首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microorganisms associated with marine sponges are potential resources for marine enzymes. In this study, culture-independent metagenomic approach was used to isolate lipases from the complex microbiome of the sponge Ircinia sp. obtained from the South China Sea. A metagenomic library was constructed, containing 6568 clones, and functional screening on 1 % tributyrin agar resulted in the identification of a positive lipase clone (35F4). Following sequence analysis 35F4 clone was found to contain a putative lipase gene lipA. Sequence analysis of the predicted amino acid sequence of LipA revealed that it is a member of subfamily I.1 of lipases, with 63 % amino acid similarity to the lactonizing lipase from Aeromonas veronii (WP_021231793). Based on the predicted secondary structure, LipA was predicted to be an alkaline enzyme by sequence/structure analysis. Heterologous expression of lipA in E. coli BL21 (DE3) was performed and the characterization of the recombinant enzyme LipA showed that it is an alkaline enzyme with high tolerance to organic solvents. The isolated lipase LipA was active in the broad alkaline range, with the highest activity at pH 9.0, and had a high level of stability over a pH range of 7.0–12.0. The activity of LipA was increased in the presence of 5 mM Ca2+ and some organic solvents, e.g. methanol, acetone and isopropanol. The optimum temperature for the activity of LipA is 40 °C and the molecular weight of LipA was determined to be ~30 kDa by SDS-PAGE. LipA is an alkaline lipase and shows good tolerance to some organic solvents, which make it of potential utility in the detergent industry and enzyme mediated organic synthesis. The result of this study has broadened the diversity of known lipolytic genes and demonstrated that marine sponges are an important source for new enzymes.  相似文献   

2.
3.
In this work, a metagenomic library was generated from peat-swamp forest soil obtained from Narathiwat Province, Thailand. From a fosmid library of approximately 15,000 clones, six independent clones were found to possess lipolytic activity at acidic pH. Analysis of pyrosequencing data revealed six ORFs, which exhibited 34–71% protein similarity to known lipases/esterases. A fosmid clone, designated LP8, which demonstrated the highest level of lipolytic activity under acidic conditions and demonstrated extracellular activity, was subsequently subcloned and sequenced. The full-length lipase/esterase gene, estPS2, was identified. Its deduced amino acid was closely related to a lipolytic enzyme of an uncultured bacterium, and contained the highly conserved motif of a hormone-sensitive family IV lipase. The EstPS2 enzyme exhibited highest activity toward p-nitrophenyl butyrate (C4) at 37 °C at pH 5, indicating that it was an esterase with activity and secretion characteristics suitable for commercial development.  相似文献   

4.
A metagenomic library was constructed using total genomic DNA extracted from the mud in the west coast of Korea and was used together with a fosmid vector, pCC1FOS in order to uncover novel gene sources. One clone from approximately 30,000 recombinant Escherichia coli clones was identified that showed proteolytic activity. The gene for the proteolytic enzyme was subcloned into pUC19 and sequenced, and a database search for homologies revealed it to be a zinc-dependent metalloprotease. The cloned gene included the intact coding gene for a novel metalloproteinase and its own promoter. It comprised an open reading frame of 1,080 base pairs, which encodes a protein of 39,490 Da consisting of 359 amino acid residues. A His-Glu-X-X-His sequence, which is a conserved sequence in the active site of zinc-dependent metalloproteases, was found in the deduced amino acid sequence of the gene, suggesting that the enzyme is a zinc-dependent metalloprotease. The purified enzyme showed optimal activity at 50°C for 1 h and pH 7.0. The enzyme activity was inhibited by metal-chelating reagents, such as EDTA, EGTA and 1,10-phenanthroline. The enzyme hydrolyzed azocasein as well as fibrin. Thus, the enzyme could be useful as a therapeutic agent to treat thrombosis. The sequence reported in this paper has been deposited in the GenBank database (Accession number: EF100137).  相似文献   

