首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
为降低人抗鼠抗体(HAMA)反应并在CHO细胞中高效表达抗人P185^erbB2人/鼠嵌合抗体,将抗人P185^erbB2单抗C25的轻、重链可变区基因分别克隆入具有人抗体恒定区基因组序列和弱化启动子驱地劝的选择标志基因的真核表达载体中,共转染CHO-dhfr^-细胞,经G418及氨甲喋呤(MTX)梯度加压筛选进行了嵌合抗体的高效表达,采用RT-PCR、ELISA、细胞ELISA、免疫荧光细胞化等实验证实了所表达的抗人P185^erbB2嵌合抗体的人源性及抗原特异性。培养上清中的抗体产量可达100mg/L,所表达的嵌合抗体具有抑制P185^erbB2高表达肿瘤细胞增殖的作用。  相似文献   

2.
为降低人抗鼠抗体 (HAMA)反应并在CHO细胞中高效表达抗人P185 erbB2 人 /鼠嵌合抗体 ,将抗人P185 erbB2 单抗C2 5的轻、重链可变区基因分别克隆入具有人抗体恒定区基因组序列和弱化启动子驱动的选择标志基因的真核表达载体中 ,共转染CHO dhfr-细胞 ,经G418及氨甲喋呤 (MTX)梯度加压筛选进行了嵌合抗体的高效表达。采用RT PCR、ELISA、细胞ELISA、免疫荧光细胞化学等实验证实了所表达的抗人P185 erbB2 嵌合抗体的人源性及抗原特异性。培养上清中的抗体产量可达 10 0mg/L ,所表达的嵌合抗体具有抑制P185 erbB2 高表达肿瘤细胞增殖的作用  相似文献   

3.
利用基因工程方法将鼠源性抗CD3抗体HIT3a的可变区和人源抗体(IgG)的完整的恒定区连接起来,构建全抗型抗CD3嵌合抗体,该型抗体具有较低的免疫源性可作为免疫抑制剂应用于器官移植,减少受体产生免疫排斥,提高移植器官的存活率。利用PCR方法从抗CD3 ScFv重组噬菌体表达载体pCANTAB 5E上扩增抗CD3抗体的轻链和重链可变区,将轻链和重链可变区组装到含有人抗体(IgG)恒定区的表达载体中,构建抗CD3嵌合抗体IgG的轻链和重链表达载体PKN100和PG1D105,并用脂质体法共转染CHO细胞。结果证明,抗CD3嵌合抗体的VL和VH与HIT3a抗体的VL和VH完全相符,ELISA和Western blot检测结果证实转染细胞的培养上清中含有抗CD3嵌合抗体IgG的表达,表达产物能与Jurkat细胞结合,并能竞争性抑制HIT3a抗体和Jurkat细胞结合活性,3H-TdR掺入实验表明, 抗CD3嵌合抗体与亲代抗体HIT3a一样,具有促进外周血单核细胞增殖的作用。我室构建的全抗型抗CD3嵌合抗体分子表达载体可在CHO细胞中稳定表达,表达产物有较好生物活性,具有潜在的临床应用价值。  相似文献   

4.
采用基因工程技术 ,将小鼠 6C6单克隆抗体可变区基因与人抗体恒定区基因连接 ,构建了鼠 人 6C6嵌合抗体基因 ,并在CHO细胞中高效表达 .利用ProteinA亲和层析柱从细胞培养上清中分离纯化 6C6嵌合抗体 ,得到电泳纯度大于 98%的 6C6嵌合抗体 ,其重链 (5 5kD)和轻链 (2 4kD)符合IgG相对分子质量的理论值 .Western印迹、细胞免疫荧光和免疫组织化学实验结果均呈阳性 .表明6C6嵌合抗体可识别人乳腺癌细胞表面上的肿瘤相关抗原 ,保持了 6C6单克隆抗体的特性 ,为后续的研究工作奠定了基础  相似文献   

