STS treatment in the absence of glucose or the presence of oligomycin in media with glucose still leads to apoptosis in the presence of only moderate ATP depletion. These results demonstrate that pH, mitochondrial function, and ATP supply are important variables that regulate STS-induced apoptosis in human pulmonary artery endothelial cells.  相似文献   

7.
Bax, a pro-apoptotic member of the Bcl-2 family, is a cytosolic protein that inserts into mitochondrial membranes upon induction of cell death. Using the green fluorescent protein fused to Bax (GFP-Bax) to quantitate mitochondrial binding in living cells we have investigated the cause of Bax association with mitochondria and the time course relative to endogenous and induced changes in mitochondrial membrane potential (DeltaPsi(m)). We have found that staurosporine (STS) induces a loss in DeltaPsi(m) before GFP-Bax translocation can be measured. The onset of the DeltaPsi(m) loss is followed by a rapid and complete collapse of DeltaPsi(m) which is followed by Bax association with mitochondria. The mitochondria uncoupler FCCP, in the presence of the F(1)-F(0) ATPase inhibitor oligomycin, can trigger Bax translocation to mitochondria suggesting that when ATP levels are maintained a collapse of DeltaPsi(m) induces Bax translocation. Neither FCCP nor oligomycin alone alters Bax location. Bax association with mitochondria is also triggered by inhibitors of the electron transport chain, antimycin and rotenone, compounds that collapse DeltaPsi(m) without inducing rapid ATP hydrolysis that typically occurs with uncouplers such as FCCP. Taken together, our results suggest that alterations in mitochondrial energization associated with apoptosis can initiate Bax docking to mitochondria.  相似文献   

8.
Apoptotic cell death can occur by two different pathways. Type 1 is initiated by the activation of death receptors (Fas, TNF-receptor-family) on the plasma membrane followed by activation of caspase 8. Type 2 involves changes in mitochondrial integrity initiated by various effectors like Ca(2+), reactive oxygen species (ROS), Bax, or ceramide, leading to the release of cytochrome c and activation of caspase 9. The release of cytochrome c is followed by a decrease of the mitochondrial membrane potential DeltaPsi(m). Recent publications have demonstrated, however, that induction of apoptosis by various effectors involves primarily a transient increase of DeltaPsi(m) for unknown reason. Here we propose a new mechanism for the increased DeltaPsi(m) based on experiments on the allosteric ATP-inhibition of cytochrome c oxidase at high matrix ATP/ADP ratios, which was concluded to maintain low levels of DeltaPsi(m) in vivo under relaxed conditions. This regulatory mechanism is based on the potential-dependency of the ATP synthase, which has maximal activity at DeltaPsi(m)=100-120 mV. The mechanism is turned off either through calcium-activated dephosphorylation of cytochrome c oxidase or by 3,5-diiodo-L-thyronine, palmitate, and probably other so far unknown effectors. Consequently, energy metabolism changes to an excited state. We propose that this change causes an increase in DeltaPsi(m), a condition for the formation of ROS and induction of apoptosis.  相似文献   

9.
This report addresses the relation between Bcl-2 and mitochondrial membrane potential (DeltaPsi(m)) in apoptotic cell death. Rat pheochromocytoma (PC12) cells are differentiated into neuron-like cells with nerve growth factor (NGF). It is known that Bcl-2 can attenuate apoptosis induced by deprivation of neurotrophic factor. The protective effect of Bcl-2 has been correlated with preservation of DeltaPsi(m). Protonophores, such as carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP), collapse the proton gradient across the mitochondrial inner membrane, resulting in a complete abolition of the mitochondrial membrane potential. Based on the analysis of morphology, of phosphatidylserine exposure and of nuclear fragmentation we conclude that FCCP induces apoptosis in PC12 cells, which can be prevented by overexpression of Bcl-2. To determine whether the cytoprotective effect of Bcl-2 is due to stabilization of DeltaPsi(m), we investigated the effect of Bcl-2 on changes in DeltaPsi(m), induced by FCCP in PC12 cells. We showed that treatment with FCCP induced a reduction in DeltaPsi(m), as assessed with the lipophilic cationic membrane potential-sensitive dye JC-1, and that Bcl-2 protects against FCCP-induced changes in NGF differentiated PC12 cells. Our data indicate that Bcl-2 protects against FCCP-induced cell death by stabilizing DeltaPsi(m).  相似文献   

