首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
We investigated the effect of time‐of‐day on both maximal sprint power and repeated‐sprint ability (RSA). Nine volunteers (22±4 yrs) performed a RSA test both in the morning (07:00 to 09:00 h) and evening (17:00 to 19:00 h) on different days in a random order. The RSA cycle test consisted of five, 6 sec maximal sprints interspersed by 24 sec of passive recovery. Both blood lactate concentration and heart rate were higher in the evening than morning RSA (lactate values post exercise: 13±3 versus 11±3 mmol/L?1, p<0.05). The peak power developed during the first sprint was higher in the evening than morning (958±112 vs. 915±133 W, p<0.05), but this difference was not apparent in subsequent sprints, leading to a higher power decrement across the 5×6 sec test in the evening (11±2 vs. 7±3%, p<0.05). Both the total work during the RSA cycle test and the power developed during bouts 2 to 5 failed to be influenced by time‐of‐day. This suggests that the beneficial effect of time‐of‐day may be limited to a single expression of muscular power and fails to advantage performance during repeated sprints.  相似文献   

2.
The present study was designed to investigate if the suggested greater fatigability during repeated exercise in the afternoon, compared to the morning, represents a true time-of-day effect on fatigability or a consequence of a higher initial power. In a counterbalanced order, eight subjects performed a repeated-sprint test [10?×?(6 s of maximal cycling sprint?+?30 s of rest)] on three different occasions between: 08:00–10:00, 17:00–19:00, and 17:00-19:00?h controlled (17:00–19:00?hcont, i.e., initial power controlled to be the same as the two first sprints of the 08:00–10:00?h trial). Power output was significantly (p?<?0.05) higher for sprints 1, 2, and 3 in the afternoon than in the morning (e.g., sprint 1: 23.3 ±1 versus 21.2 ±1 W·kg?1), but power decrement for the 10 sprints was also higher in the afternoon. Based on the following observations, we conclude that this higher power decrement is a consequence of the higher initial power output in the afternoon. First, there was no difference in power during the final five sprints (e.g., 20.4 ±1 versus 19.7 ±1 W·kg?1 for sprint 10 in the afternoon and morning, respectively). Second, the greater decrement in the afternoon was no longer present when participants were producing the same initial power output in the afternoon as in the morning. Third, electromyographic activity of the vastus lateralis decreased during the exercise (p?<?0.05), but without a time-of-day effect. (Author correspondence: )  相似文献   

3.
This study evaluated the influence of a neutral vs. a moderately warm environment on the diurnal variation in muscular power. Twelve male subjects [27.0 (+/-4) years] performed two different jump tests [a squat jump (SJ) and a counter-movement jump (CMJ)] and a brief maximal sprint on cycle ergometer (CS) in four different conditions (morning/neutral, morning/moderately warm and humid, afternoon/neutral, and afternoon/moderately warm and humid). The morning experiments were conducted between 07:00 and 09:00 h, and the afternoon experiments were conducted between 17:00 and 19:00 h. The mean laboratory temperatures and humidity were 20 (+/-1) degrees C, 70 (+/-5)% and 29 (+/-1) degrees C, 57 (+/-4)% for the neutral and moderately warm and humid conditions, respectively. Rectal temperature and leg skin temperature were significantly dependent on both time-of-day and ambient temperature. An interaction effect (P < 0.05) was noted between time-of-day and ambient temperature for the power developed for the CMJ, the SJ, and half of a pedal revolution during the cycling sprint. In summary, (i) the same subjects were influenced by time-of-day differently, depending on the ambient temperature during testing; (ii) time-of-day affected muscular performance only in the neutral condition, (iii) the moderately warm and humid condition blunted the diurnal variation in muscular performance, and (iv) the effect of the ambient temperature was dependent on time-of-day.  相似文献   