5.
将来源于噬菌体抗体库的人源狂犬病毒糖蛋白特性异特单抗G10Fab基因的,克隆入杆状病毒人源IgG抗体表达载体,通过转染将重组质粒导入昆虫细胞,以全抗体的形式表达了一株人源抗狂犬病毒基因工程抗体R10。用亲和层析的方法纯化了表达产物,经过一株鼠源糖蛋白特异性单抗竞争证实,该单克隆抗体特异性识别狂犬病毒糖蛋白,亲和力约为10^-9M.体外中和实验证明,该单抗对狂犬病毒aG株具有体外中和活性。  相似文献   

6.
抗H5N1病毒嵌合IgA抗体基因的构建及其在CHO细胞中的表达   总被引:1,自引:1,他引:0  
为了表达具有中和活性的抗禽流感H5N1病毒人-鼠嵌合IgA抗体,采用RT-PCR法克隆具有中和活性的抗禽流感H5N1-HA鼠源单克隆抗体的轻重链可变区基因及相应的信号肽编码序列,分别与人免疫球蛋白IgA2重链恒定区、Kappa恒定区基因拼接,构建表达质粒pEF-IGHA9和pEF-IGK9,共转染二氢叶酸还原酶缺陷型CHO(CHO-dhfr-)细胞,用ELISA检测培养上清中嵌合IgA抗体的表达,对纯化的嵌合抗体进行SDS-PAGE、Western blotting印迹分析。结果成功地在CHO细胞中表达了抗禽流感H5N1病毒人-鼠嵌合IgA抗体,为制备抗H5N1重组分泌型IgA预防性抗体制剂奠定了良好的基础。  相似文献   

7.
目的:构建一个可供抗体CDR(决定簇互补区)进行自由替换、筛选、表达的通用载体,并对其生物学功能进行鉴定.方法:在已构建好的具有Fc段的完全人源抗狂犬病病毒抗体表达栽体基础上,利用PCR介导的定点突变技术,引入2个可供CDR3区进行自由替换的限制性酶切位点,构建出通用表达载体.体外合成人源、鼠源抗乳腺癌Her2抗体的CDR3区,克隆至已构建的通用载体,在毕赤酵母中诱导表达.应用ELISA和Western Blotting技术对亲本抗体和新抗体进行生物学及免疫学分析.结果:PCR、Western Blotting等试验表明具有Her2抗原结合活性的人源和鼠源突变型抗体获得成功表达,通过对表达产物的免疫学及功能学检测证明所表达出的抗体具有抗原中和活性,而且鼠源抗体的活性要稍高于人源抗体.结论:成功构建了可用于功能性抗体筛选和表达的通用载体,对抗体的体外亲和力成熟及抗体的人源化有重要意义.  相似文献   

8.
[目的]构建较高亲和力较低免疫原性的CD20抗体。[方法]通过专利分析,进行高亲和力和人源化的设计改造,将抗体的轻链和重链分别克隆到pc DNA3.1/ZEO(+)、pc DNA3.1(+)真核表达载体中,共转染中国仓鼠卵巢细胞CHO-K1,通过RT-PCR检测mRNA的转录,夹心ELISA检测抗体表达量,流式细胞术检测细胞上清与CD20阳性细胞Raji的结合活性。[结果]得到了高亲和力的人源化CD20抗体的轻链和重链基因片段,并成功地构建了重组表达载体pc DNA3.1/ZEO(+)-CD20L和pc DNA3.1(+)-CD20H,并可在CHO-K1细胞中表达,通过RT-PCR证明基因在CHO细胞中成功表达,ELISA法测得培养上清的含量在0.45~4.72μg/m L之间,流式检测表明上清中的抗体可与Raji细胞结合。[结论]成功构建并表达筛选了17株单克隆抗体,15号的表达量最大,为4.72μg/m L,为下一步研究抗体的亲合力、免疫原性以及生物学功能打下基础。  相似文献   