10.
Acinar cells in pancreatitis die through apoptosis and necrosis, the roles of which are different. The severity of experimental pancreatitis correlates directly with the extent of necrosis and inversely, with apoptosis. Apoptosis is mediated by the release of cytochrome c into the cytosol followed by caspase activation, whereas necrosis is associated with the mitochondrial membrane potential (ΔΨm) loss leading to ATP depletion. Here, we investigate the role of Bcl-2 proteins in apoptosis and necrosis in pancreatitis. We found up-regulation of prosurvival Bcl-2 proteins in pancreas in various experimental models of acute pancreatitis, most pronounced for Bcl-xL. This up-regulation translated into increased levels of Bcl-xL and Bcl-2 in pancreatic mitochondria. Bcl-xL/Bcl-2 inhibitors induced ΔΨm loss and cytochrome c release in isolated mitochondria. Corroborating the results on mitochondria, Bcl-xL/Bcl-2 inhibitors induced ΔΨm loss, ATP depletion and necrosis in pancreatic acinar cells, both untreated and hyperstimulated with CCK-8 (in vitro pancreatitis model). Together Bcl-xL/Bcl-2 inhibitors and CCK induced more necrosis than either treatment alone. Bcl-xL/Bcl-2 inhibitors also stimulated cytochrome c release in acinar cells leading to caspase-3 activation and apoptosis. However, different from their effect on pronecrotic signals, the stimulation by Bcl-xL/Bcl-2 inhibitors of apoptotic responses was less in CCK-treated than control cells. Therefore, Bcl-xL/Bcl-2 inhibitors potentiated CCK-induced necrosis but not apoptosis. Correspondingly, transfection with Bcl-xL siRNA stimulated necrosis but not apoptosis in the in vitro pancreatitis model. Further, in animal models of pancreatitis Bcl-xL up-regulation inversely correlated with necrosis, but not apoptosis. Results indicate that Bcl-xL and Bcl-2 protect acinar cells from necrosis in pancreatitis by stabilizing mitochondria against death signals. We conclude that Bcl-xL/Bcl-2 inhibition would aggravate acute pancreatitis, whereas Bcl-xL/Bcl-2 up-regulation presents a strategy to prevent or attenuate necrosis in pancreatitis.  相似文献   

11.
Several studies indicate that mitochondrial ATP production as well as ADP/ATP exchange across mitochondrial membranes are impaired during apoptosis. We investigated whether Bcl-2 could protect against cell death under conditions in which ATP metabolism is inhibited. Inhibition of ATP production using antimycin A (AA) (complex III inhibition) combined with inhibition of ADP/ATP exchange by bongkrekic acid (BA) (adenine nucleotide translocator (ANT) inhibition) induced a sharp decrease in total cellular ATP in FL5.12 parental cells (to 35% of untreated controls after 24 h of incubation). Within 24 and 48 h, 38% and 75% of the cells had died, respectively. However, in stably transfected FL5.12 Bcl-2 subclones, no cell death occurred under these experimental conditions. Similar results were obtained with Jurkat and Bcl-2 overexpressing Jurkat cells. Total cellular ATP levels were equally affected in FL5.12 Bcl-2 overexpressing cells and FL5.12 parental cells. This indicates that Bcl-2 overexpressing cells are able to survive with very low cellular ATP content. Furthermore, Bcl-2 did not protect against cell death by restoring ATP levels. This suggests that, under these conditions, Bcl-2 acts by inhibiting the signalling cascade triggered by the inhibitors that would normally lead to apoptosis.  相似文献   