4.
This study analyzed diurnal variations in oxygen (O(2)) uptake kinetics and efficiency during a moderate cycle ergometer exercise. Fourteen physically active diurnally active male subjects (age 23+/-5 yrs) not specifically trained at cycling first completed a test to determine their ventilatory threshold (T(vent)) and maximal oxygen consumption (VO(2max)); one week later, they completed four bouts of testing in the morning and evening in a random order, each separated by at least 24 h. For each period of the day (07:00-08:30 h and 19:00-20:30 h), subjects performed two bouts. Each bout was composed of a 5 min cycling exercise at 45 W, followed after 5 min rest by a 10 min cycling exercise at 80% of the power output associated with T(vent). Gas exchanges were analyzed breath-by-breath and fitted using a mono-exponential function. During moderate exercise, the time constant and amplitude of VO(2) kinetics were significantly higher in the morning compared to the evening. The net efficiency increased from the morning to evening (17.3+/-4 vs. 20.5+/-2%; p<0.05), and the variability of cycling cadence was greater during the morning than evening (+34%; p<0.05). These findings suggest that VO(2) responses are affected by the time of day and could be related to variability in muscle activity pattern.  相似文献   

5.
The aim of this study was to examine the time-of-day (TOD) effects in myoelectric and mechanical properties of muscle during a maximal and prolonged isokinetic exercise. Twelve male subjects were asked to perform 50 maximal voluntary contractions (MVC) of the knee extensor muscles at a constant angular velocity of 2.09 rad . sec(-1), at 06 : 00 and 18 : 00 h. Torque and electromyographic (EMG) parameters were recorded for each contraction, and the ratio between these values was calculated to evaluate variations of the neuromuscular efficiency (NME) with fatigue and with TOD. The results indicated that maximal torque values (T(45)Max) was significantly higher (7.73%) in the evening than in the morning (p<0.003). The diurnal variation in torque decrease was used to define two phases. During the first phase (1st to the 26th repetition), torque values decreased fast and values were higher in the evening than in the morning, and during the second phase (27th to the 50th repetition), torque decreased slightly and reached a floor value that appeared constant with TOD. The EMG parameters (Root Mean Square; RMS) were modified with fatigue, but were not TOD dependent. The NME decrease-significantly with fatigue, showing that peripheral factors were mainly involved in the torque decrease. Furthermore, NME decrease was greater at 18 : 00 than at 06 : 00 h for the vastus medialis (p<0.05) and the vastus lateralis muscles (p<0.002), and this occurred during the first fatigue phase of the exercise. In conclusion, the diurnal variation of the muscle fatigue observed during a maximal and prolonged isokinetic exercise seems to reflect on the muscle, with a greater contractile capacity but a higher fatigability in the evening compared to the morning.  相似文献   

6.
The aim of this study was (i) to evaluate whether homocysteine (Hcy), total antioxidant status (TAS), and biological markers of muscle injury would be affected by time of day (TOD) in football players and (ii) to establish a relationship between diurnal variation of these biomarkers and the daytime rhythm of power and muscle fatigue during repeated sprint ability (RSA) exercise. In counterbalanced order, 12 football (soccer) players performed an RSA test (5 x[6 s of maximal cycling sprint + 24 s of rest]) on two different occasions: 07:00-08:30 h and 17:00-18:30 h. Fasting blood samples were collected from a forearm vein before and 3-5 min after each RSA test. Core temperature, rating of perceived exertion, and performances (i.e., Sprint 1, Sprint 2, and power decrease) during the RSA test were significantly higher at 17:00 than 07:00 h (p < .001, p < .05, and p < .05, respectively). The results also showed significant diurnal variation of resting Hcy levels and all biological markers of muscle injury with acrophases (peak times) observed at 17:00 h. These fluctuations persisted after the RSA test. However, biomarkers of antioxidant status' resting levels (i.e., total antioxidant status, uric acid, and total bilirubin) were higher in the morning. This TOD effect was suppressed after exercise for TAS and uric acid. In conclusion, the present study confirms diurnal variation of Hcy, selected biological markers of cellular damage, and antioxidant status in young football players. Also, the higher performances and muscle fatigue showed in the evening during RSA exercise might be due to higher levels of biological markers of muscle injury and lower antioxidant status at this TOD.  相似文献   