9.
为了探讨人源抗甲型肝炎(甲肝)病毒scFv—Fc融合抗体在酵母中的表达特性,将获得的人源抗甲肝病毒中和性单链可变区抗体(scFv抗体)基因克隆入含信号肽及人IgG1Fc抗体基因的酵母细胞表达载体中,获得了一株中和性人源抗甲肝病毒pPiscFv—FcHA16融合抗体的分泌表达,并对表达产物进行了纯化。同时对表达产物的生物学特性进行了一系列鉴定。表达的pPiscFv—FcHA16融合抗体为具有不同糖基化形式的同源二聚体,与相应的CHO细胞表达的IgG抗体相比,pPiscFv—FcHA16融合抗体仍保持很好的抗原结合活性,以及与中和性鼠抗甲肝病毒单克隆抗体的竞争抑制能力。同时也保持了对甲肝病毒的体外中和活性。这些结果表明,在酵母中表达的单链可变区(scFv)与IgG1Fc区的融合抗体具有很好的生物学活性,有希望用做体外诊断,用纯化相应的抗原,或者可能用于体内预防与治疗。  相似文献   

10.
猪瘟(Classical swine fever,CSF)是严重危害养猪业的一种烈性传染病,常造成巨大的经济损失,是世界动物卫生组织要求必须申报的动物疫病之一。猪瘟的病原是猪瘟病毒(Classical swine fever virus,CSFV),CSFV的结构蛋白由衣壳蛋白(C)和囊膜糖蛋白(E~(rns)、E1、E2)构成。E2蛋白是CSFV主要的保护性抗原,可以诱导机体产生中和抗体,从而抵抗CSFV的感染。此前,本团队制备了一株针对CSFV E2蛋白的鼠源单克隆抗体HQ06。文中将HQ06抗体重链和轻链可变区基因与猪源恒定区基因嵌合后克隆至真核表达载体,利用中国仓鼠卵巢(CHO)细胞制备一株针对CSFV E2蛋白的嵌合猪源化单克隆抗体c HQ06。应用ELISA、Western blotting试验证实了c HQ06与CSFV E2蛋白具有良好的反应性;中和试验结果表明c HQ06可以中和CSFV。综上所述,本研究应用CHO细胞稳定表达了具有良好反应性和中和活性的针对CSFV E2蛋白的嵌合猪源化单克隆抗体c HQ06,为研究CSFV E2蛋白结构、功能以及开发新型的CSFV诊断和治疗制剂奠定基础。  相似文献   

11.
Hu12F6mu is an Fc-mutated, humanized anti-CD3 antibody developed in our lab. The aim of this study was to assess single dose escalation pharmacokinetics (PK) and safety profile of hu12F6mu and to measure the effects of the antibody on levels of circulating T cells over time. Twenty-seven patients receiving renal allografts were randomized to receive hu12F6mu intravenously at a single-dose of 2.5, 5 or 10 mg. The concentration-time data obtained by a validated ELISA method were subjected to non-compartmental PK analysis by DAS 2.1 software. Subgroups of CD2+, CD3+, CD4+ and CD8+ lymphocytes were monitored periodically by flow cytometry. Our results showed that hu12F6mu exhibited linear PK over the dose range of 2.5–10 mg. A significant decline in the proportion of T cells was observed immediately after the infusion, followed by a progressive increase occurring over the ensuing days of therapy. A significant negative correlation was observed between serum concentration of hu12F6mu and CD3+ cell proportion. Intravenous infusion of hu12F6mu was well-tolerated in patients receiving renal allografts. These results suggest that hu12F6mu may have potential as a therapeutic agent, although further studies are needed.Key words: CD3, humanized antibody, pharmacokinetics, enzyme immunoassay, first dose reaction  相似文献   