5.
A novel lipase was isolated from a metagenomic library of Baltic Sea sediment bacteria. Prokaryotic DNA was extracted and cloned into a copy control fosmid vector (pCC1FOS) generating a library of >7000 clones with inserts of 24-39 kb. Screening for clones expressing lipolytic activity based on the hydrolysis of tributyrin and p-nitrophenyl esters, identified 1% of the fosmids as positive. An insert of 29 kb was fragmented and subcloned. Subclones with lipolytic activity were sequenced and an open reading frame of 978 bp encoding a 35.4-kDa putative lipase/esterase h1Lip1 (DQ118648) with 54% amino acid similarity to a Pseudomonas putida esterase (BAD07370) was identified. Conserved regions, including the putative active site, GDSAG, a catalytic triad (Ser148, Glu242 and His272) and a HGG motif, were identified. The h1Lip1 lipase was over expressed, (pGEX-6P-3 vector), purified and shown to hydrolyse p-nitrophenyl esters of fatty acids with chain lengths up to C14. Hydrolysis of the triglyceride derivative 1,2-di-O-lauryl-rac-glycero-3-glutaric acid 6'-methylresorufin ester (DGGR) confirmed that h1Lip1 was a lipase. The apparent optimal temperature for h1Lip1, by hydrolysis of p-nitrophenyl butyrate, was 35 degrees C. Thermal stability analysis showed that h1Lip1 was unstable at 25 degrees C and inactivated at 40 degrees C with t1/2 <5 min.  相似文献   

6.
In the present study, metagenomic library of Western Ghats soil sample was constructed in a fosmid vector (pCC1FOS) and screened for biocatalytic properties. The clones showed amylolytic activity on Luria-Bertani starch agar plates and one of them was studied in detail. The enzyme exhibited stability at elevated temperature with 60°C being the optimal temperature. The enzyme retained more than 30% activity after 60 min incubation at 80°C. It also showed more than 70% activity retention in 1.5 M NaCl solution. The pH optimum of the enzyme was at pH = 5.0. The enzyme possesses good activity in the presence of chelating and strong reducing agents with activity enhancements or retention being observed at 5 mM β-mercaptoethanol, dithiothreitol and N-bromosuccinimide. However, almost complete loss of activity was observed with 5 mM EDTA, while activity enhancement was observed upon incubation with Ca2+ suggesting it to be a Ca2+-dependent α-amylase, which was further confirmed by a thin-layer chromatography (TLC). The TLC run revealed that digestion pattern was similar to commercial α-amylase. The 16S rRNA gene sequence (GenBank accession number HQ680979) BLAST showed 95% similarities with Exiguobacterium sp. AFB-11 and AFB 18, with query sequence coverage of 99%.  相似文献   

7.
Microorganisms residing in the rumens of cattle represent a rich source of lignocellulose-degrading enzymes, since their diet consists of plant-based materials that are high in cellulose and hemicellulose. In this study, a metagenomic library was constructed from buffalo rumen contents using pCC1FOS fosmid vector. Ninety-three clones from the pooled library of approximately 10,000 clones showed degrading activity against AZCL-HE-Cellulose, whereas four other clones showed activity against AZCL-Xylan. Contig analysis of pyrosequencing data derived from the selected strongly positive clones revealed 15 ORFs that were closely related to lignocellulose-degrading enzymes belonging to several glycosyl hydrolase families. Glycosyl hydrolase family 5 (GHF5) was the most abundant glycosyl hydrolase found, and a majority of the GHF5s in our metagenomes were closely related to several ruminal bacteria, especially ones from other buffalo rumen metagenomes. Characterization of BT-01, a selected clone with highest cellulase activity from the primary plate screening assay, revealed a cellulase encoding gene with optimal working conditions at pH 5.5 at 50 °C. Along with its stability over acidic pH, the capability efficiently to hydrolyze cellulose in feed for broiler chickens, as exhibited in an in vitro digestibility test, suggests that BT-01 has potential application as a feed supplement.  相似文献   