7.
This study evaluated the influence of a neutral vs. a moderately warm environment on the diurnal variation in muscular power. Twelve male subjects [27.0 (±4) years] performed two different jump tests [a squat jump (SJ) and a counter-movement jump (CMJ)] and a brief maximal sprint on cycle ergometer (CS) in four different conditions (morning/neutral, morning/moderately warm and humid, afternoon/neutral, and afternoon/moderately warm and humid). The morning experiments were conducted between 07:00 and 09:00 h, and the afternoon experiments were conducted between 17:00 and 19:00 h. The mean laboratory temperatures and humidity were 20 (±1)°C, 70 (±5)% and 29 (±1)°C, 57 (±4)% for the neutral and moderately warm and humid conditions, respectively. Rectal temperature and leg skin temperature were significantly dependent on both time-of-day and ambient temperature. An interaction effect (P < 0.05) was noted between time-of-day and ambient temperature for the power developed for the CMJ, the SJ, and half of a pedal revolution during the cycling sprint. In summary, (i) the same subjects were influenced by time-of-day differently, depending on the ambient temperature during testing; (ii) time-of-day affected muscular performance only in the neutral condition, (iii) the moderately warm and humid condition blunted the diurnal variation in muscular performance, and (iv) the effect of the ambient temperature was dependent on time-of-day.  相似文献   

8.
The purpose of this study was to evaluate the effects of time of day on aerobic contribution during high-intensity exercise. A group of 11 male physical education students performed a Wingate test against a resistance of 0.087 kg . kg(-1) body mass. Two different times of day were chosen, corresponding to the minimum (06:00 h) and the maximum (18:00 h) levels of power. Oxygen uptake (.VO(2)) was recorded breath by breath during the test (30 sec). Blood lactate concentrations were measured at rest, just after the Wingate test, and again 5 min later. Oral temperature was measured before each test and on six separate occasions at 02:00, 06:00, 10:00, 14:00, 18:00, and 22:00 h. A significant circadian rhythm was found in body temperature with a circadian acrophase at 18:16+/-00:25 h as determined by cosinor analysis. Peak power (P(peak)), mean power (P(mean)), total work done, and .VO(2) increased significantly from morning to afternoon during the Wingate Test. As a consequence, aerobic contribution recorded during the test increased from morning to afternoon. However, no difference in blood lactate concentrations was observed from morning to afternoon. Furthermore, power decrease was greater in the morning than afternoon. Altogether, these results indicate that the time-of-day effect on performances during the Wingate test is mainly due to better aerobic participation in energy production during the test in the afternoon than in the morning.  相似文献   

9.
The aim of this study was (i) to evaluate whether homocysteine (Hcy), total antioxidant status (TAS), and biological markers of muscle injury would be affected by time of day (TOD) in football players and (ii) to establish a relationship between diurnal variation of these biomarkers and the daytime rhythm of power and muscle fatigue during repeated sprint ability (RSA) exercise. In counterbalanced order, 12 football (soccer) players performed an RSA test (5?×?[6 s of maximal cycling sprint?+?24 s of rest]) on two different occasions: 07:00–08:30?h and 17:00–18:30?h. Fasting blood samples were collected from a forearm vein before and 3–5?min after each RSA test. Core temperature, rating of perceived exertion, and performances (i.e., Sprint 1, Sprint 2, and power decrease) during the RSA test were significantly higher at 17:00 than 07:00?h (p?<?.001, p?<?.05, and p?<?.05, respectively). The results also showed significant diurnal variation of resting Hcy levels and all biological markers of muscle injury with acrophases (peak times) observed at 17:00?h. These fluctuations persisted after the RSA test. However, biomarkers of antioxidant status' resting levels (i.e., total antioxidant status, uric acid, and total bilirubin) were higher in the morning. This TOD effect was suppressed after exercise for TAS and uric acid. In conclusion, the present study confirms diurnal variation of Hcy, selected biological markers of cellular damage, and antioxidant status in young football players. Also, the higher performances and muscle fatigue showed in the evening during RSA exercise might be due to higher levels of biological markers of muscle injury and lower antioxidant status at this TOD. (Author correspondence: )  相似文献   