12.
Immunoglobulins of human heavy chain subgroup III have a binding site for Staphylococcal protein A on the heavy chain variable domain (V(H)), in addition to the well-known binding site on the Fc portion of the antibody. Thermodynamic characterization of this binding event and localization of the Fv-binding site on a domain of protein A is described. Isothermal titration calorimetry (ITC) was used to characterize the interaction between protein A or fragments of protein A and variants of the hu4D5 antibody Fab fragment. Analysis of binding isotherms obtained for titration of hu4D5 Fab with intact protein A suggests that 3-4 of the five immunoglobulin binding domains of full length protein A can bind simultaneously to Fab with a Ka of 5.5+/-0.5 x 10(5) M(-1). A synthetic single immunoglobulin binding domain, Z-domain, does not bind appreciably to hu4D5 Fab, but both the E and D domains are functional for hu4D5 Fab binding. Thermodynamic parameters for titration of the E-domain with hu4D5 Fab are n = 1.0+/-0.1, Ka = 2.0+/-0.3 x 10(5) M(-1), and deltaH = -7.1+/-0.4 kcal mol(-1). Similar binding thermodynamics are obtained for titration of the isolated V(H) domain with E-domain indicating that the E-domain binding site on Fab resides within V(H). E-domain binding to an IgG1 Fc yields a higher affinity interaction with thermodynamic parameters n = 2.2+/-0.1, Ka > 1.0 x 10(7) M(-1), and deltaH = -24.6+/-0.6 kcal mol(-1). Fc does not compete with Fab for binding to E-domain indicating that the two antibody fragments bind to different sites. Amide 1H and 15N resonances that undergo large changes in NMR chemical shift upon Fv binding map to a surface defined by helix-2 and helix-3 of E-domain, distinct from the Fc-binding site observed in the crystal structure of the B-domain/Fc complex. The Fv-binding region contains negatively charged residues and a small hydrophobic patch which complements the basic surface of the region of the V(H) domain implicated previously in protein A binding.  相似文献   

13.
Interfering with the binding of IgE to high-affinity IgE receptor alpha chain (Fc(epsilon)RIalpha) is a straightforward strategy for the specific prevention of the IgE-mediated allergic reaction specifically. A Fab fragment (Fab) of a humanized antibody against the membrane proximal IgE-binding domain of human Fc(epsilon)RIalpha inhibits the release of histamine from human basophils. We established an efficient expression system in which to produce directly the humanized anti-human Fc(epsilon)RIalpha Fabs without papain-digestion of the whole antibody. Four Fabs with different C-termini of CH1 were expressed directly in COS-7 cells transfected with expression vectors with or without the Fc gene downstream of a stop codon inserted within the hinge gene. The secretion of Fabs when transfected without the Fc gene was remarkably enhanced compared to that when transfected with the Fc gene. The ability of Fabs to inhibit IgE-Fc(epsilon)RIalpha binding when transfected without the Fc gene was equivalent to that of purified Fab prepared by papain-digestion of the whole antibody. No significant differences among the four Fabs were observed in secretion or activity. Clones of CHO-transfectant cells that secreted the Fabs constitutively were acclimatized to a serum-free medium. Analysis of the binding interface between the Fab and human Fc(epsilon)RIalpha will provide useful information for the design of therapeutic reagents for allergy and asthma.  相似文献   

14.
HNK20 is a mouse monoclonal IgA that binds to the F glycoprotein of respiratory syncytial virus (RSV) and neutralizes the virus, both in vitro and in vivo. The single-chain antibody fragment (scFv) derived from HNK20 is equally active and has allowed us to assess rapidly the effect of mutations on affinity and antiviral activity. Humanization by variable domain resurfacing requires that surface residues not normally found in a human Fv be mutated to the expected human amino acid, thereby eliminating potentially immunogenic sites. We describe the construction and characterization of two humanized scFvs, hu7 and hu10, bearing 7 and 10 mutations, respectively. Both molecules show unaltered binding affinities to the RSV antigen (purified F protein) as determined by ELISA and surface plasmon resonance measurements of binding kinetics (Ka approximately 1x10(9) M-1). A competition ELISA using captured whole virus confirmed that the binding affinities of the parental scFv and also of hu7 and hu10 scFvs were identical. However, when compared with the original scFv, hu10 scFv was shown to have significantly decreased antiviral activity both in vitro and in a mouse model. Our observations suggest that binding of the scFv to the viral antigen is not sufficient for neutralization. We speculate that neutralization may involve the inhibition or induction of conformational changes in the bound antigen, thereby interfering with the F protein-mediated fusion of virus and cell membranes in the initial steps of infection.  相似文献   