8.
The human oral metagenomic DNA cloned into plasmid pUC19 was used to construct a DNA library in Escherichia coli. Functional screening of 40,000 metagenomic clones led to identification of a clone LIP2 that exhibited halo on tributyrin agar plate. Sequence analysis of LIP2 insert DNA revealed a 939 bp ORF (omlip1) which showed homology to lipase 1 of Acinetobacter junii SH205. The omlip1 ORF was cloned and expressed in E. coli BL21 (DE3) using pET expression system. The recombinant enzyme was purified to homogeneity and the biochemical properties were studied. The purified OMLip1 hydrolyzed p-nitrophenyl esters and triacylglycerol esters of medium and long chain fatty acids, indicating the enzyme is a true lipase. The purified protein exhibited a pH and temperature optima of 7 and 37 °C respectively. The lipase was found to be stable at pH range of 6–7 and at temperatures lower than 40 °C. Importantly, the enzyme activity was unaltered, by the presence or absence of many divalent cations. The metal ion insensitivity of OMLip1offers its potential use in industrial processes.  相似文献   

9.
To search for novel lipolytic enzymes, a metagenomic library was constructed from the tidal flat sediment of Ganghwa Island in South Korea. By functional screening using tributyrin agar plates, 3 clones were selected from among the 80,050 clones of the fosmid library. The sequence analysis revealed that those clones contained different open reading frames, which showed 50–57% amino acid identity with putative lipolytic enzymes in the database. Based on the phylogenetic analysis, they were identified to encode novel members, which form a distinct and new subfamily in the family IV of bacterial lipolytic enzymes. The consensus sequence, GT(S)SA(G)G, encompassing the active site serine of the enzymes was different from the GDSAG motif, conserved in the other subfamily. The genes were expressed in Escherichia coli and recombinant proteins were purified as active soluble forms. The enzymes showed the highest activity toward p-nitrophenyl valerate (C5) and exhibited optimum activities at mesophilic temperature ranges and slightly alkaline pH. In particular, the enzymes displayed salt tolerance with over 50% of the maximum activity remained in the presence of 3 M NaCl (or KCl). In this study, we demonstrated that the metagenomic approach using marine tidal flat sediment as a DNA source expanded the diversity of lipolytic enzyme-encoding genes.  相似文献   

10.
Diverse ketosynthase (KS) genes were retrieved from the microbial community associated with the Great Barrier Reef sponge Pseudoceratina clavata. Bacterial isolation and metagenomic approaches were employed. Phylogenetic analysis of 16S rRNA of culturable sponge-associated bacterial communities comprised eight groups over four phyla. Ten KS domains were amplified from four genera of isolates and phylogenetics demonstrated that these KS domains were located in three clusters (actinobacterial, cyanobacterial and trans-AT type). Metagenomic DNA of the sponge microbial community was extracted to explore community KS genes by two approaches: direct amplification of KS domains and construction of fosmid libraries for KS domain screening. Five KS domains were retrieved from polymerase chain reaction (PCR) amplification using sponge metagenome DNA as template and five fosmid clones containing KS domains found using multiplex PCR screening. Analysis of selected polyketide synthase (PKS) from one fosmid showed that the PKS consists of two modules. Open reading frames located up- and downstream of the PKS displayed similarity with membrane synthesis-related proteins such as cardiolipin synthase. Metagenome approaches did not detect KS domains found in sponge isolates. All KS domains from both metagenome approaches formed a single cluster with KS domains originating from metagenomes derived from other sponge species from other geographical regions.  相似文献   

11.
【目的】本研究旨在通过非培养手段构建和筛选宏基因组文库,以求找到新型的杀线虫蛋白酶基因。【方法】采用密度梯度离心法提取和纯化温室土壤微生物总DNA,经平末端、连接、包装、转染后,构建宏基因组Fosmid文库,同时,以脱脂奶为底物,以根结线虫为靶标,对文库进行功能初筛。【结果】该文库库容31008个克隆,平均插入片段36.5kb,包含1.13Gbp的微生物基因组信息,适合大规模的微生物功能基因筛选,通过功能初筛,筛选到1个含杀线虫蛋白酶基因的Fosmid克隆(pro12)。进一步构建和筛选出亚克隆(espro124a5),通过对基因结构进行了初步分析发现:espro124a5是一种分泌型胞外蛋白酶,与来自于Maricaulis maris MCS10(accession no.YP_756822at NCBI)的丝氨酸蛋白酶S15仅有45%的同源性,是一种新型的丝氨酸蛋白酶,有其保守的催化三元组:Asp469、His541和Ser348。【结论】密度梯度离心法提取到的DNA纯度高、片段长,完全能满足构建宏基因组Fosmid文库的要求;同时,构建的宏基因组Fosmid文库库容大,有利于我们从中筛选其他的微生物基因资源。  相似文献   