10.
The present study examined the growth hormone (GH) response to repeated bouts of maximal sprint cycling and the effect of cycling at different pedaling rates on postexercise serum GH concentrations. Ten male subjects completed two 30-s sprints, separated by 1 h of passive recovery on two occasions, against an applied resistance equal to 7.5% (fast trial) and 10% (slow trial) of their body mass, respectively. Blood samples were obtained at rest, between the two sprints, and for 1 h after the second sprint. Peak and mean pedal revolutions were greater in the fast than the slow trial, but there were no differences in peak or mean power output. Blood lactate and blood pH responses did not differ between trials or sprints. The first sprint in each trial elicited a serum GH response (fast: 40.8 +/- 8.2 mU/l, slow: 20.8 +/- 6.1 mU/l), and serum GH was still elevated 60 min after the first sprint. The second sprint in each trial did not elicit a serum GH response (sprint 1 vs. sprint 2, P < 0.05). There was a trend for serum GH concentrations to be greater in the fast trial (mean GH area under the curve after sprint 1 vs. after sprint 2: 1,697 +/- 367 vs. 933 +/- 306 min x mU(-1) x l(-1); P = 0.05). Repeated sprint cycling results in an attenuation of the GH response.  相似文献   

11.
The purpose of this study was to investigate the effect of time of day and different modalities of recovery (active vs. passive recovery) after intermittent exercise in young soccer players. In randomized order, 16 boys participated in the study, divided into two groups: passive recovery (PRG, n?=?8) and active recovery (ARG, n?=?8). Both groups performed tests at 07:00 and 17:00 h. The results showed that performance in the Sargent jump test (SJT), 10-m sprint, and agility were higher in the evening (17:00 h), around the presumed peak of body temperature. SJT and agility performance decreased after the match. The better performance in SJT and agility were found in ARG rather than PRG (p?p?p?p?p?p?相似文献   

12.
13.
The diurnal variation in insulin-stimulated systemic glucose and amino acid utilization was investigated in eleven pigs of approximately 40 kg. Pigs were fed isoenergetic/isoproteinic diets (366 kJ/kg BW (0.75) per meal) in two daily rations (06:00 and 18:00 h). After a 3-week habituation period, hyperinsulinemic euglycemic euaminoacidemic clamp studies (by intra-portal insulin, glucose and amino acids infusion and arterial blood sampling) were performed starting at 06:00 or 18:00 h (while skipping the meal), using a cross-over within-animal design. Basal (preclamp) plasma concentrations of insulin, glucose, lactate, individual amino acids and urea were similar in the morning compared to the evening. Insulin-stimulated ( approximately 4-fold increase over basal) systemic glucose utilization was similar (17.6+/-1.4 and 18.9+/-1.8 mg.kg (-1).min (-1)) but amino acid utilization was 19% greater in the morning VS. the evening (2.37+/-0.21 VS. 1.99+/-0.15 mg.kg (-1).min (-1), p<0.05), respectively. Insulin-stimulated plasma lactate concentrations remained constant in the morning (0.77+/-0.06 to 0.71+/-0.04 mmol.l (-1)) but declined in the evening (0.89+/-0.09 to 0.65+/-0.06 mmol.l (-1), p<0.05). By contrast, insulin-stimulated plasma urea concentrations declined in the morning (2.48+/-0.11 to 2.03+/-0.10 mmol.l (-1), p<0.005) but remained constant in the evening (2.18+/-0.14 to 2.12+/-0.12 mmol.l (-1)). In conclusion, pigs fed identical meals at 12-hour intervals follow a clear diurnal biorhythm in protein anabolism, with greater insulin-stimulated systemic amino acid utilization and lower plasma urea response in the morning compared to the evening.  相似文献   