15.
《MABS-AUSTIN》2013,5(4):449-456
Hu12F6mu is an Fc-mutated, humanized anti-CD3 antibody developed in our lab. The aim of this study was to assess single dose escalation pharmacokinetics (PK) and safety profile of hu12F6mu and to measure the effects of the antibody on levels of circulating T cells over time. Twenty-seven patients receiving renal allografts were randomized to receive hu12F6mu intravenously at a single-dose of 2.5, 5 or 10 mg. The concentration-time data obtained by a validated ELISA method were subjected to non-compartmental PK analysis by DAS 2.1 software. Subgroups of CD2+, CD3+, CD4+ and CD8+ lymphocytes were monitored periodically by flow cytometry. Our results showed that hu12F6mu exhibited linear PK over the dose range of 2.5 to 10 mg. A significant decline in the proportion of T cells was observed immediately after the infusion, followed by a progressive increase occurring over the ensuing days of therapy. A significant negative correlation was observed between serum concentration of hu12F6mu and CD3+ cell proportion. Intravenous infusion of hu12F6mu was well-tolerated in patients receiving renal allografts. These results suggest that hu12F6mu may have potential as a therapeutic agent, although further studies are needed.  相似文献   

16.
We report two expression vectors in Pichia pastoris that direct the synthesis of recombinant single chain antibody variable region (scFv), derived from anti-Z-DNA monoclonal antibody Z22. The first vector codes for a scFv fused to the Ig binding domain of staphylococcal Protein A. The second vector codes for the scFv fused to the Fc fragment of the human IgG1. The fusion partner simplified the detection and purification of the secreted protein. These constructs yielded high level expression of an scFv with specific binding activity toward a Z form of DNA, with binding activity comparable to that of the scFv molecule produced in an Escherichia coli expression system and the original monoclonal antibody.  相似文献   

17.
An anti-human hepatocellular carcinoma (HCC) monoclonal antibody, hHP-1, was genetically humanized from a murine monoclonal antibody. In this study, a concept of positional template approach was applied to design the amino acid sequence of hHP-1's variable region, and synthetic DNA fragments for protein expression were produced through overlapping PCR from single strand oligonucleotides. Synthetic DNA fragments and human antibody constant region cDNA were used to construct two CMV promotor-based expression vectors for the antibody light and heavy chains, in which the variable region was connected directly to the constant region without an intron sequence. Completely assembled humanized antibody was successfully expressed in mammalian cells as IgG1 kappa molecules and purified using protein A affinity column. The immunogenicity of the hHP1 was estimated by the amino acid sequence and determined through a HAMA (human anti-murine antibody) serum reaction assay. Results indicated that the immunogenicity of hHP-1 was significantly reduced. In vitro binding activity assay showed that the hHP-1 had retained its binding function to a human HCC SMMC-7721 cell-line, without cross binding to other human normal tissues. Immunofluorescence staining showed that hHP-1 had a strong binding activity to SMMC cells. A competitive binding assay showed that the relative binding activity of hHP-1 was approximately 25% binding activity of the original murine antibody. Our results indicate that a humanized antibody could be produced using intronless vectors and expressed as a complete IgG1 kappa antibody. Hence we believe that hHP-1 could be a potential candidate for HCC treatment.  相似文献   