12.
A metagenomic fosmid library was constructed from compost microbial communities that were collected from various farms throughout the Khon Kaen province, Thailand. The library was enriched in carboxymethylcellulose (CM-cellulose)—containing media prior to the screening of clones capable of degrading cellulosic materials. Two clones were selected for further subcloning and sequencing based on different patterns from restriction analysis. Deduced amino acid analysis of possible ORFs revealed one novel gene encoding an enzyme belonging to glycosyl hydrolase family 43 (GH43), which is a GH family rarely found in metagenomic studies. The most notable finding is that this enzyme, designated as Biof1_09, shows dual activities, namely endocellulase and endoxylanase activities. Biof1_09 showed greater than 50 % of its activity under acidic conditions ranging from pH 3.5 to 5.5 with a pH optimum of 4.5. The optimum temperature of this enzyme was between 45 and 55 °C with an optimum of 50 °C. The properties of Biof1_09 make this enzyme an attractive candidate for large-scale expression for use in lignocellulose degradation for various bioprocess applications, including bioethanol fermentation.  相似文献   

13.
Metagenomics provides access to the uncultured majority of the microbial world. The approaches employed in this field have, however, had limited success in linking functional genes to the taxonomic or phylogenetic origin of the organism they belong to. Here we present an efficient strategy to recover environmental DNA fragments that contain phylogenetic marker genes from metagenomic libraries. Our method involves the cleavage of 23S ribsosmal RNA (rRNA) genes within pooled library clones by the homing endonuclease I-CeuI followed by the insertion and selection of an antibiotic resistance cassette. This approach was applied to screen a library of 6500 fosmid clones derived from the microbial community associated with the sponge Cymbastela concentrica. Several fosmid clones were recovered after the screen and detailed phylogenetic and taxonomic assignment based on the rRNA gene showed that they belong to previously unknown organisms. In addition, compositional features of these fosmid clones were used to classify and taxonomically assign a dataset of environmental shotgun sequences. Our approach represents a valuable tool for the analysis of rapidly increasing, environmental DNA sequencing information.  相似文献   

14.
15.
The activities of isocitrate lyase, esterase, and lipase by the psychrotrophic Acinetobacter sp. strain HH1-1 were monitored during incubation at 25 degreesC, 5 degreesC, and after a 25 degreesC to 5 degreesC down shift in growth temperature. During growth at 25 degreesC, isocitrate lyase activity was detected in cell-free extracts, but at 5 degreesC and after cold shock, activity was measured primarily in the cell culture supernatant. Strain HH1-1 produced two cell-associated esterases and an extracellular esterase and lipase. Activities of the extracellular esterase and lipase were reduced when cells were grown at 5 degreesC and after cold shock. In contrast, an increased synthesis of a 53-kDa cell-associated esterase was observed 50 h after cold shock. An extracellular polysaccharide was also produced, indicated by a decrease in surface tension in cell culture supernatant when cells were incubated at 25 degreesC; but like extracellular enzyme activity, production of the exopolymer was reduced when cells were subjected to low temperatures. These results indicated that the intracellular enzyme, isocitrate lyase, leaked out of the cell after cold shock and during growth at 5 degreesC. The increased activity of a cell-associated esterase suggested this enzyme is required for growth at low temperatures. In contrast, activities of extracellular lipolytic enzymes and production of an extracellular polysaccharide were negatively affected at the lower temperatures.  相似文献   