12.
Nitric oxide (NO) can trigger either necrotic or apoptotic cell death. We have used PC12 cells to investigate the extent to which NO-induced cell death is mediated by mitochondria. Addition of NO donors, 1 mM S-nitroso-N-acetyl-DL-penicillamine (SNAP) or 1 mM diethylenetriamine-NO adduct (NOC-18), to PC12 cells resulted in a steady-state level of 1-3 microM: NO, rapid and almost complete inhibition of cellular respiration (within 1 min), and a rapid decrease in mitochondrial membrane potential within the cells. A 24-h incubation of PC12 cells with NO donors (SNAP or NOC-18) or specific inhibitors of mitochondrial respiration (myxothiazol, rotenone, or azide), in the absence of glucose, caused total ATP depletion and resulted in 80-100% necrosis. The presence of glucose almost completely prevented the decrease in ATP level and the increase in necrosis induced by the NO donors or mitochondrial inhibitors, suggesting that the NO-induced necrosis in the absence of glucose was due to the inhibition of mitochondrial respiration and subsequent ATP depletion. However, in the presence of glucose, NO donors and mitochondrial inhibitors induced apoptosis of PC12 cells as determined by nuclear morphology. The presence of apoptotic cells was prevented completely by benzyloxycarbonyl-Val-Ala-fluoromethyl ketone (a nonspecific caspase inhibitor), indicating that apoptosis was mediated by caspase activation. Indeed, both NO donors and mitochondrial inhibitors in PC12 cells caused the activation of caspase-3- and caspase-3-processing-like proteases. Caspase-1 activity was not activated. Cyclosporin A (an inhibitor of the mitochondrial permeability transition pore) decreased the activity of caspase-3- and caspase-3-processing-like proteases after treatment with NO donors, but was not effective in the case of the mitochondrial inhibitors. The activation of caspases was accompanied by the release of cytochrome c from mitochondria into the cytosol, which was partially prevented by cyclosporin A in the case of NO donors. These results indicate that NO donors (SNAP or NOC-18) may trigger apoptosis in PC12 cells partially mediated by opening the mitochondrial permeability transition pores, release of cytochrome c, and subsequent caspase activation. NO-induced apoptosis is blocked completely in the absence of glucose, probably due to the lack of ATP. Our findings suggest that mitochondria may be involved in both types of cell death induced by NO donors: necrosis by respiratory inhibition and apoptosis by opening the permeability transition pore. Further, our results indicate that the mode of cell death (necrosis versus apoptosis) induced by either NO or mitochondrial inhibitors depends critically on the glycolytic capacity of the cell.  相似文献   

13.
The Bcl-2 family of proteins are involved in regulating the redox state of cells. However, the mode of action of Bcl-2 proteins remains unclear. This work analyzed the effects of Bcl-x(L) on the cellular redox state after treatment with tumor necrosis factor alpha (TNF-alpha) or exogenous oxidants. We show that in cells that undergo TNF-alpha-induced apoptosis, TNF-alpha induces a partial decrease in mitochondrial membrane potential (DeltaPsi(m)) followed by high levels of reactive oxygen species (ROS). ROS scavengers delay the progression of mitochondrial depolarization and apoptotic cell death. This indicates that ROS are important mediators of mitochondrial depolarization. However, ROS scavengers fail to prevent the initial TNF-alpha-induced decrease in DeltaPsi(m). In contrast, expression of Bcl-x(L) prevents both the initial decrease in DeltaPsi(m) following TNF-alpha treatment and the subsequent induction of ROS. Bcl-x(L) itself does not act as a ROS scavenger. In addition, Bcl-x(L) does not block the initial decrease in DeltaPsi(m) following treatment with the oxidant hydrogen peroxide. However, unlike control-transfected cells, Bcl-x(L)-expressing cells can recover their mitochondrial membrane potential following the initial drop in DeltaPsi(m) induced by hydrogen peroxide. These data suggest that Bcl-x(L) plays a regulatory role in controlling the membrane potential of and ROS production by mitochondria rather than acting as a direct antioxidant.  相似文献   

14.
Mitochondrial membrane potential (DeltaPsi(m)) is severely compromised in the myocardium after ischemia-reperfusion and triggers apoptotic events leading to cell demise. This study tests the hypothesis that mitochondrial ATP-sensitive K(+) (mitoK(ATP)) channel activation prevents the collapse of DeltaPsi(m) in myocytes during anoxia-reoxygenation (A-R) and is responsible for cell protection via inhibition of apoptosis. After 3-h anoxia and 2-h reoxygenation, the cultured myocytes underwent extensive damage, as evidenced by decreased cell viability, compromised membrane permeability, increased apoptosis, and decreased ATP concentration. Mitochondria in A-R myocytes were swollen and fuzzy as shown after staining with Mito Tracker Orange CMTMRos and in an electron microscope and exhibited a collapsed DeltaPsi(m), as monitored by 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolcarbocyanine iodide (JC-1). Cytochrome c was released from mitochondria into the cytosol as demonstrated by cytochrome c immunostaining. Activation of mitoK(ATP) channel with diazoxide (100 micromol/l) resulted in a significant protection against mitochondrial damage, ATP depletion, cytochrome c loss, and stabilized DeltaPsi(m). This protection was blocked by 5-hydroxydecanoate (500 micromol/l), a mitoK(ATP) channel-selective inhibitor, but not by HMR-1098 (30 micromol/l), a putative sarcolemmal K(ATP) channel-selective inhibitor. Dissipation of DeltaPsi(m) also leads to opening of mitochondrial permeability transition pore, which was prevented by cyclosporin A. The data support the hypothesis that A-R disrupts DeltaPsi(m) and induces apoptosis, which are prevented by the activation of the mitoK(ATP) channel. This further emphasizes the therapeutic significance of mitoK(ATP) channel agonists in the prevention of ischemia-reperfusion cell injury.  相似文献   