18.
IgG hinge region peptide bonds are susceptible to degradation by hydrolysis. To study the effect of Fab and Fc on hinge region peptide bond hydrolysis, a recombinant humanized monoclonal IgG1 antibody, its F(ab')2 fragment, and a model peptide with amino acid sequence corresponding to the hinge region were incubated at 40 degrees C in formulation buffer including complete protease inhibitor and EDTA for 0, 2, 4, 6 and 8 weeks. Two major cleavage sites were identified in the hinge region of the intact recombinant humanized monoclonal antibody and its F(ab')2 fragment, but only one major cleavage site of the model peptide was identified. Hinge region peptide bond hydrolysis of the intact antibody and its F(ab')2 fragment degraded at comparable rates, while the model peptide degraded much faster. It was concluded that Fab region of the IgG, but not Fc portion had significant effect on preventing peptide bond cleavage by direct hydrolysis. Hydrolysis of hinge region peptide bonds was accelerated under both acidic and basic conditions.  相似文献   

19.
Osteopontin (OPN) has been implicated as an important mediator of breast cancer progression and metastasis and has been investigated for use as a potential therapeutic target in the treatment of breast cancer. However, the in vivo antitumor effect of anti-OPN antibodies on breast cancer has not been reported. In this study, a mouse anti-human OPN antibody (1A12) was humanized by complementarity-determining region grafting method based on computer-assisted molecular modeling. A humanized version of 1A12, denoted as hu1A12, was shown to possess affinity comparable to that of its parental antibody. The ability of hu1A12 to inhibit cell migration, adhesion, invasion and colony formation was assessed in a highly metastatic human breast cancer cell line MDA-MB-435S. The results indicated that hu1A12 was effective in inhibiting the cell adhesion, migration, invasion and colony formation of MDA-MB-435S cells in vitro. hu1A12 also showed significant efficacy in suppressing primary tumor growth and spontaneous metastasis in a mouse lung metastasis model of human breast cancer. The specific epitope recognized by hu1A12 was identified to be 212NAPSD216, adjacent to the calcium binding domain of OPN. Our data strongly support that OPN is a potential target for the antibody-based therapies of breast cancer. The humanized anti-OPN antibody hu1A12 may be a promising therapeutic agent for the treatment of human breast cancer.  相似文献   

20.
Tumor necrosis factor (TNF) signals through TNFR1 and TNFR2, two membrane receptors, and TNFR1 is known to be the major pathogenic mediator of chronic and acute inflammatory diseases. Present clinical intervention is based on neutralization of the ligand TNF. Selective inhibition of TNF receptor 1 (TNFR1) provides an alternative opportunity to neutralize the pro-inflammatory activity of TNF while maintaining the advantageous immunological responses mediated by TNFR2, including immune regulation, tissue homeostasis and neuroprotection. We recently humanized a mouse anti-human TNFR1 monoclonal antibody exhibiting TNFR1-neutralizing activity. This humanized antibody has been converted into an IgG1 molecule (ATROSAB) containing a modified Fc region previously demonstrated to have greatly reduced effector functions. Purified ATROSAB produced in CHO cells showed strong binding to human and rhesus TNFR1-Fc fusion protein and mouse embryonic fibroblasts transfected with a recombinant TNFR1 fusion protein with an affinity identical to the parental mouse antibody H398. Using chimeric human/mouse TNFR1 molecules, the epitope of ATROSAB was mapped to the N-terminal region (amino acid residues 1–70) comprising the first cysteine-rich domain (CRD1) and the A1 sub-domain of CRD2. In vitro, ATROSAB inhibited typical TNF-mediated responses like apoptosis induction and activation of NFκB-dependent gene expression such as IL-6 and IL-8 production. These findings open the way to further analyze the therapeutic activity of ATROSAB in relevant disease models in non-human primates.Key words: humanized IgG, antagonistic antibody, tumor necrosis factor receptor 1, epitope mapping  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号