14.
The purpose of this study was to examine time-of-day effects on short-term performance in obese young men. In a balanced study design, 30 boys were divided into two groups: obese (OG; n = 15) and non-obese (CG; n = 15) groups. Both groups performed anaerobic tests of strength and power (squat-Jump, SJ; counter-movement jump, CMJ; 10-m sprint; and 30-m sprint) at 08:00 and 17:00 h on separate days. The results showed morning–evening differences in all variables in CG, with significant increases at 17:00 h (around the time of peak temperature) in comparison with 08:00 h (p < 0.01) for OG. However, such morning-evening differences were not found in the OG, except for the 30-m sprint. Obesity affects the diurnal variation on performances of 30-m sprint with a significant decrease in the evening for OG of 1.23% (p < 0.01). A correlation between anaerobic performance and oral temperature was observed only in the 30-m sprint test. In conclusion, the findings of the present study indicated that obesity is a problem that can affect circadian rhythms and performance in obese young men; therefore, preventing childhood obesity should become a top priority in efforts to improve performance and health.  相似文献   

15.
Diurnal variation in muscle performance has been well documented in the past few years, but almost exclusively in the male population. The possible effects of the menstrual cycle on human circadian rhythms have remained equivocal, particularly in the context of muscle strength. The purpose of the study was to analyze the isolated and combined effects of circamensal variation and diurnal changes on muscle strength. Eight eumenorrheic females (age 30 +/- 5 yrs, height 1.63 +/- 0.06m and body mass 66.26 +/- 4.6kg: mean +/- SD) participated in this investigation. Isokinetic peak torque of knee extensors and flexors of the dominant leg were measured at 1.05, 3.14rad.s(-1) (through 90 degrees ROM) at two times-of-day (06:00, 18:00 h) and five time points of the menstrual cycle (menses, mid-follicular, ovulation, mid-luteal, late luteal). In addition, maximum voluntary isometric contraction of knee extensors and flexors and electrically stimulated isometric contraction of the knee extensors were measured at 60 degrees of knee flexion. Rectal temperature was measured during 30min before the tests. There was a significant time-of-day effect on peak torque values for isometric contraction of knee extensors under electrical stimulation (P< 0.05). At 18:00 h, muscle force was 2.6% greater than at 06:00 h. The time-of-day effect was not significant when the tests were performed voluntarily without stimulation: effect size calculations indicated small differences between morning and evening for maximal voluntary isometric contraction and peak torque (at 1.05rad.s(-1) for the knee extensors. A circamensal variation was observed for peak torque of knee flexors at 1.05rad.s(-1), extensors at 3.14rad.s(-1), and also isometric contraction of knee flexors, values being greatest at the ovulation phase. Interaction effects between time-of-day and menstrual cycle phase were not observed in any of the indices of muscle strength studied. The phase of the menstrual cycle seemed to have a greater effect than did the time-of-day on female muscle strength in this group of subjects. The present results suggest that peripheral rather than central mechanisms (e.g., motivation) are implicated in the diurnal variation of maximal isometric strength of women.  相似文献   

16.
This study was designed to analyse the time-of-day effect in maximal anaerobic power, and the influence of menstrual cycle phase and oral contraceptive use on any diurnal effect. Diurnal variations in maximal cycling power were studied in 11 eumenorrheic women and 10 women using monophasic oral contraceptives. Subjects were tested at 09:00, 14:00 and 18:00 hours, assigned randomly on separate days, in the mid-follicular or pseudo-follicular phase (days 7, 8, 9) and in the mid-luteal or pseudo-luteal phase (days 19, 20, 21) of the menstrual cycle. The order of test sessions was randomly assigned. Body mass was measured before, and rectal temperature after, a standardized 15-min warm-up. Maximal cycling power (Pc) was determined by a force-velocity test. Rectal temperature significantly increased from morning (09:00) to afternoon (14:00 and 18:00) in follicular and luteal phases for eumenorrheic subjects, and in days 7–9 and days 19–21 for contraceptive users (p < 0.05). No significant interaction effects (time of day × group × cycle phase) were observed for rectal temperature. In eumenorrheic subjects, Pc increased significantly from 09:00 to afternoon during the follicular phase (P < 0.05). In contrast, no significant time-of-day effects were observed during the luteal phase in eumenorrheic subjects, and at any cycle phase in contraceptive users. Analysis of variance failed to reveal any significant interaction effects for Pc. This study suggested that the time-of-day effect on maximal anaerobic power could be damped during the luteal phase of eumenorrheic women or at any cycle phase by oral contraceptive use.  相似文献   