15.
This study aimed to study the effect of bradykinin on reactive oxygen species (ROS) generation, mitochondrial injury, and cell death induced by ATP depletion in cell culture. Renal tubular cells were subjected to ATP depletion. Cell death was evaluated with LDH release, sub-G0/G1 fraction, Hoechst staining, and annexin V binding assay. ROS generation, mitochondrial membrane potential (DeltaPsi(m)), and intramitochondrial calcium were evaluated with flow cytometry. Translocation of cytochrome c and activation of apoptotic protein were analyzed with cell fractionating and Western blotting. Intracellular calcium was measured with a spectrofluorometer. Bradykinin enhanced cellular LDH release, apoptosis, generation of superoxide, and hydrogen peroxide induced by ATP depletion. Bradykinin also enhanced the loss of DeltaPsi(m), translocation of cytochrome c into cytosol, and activation of apoptotic protein. The intracellular/mitochondrial calcium was higher in bradykinin-treated cells. All these effects were reversed by coadministration with bradykinin B2 receptor (B2R) antagonist. Besides, blocking the phospholipase C (PLC) could reverse the synergistic effect of bradykinin with ATP depletion on ROS generation, mitochondrial damage, accumulation of intracellular/mitochondrial calcium, and apoptosis. Activation of B2R aggravates ROS generation, mitochondrial damage, and cell death induced by ATP depletion. These effects may act through the PLC-Ca(2+) signaling pathway.  相似文献   

16.
A rat fibroblastic cell line (rat-1/myc-ERtrade mark) was treated with different concentration of Antimycin A, a metabolic poison that affects mitochondrial respiratory chain complex III. The modes of cell death were analyzed by time-lapse videomicroscopy, in situ end-labeling (ISEL) technique, and ultrastructural analysis. Intracellular ATP levels were also measured in order to detect whether the energetic stores were determinant for the type of cell death. It was found that while apoptosis was the prevalent cell death in the fibroblasts treated with low doses, 100 or 200 microM Antimycin A, a new type of cell demise that shared dynamic, molecular, and morphological features with both apoptosis and necrosis represents the most common cell death when the cells were exposed to high doses, 300 or 400 microM, of the hypoxic stimulus. This new type of cell death has been chimerically termed aponecrosis. The inhibition of caspase 3, an enzyme critical for the apoptotic DNA degradation, caused a clear shift from aponecrosis to necrosis in the cell culture, suggesting that this new type of cell death could account for an incomplete execution of the apoptotic program and the following degeneration in necrosis. After being treated with higher doses, i.e., 1000 microM Antimycin A, almost all of the cells died by true necrosis. The analysis of the cellular energetic stores showed that the levels of ATP were a primary determinant in directing toward active cell death (apoptosis), aponecrosis, or necrosis. We conclude that chemically induced hypoxia produces different types of cell death depending on the intensity of the insult and on the ATP availability of the cell, and that the classic apoptosis and necrosis may represent only two extremes of a continuum of intermediate forms of cell demise.  相似文献   

17.
Hypoxia induces apoptosis in primary and transformed cells and in various tumor cell lines in vitro. In contrast, there is little apoptosis and predominant necrosis despite extensive hypoxia in human glioblastomas in vivo. We here characterize ultrastructural and biochemical features of cell death in LN-229, LN-18 and U87MG malignant glioma cells in a paradigm of hypoxia with partial glucose deprivation in vitro. Electron microscopic analysis of hypoxia-challenged glioma cells demonstrated early stages of apoptosis but predominant necrosis. ATP levels declined during hypoxia, but recovered with re-exposure to normoxic conditions unless hypoxia exceeded 8 h. Longer hypoxic exposure resulted in irreversible ATP depletion and delayed cell death. Hypoxia induced mitochondrial release of cytochrome c, but there was no cleavage of caspases 3, 7, 8 or 9, and no DNA fragmentation. Ectopic expression of BCL-XL conferred protection from hypoxia-induced cell death, whereas the overexpression of the antiapoptotic proteins X-linked-inhibitor-of-apoptosis-protein and cytokine response modifier-A had no effect. These findings suggest that glioma cells resist adverse effects of hypoxia until energy stores are depleted and then undergo necrosis rather than apoptosis because of energy deprivation.  相似文献   