16.
Functional metagenomics has emerged as a powerful method for gene model validation and enzyme discovery from natural and human engineered ecosystems. Here we report development of a high-throughput functional metagenomic screen incorporating bioinformatic and biochemical analyses features. A fosmid library containing 6144 clones sourced from a mining bioremediation system was screened for cellulase activity using 2,4-dinitrophenyl β-cellobioside, a previously proven cellulose model substrate. Fifteen active clones were recovered and fully sequenced revealing 9 unique clones with the ability to hydrolyse 1,4-β-d-glucosidic linkages. Transposon mutagenesis identified genes belonging to glycoside hydrolase (GH) 1, 3, or 5 as necessary for mediating this activity. Reference trees for GH 1, 3, and 5 families were generated from sequences in the CAZy database for automated phylogenetic analysis of fosmid end and active clone sequences revealing known and novel cellulase encoding genes. Active cellulase genes recovered in functional screens were subcloned into inducible high copy plasmids, expressed and purified to determine enzymatic properties including thermostability, pH optima, and substrate specificity. The workflow described here provides a general paradigm for recovery and characterization of microbially derived genes and gene products based on genetic logic and contemporary screening technologies developed for model organismal systems.  相似文献   

17.
A gene coding for a thermostable esterase was isolated by functional screening of Escherichia coli cells that had been transformed with fosmid environmental DNA libraries constructed with metagenomes from thermal environmental samples. The gene conferring esterase activity on E. coli grown on tributyrin agar was composed of 936 bp, corresponding to 311 amino acid residues with a molecular mass of 34 kDa. The enzyme showed significant amino acid similarity (64%) to the enzyme from a hyperthermophilic archaeon, Pyrobaculum calidifontis. An amino acid sequence comparison with other esterases and lipases revealed that the enzyme should be classified as a new member of the hormone-sensitive lipase family. The recombinant esterase that was overexpressed and purified from E. coli was active above 30 degrees C up to 95 degrees C and had a high thermal stability. It displayed a high degree of activity in a pH range of 5.5 to 7.5, with an optimal pH of approximately 6.0. The best substrate for the enzyme among the p-nitrophenyl esters (C(4) to C(16)) examined was p-nitrophenyl caproate (C(6)), and no lipolytic activity was observed with esters containing an acyl chain length of longer than 10 carbon atoms, indicating that the enzyme is an esterase and not a lipase.  相似文献   

18.
荷斯坦奶牛瘤胃微生物元基因组BAC文库的构建与分析   总被引:13,自引:0,他引:13  
采用未培养技术和脉冲场电泳技术直接从瘤胃微生物提取到大小在2Mb左右混合微生物DNA,经HindⅢ不完全酶切获得50~100kbDNA片段,将其连接在pCC1BAC载体上,转化E.coliEPI300,得到瘤胃微生物BAC文库,经对文库的鉴定分析,该文库的平均插入片段54.5kb,空载体率小于2%,库容837Mb,共保存15360个克隆。通过对该文库进行部分酶活性筛选,获得具有淀粉酶活性的克隆16个;纤维素酶活性的克隆26个,而且能降解纤维素的克隆中25个呈现多酶活性。这些结果表明该文库具有重要研究价值。  相似文献   

19.
【目的】通过建立宏基因组文库的高通量保存与基于探针洗脱的多次膜杂交筛选方法,从植物共生菌宏基因组文库筛选具有生物催化潜力的新酶基因。【方法】首先根据滴度将初始文库噬菌体包装颗粒感染到EPI300-T1R E.coli,过夜培养后对应保存于96孔板;提取粘粒进行文库的杂交筛选。【结果】描述的洗脱条件可完全去除尼龙膜上与靶DNA结合的探针,并且尼龙膜上的靶DNA至少可用于7次探针杂交,从而明显提高宏基因组文库的筛选效率。【结论】以Enoate reductase(ER)和短链脱氢酶(SDR)的同源基因片段为探针,运用该方法经两轮筛选获得候选单克隆并进行了部分粘粒的测序,发现了新的ER和SDR同源基因,并克隆到相应的全长基因序列用于后续的表达与酶化学研究。  相似文献   

20.
Marine sponges harbouring uncultured symbiotic bacteria are important sources of biologically active compounds. Since they would be interesting resources to explore unknown functional genes by means of a metagenomic approach, we constructed a metagenomic library of the Japanese marine sponge Discodermia calyx. The functional screening afforded the two clones producing porphyrins as red pigments. The isolation and structural elucidation of the red pigments revealed that the major red pigment was Zn-coproporphyrin III. The sequence data of the clones identified genes encoding glutamyl-tRNA reductase along with other ORFs related to porphyrin biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号