17.
Thermal stress is known to impair endurance capacity during moderate prolonged exercise. However, there is relatively little available information concerning the effects of thermal stress on the performance of high-intensity short-duration exercise. The present experiment examined human power output during repeated bouts of short-term maximal exercise. On two separate occasions, seven healthy males performed two 30-s bouts of sprint exercise (sprints I and II), with 4 min of passive recovery in between, on a cycle ergometer. The sprints were performed in both a normal environment [18.7 (1.5) degrees C, 40 (7)% relative humidity (RH; mean SD)] and a hot environment [30.1 (0.5) degrees C, 55 (9)% RH]. The order of exercise trials was randomised and separated by a minimum of 4 days. Mean power, peak power and decline in power output were calculated from the flywheel velocity after correction for flywheel acceleration. Peak power output was higher when exercise was performed in the heat compared to the normal environment in both sprint I [910 (172) W vs 656 (58) W; P < 0.01] and sprint II [907 (150) vs 646 (37) W; P < 0.05]. Mean power output was higher in the heat compared to the normal environment in both sprint I [634 (91) W vs 510 (59) W; P < 0.05] and sprint II [589 (70) W vs 482 (47) W; P < 0.05]. There was a faster rate of fatigue (P < 0.05) when exercise was performed in the heat compared to the normal environment. Arterialised-venous blood samples were taken for the determination of acid-base status and blood lactate and blood glucose before exercise, 2 min after sprint I, and at several time points after sprint II. Before exercise there was no difference in resting acid-base status or blood metabolites between environmental conditions. There was a decrease in blood pH, plasma bicarbonate and base excess after sprint I and after sprint II. The degree of post-exercise acidosis was similar when exercise was performed in either of the environmental conditions. The metabolic response to exercise was similar between environmental conditions; the concentration of blood lactate increased (P < 0.01) after sprint I and sprint II but there were no differences in lactate concentration when comparing the exercise bouts performed in a normal and a hot environment. These data demonstrate that when brief intense exercise is performed in the heat, peak power output increases by about 25% and mean power output increases by 15%; this was due to achieving a higher pedal cadence in the heat.  相似文献   

18.
The purpose of this study was to reinvestigate the relationship between aerobic fitness and fatigue indices of repeated-sprint ability (RSA), with special attention to methodological normalization. Soldiers were divided into low (n = 10) and high (n = 9) fitness groups according to a preset maximal aerobic speed (MAS) of 17 km·h(-1) (~60 ml O2·kg(-1)·min) measured with the University of Montreal Track Test (UMTT). Subjects' assessment included the RSA test (3 sets of 5 40-m sprints with 1-minute rest between sprints and 1.5 minutes between sets), a 40-m sprint (criterion test used in the computation of fatigue indices for the RSA test), strength and power measurement of the lower limbs, and the 20-m shuttle run test (20-m SRT) and the UMTT, which are measures of maximal aerobic power. The highest correlation with the RSA fatigue indices was obtained with the 20-m SRT (r = 0.90, p = 0.0001, n = 19), a test with 180° direction changes and accelerations and decelerations. The lower correlation (r = 0.66, p < 0.01, n = 19) with the UMTT (continuous forward running) suggests that some aerobic tests better disclose the importance of aerobic fitness for RSA and that aerobic power is not the sole determinant of RSA. However, neither strength nor vertical jumping power was correlated to the RSA fatigue indices. Subjects with greater MAS were able to maintain almost constant level of speed throughout series of repeated sprints and achieved better recovery between series. A MAS of at least 17 km·h(-1) favors constant and high speed level during repeated sprints. From a practical point of view, a high aerobic fitness is a precious asset in counteracting fatigue in sports with numerous sprint repetitions.  相似文献   