18.
Chemical anoxia delays germ cell apoptosis in the human testis   总被引:5,自引:0,他引:5  
An understanding of testicular physiology and pathology requires knowledge of the regulation of cell death. Previous observation of suppression of apoptosis by hypoxia suggested a role for ATP in germ cell death. However, the exact effects of ATP production on germ cell death and of apoptosis on the levels of ATP and other adenine nucleotides (ANs) have remained unclear. We investigated the levels of ANs during human testicular apoptosis (analyzed by HPLC) and the role of chemical anoxia in germ cell death (detected by Southern blot analysis of DNA fragmentation, in situ end labeling of DNA, and electron microscopy). Incubation of seminiferous tubule segments under serum-free conditions induced apoptosis and concomitantly decreased the levels of ANs. Chemical anoxia, induced with potassium cyanide (KCN), an inhibitor of mitochondrial respiration, dropped ATP levels further and suppressed apoptosis at 4 h. After 24 h, many of the testicular cells underwent delayed apoptosis despite ATP depletion. Some cells showed signs of necrosis or toxicity. The addition of 2-deoxyglucose, an antimetabolite of glycolysis, did not alter the results obtained with KCN alone, whereas a toxic concentration of hydrogen peroxide switched apoptosis to necrosis. In most of the testicular cells, mitochondrial respiration appears to play a crucial role in controlling primary cell death cascades. In the human testis, there seem to be secondary apoptotic pathways that do not require functional respiration (or ATP).  相似文献   

19.
Cortical neurons rapidly die in necrosis due to poor glucose uptake in the low-density (LD) culture under serum-free condition without any supplements. The scanning and transmission electron microscopical analyses characterized the necrosis by membrane disruption, mitochondrial swelling and loss of cytoplasmic electron density. High-glucose treatment delayed the neuronal death by suppressing necrosis, but induced apoptosis through increase in Bax levels, cytochrome c release, caspase-3 activation and DNA ladder formation. Although pyruvate as well as high glucose inhibited necrotic cell death and rapid decrease in cellular ATP levels, possibly related to decreased [(3)H]-2-deoxy glucose uptake under the serum-free condition, it did not induce apoptosis. Protein kinase C inhibitors blocked these changes related to the cell death mode switch. Several neurotrophic factors did not affect the necrosis, but potentiated high-glucose-induced survival activity, while inhibiting cytochrome c release. All these results suggest that high-glucose treatment causes neuronal cell death mode switch by inhibiting necrosis, while inducing apoptosis, which is prevented by neurotrophic factors.  相似文献   

20.
Insulin secretion in normal B-cells is pulsatile, a consequence of oscillations in the cell membrane potential (MP) and cytosolic calcium activity ([Ca(2+)](c)). We simultaneously monitored glucose-induced changes in [Ca(2+)](c) and in the mitochondrial membrane potential DeltaPsi, as a measure for ATP generation. Increasing the glucose concentration from 0.5 to 15 mM led to the well-known hyperpolarization of DeltaPsi and ATP-dependent lowering of [Ca(2+)](c). However, as soon as [Ca(2+)](c) rose due to the opening of voltage-dependent Ca(2+) channels, DeltaPsi depolarized and thereafter oscillations in [Ca(2+)](c) were parallel to oscillations in DeltaPsi. A depolarization or oscillations of DeltaPsi cannot be evoked by a substimulatory glucose concentration, but Ca(2+) influx provoked by 30 mM KCl was followed by a depolarization of DeltaPsi. The following feedback loop is suggested: Glucose metabolism via mitochondrial ATP production and closure of K(+)(ATP) channels induces an increase in [Ca(2+)](c). The rise in [Ca(2+)](c) in turn decreases ATP synthesis by depolarizing DeltaPsi, thus transiently terminating Ca(2+) influx.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号