19.
Variations in force and electromyographic (EMG) activities of skeletal muscles with the time-of-day have been previously described, but not for a postural muscle, submitted to daily postural and locomotor tasks. In this article, mechanical performances, EMGs, and the ratio between these parameters, i.e., the neuromuscular efficiency (NME), were measured on the triceps surae (TS) of eight subjects, two times each day, at 6:00 and 18:00 h. NME was evaluated under different experimental conditions (electrically induced contractions, reflex contractions, maximal and submaximal voluntary isometric contractions, and during a natural movement, a drop jump) to determine whether mechanisms, peripheral or central in origin, were responsible for the eventual changes in NME with time-of-day. To calculate NME in induced conditions (NMEind), a supramaximal electrical stimulus was applied to the tibial nerve, and the maximal M wave of TS (TS Mmax) and the amplitude of the twitch tension (PtMmax) in response to this electrical stimulation were quantified. TS Mmax was significantly lower in the evening (mean gain value -10.7 +/- 5.5%, p < 0.05), whereas PtMmax was not significantly modified. NMEind (PtMmax/TS Mmax) was significantly higher in the evening (mean gain of 17.6 +/- 5.8%, p < 0.05), and this increase was necessarily peripheral in origin. Secondly, maximal tendon taps were applied to the Achilles tendon in order to quantify at the two times-of-day the reflexes in response to a mechanical stimulus. The maximal reflex, TS Tmax/Mmax (%), the peak amplitude of the twitch tension associated to this tendon jerk (PtTmax), and the corresponding NME (NMEreflex = PtTmax/TS Tmax/Mmax) were not affected by time-of-day, indicating that reflex excitability did not present daytime variations when tested under these conditions. Voluntary isometric contractions were required under maximal (MVC) and submaximal (25% MVC) conditions, and the corresponding torques and TS EMG were measured. MVC was higher in the evening (mean gain: 8.6 +/- 2.7%, p < 0.05) and TS EMGmax (normalized with regard to TS Mmax) also increased in the evening but not significantly; thus, NMEMvc was not modified. At 25% of MVC, TS EMG was significantly higher in the evening (mean gain of 23 +/- 13.9%, p <0.05) and a trend for a lower NME25%MVC in the evening was observed, a result probably representative of a higher muscle fatigue state in the evening. Finally, to test the muscle capacities during a natural task, a NME index was calculated during a drop jump (DJ). The NMEDJ was defined as the ratio between jump height and mean amplitude of TS EMG (% of TS Mmax) between the drop and the jump. Both jump height and NMEDJ were significantly higher in the evening (mean gains of 10.9 +/- 4.5% and 15.7 +/- 7.4%, respectively, p <0.05). In conclusion, daytime changes in the efficiency of postural muscles seem to depend on both peripheral and central mechanisms. According to the experimental conditions, NME of the postural muscle could increase, remain constant, or even decrease in the evening, and this result may reflect reverse effects of better contractile capacities and higher fatigue state.  相似文献   

20.
The purpose of this study was to examine the time-of-day effects on the offensive capability and aerobic performance in football game in young subjects. In a randomized order, participants realized the Yo–Yo intermittent recovery test in two test sessions and a football game situations (two 15-min games), interspersed by a verbalization sequence (3 min) at 08:00 and 17:00 h on separate days. A recovery period of 24 h was permitted between two consecutive test sessions. The results revealed diurnal variations on the maximal aerobic velocity during the Yo–Yo test (MAV) and the oral temperature with higher values in the afternoon than morning (p < 0.05). Concerning offensive capability, the numbers of scored goals were significantly higher at 17:00 h in comparison with 08:00 h (p < 0.05). However, there was no significant difference between 08:00 and 17:00 h for the kicked balls (shooting parameter). In conclusion, our findings suggest that performance was improved in the evening and the parameters (shooting and Scored goals) can be used as a model to describe the offensive capacity in football game depending on the time of day.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号