首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Y Kloog  V Nadler  M Sokolovsky 《FEBS letters》1988,230(1-2):167-170
Binding of the labeled anticonvulsant drug [3H]dibenzocycloalkenimine (3H]MK-801) to the N-methyl-D-aspartate (NMDA) receptor and its dissociation from the receptor at 25°C are slow processes, both of which follow first order kinetics (t1/270 and 180 min, respectively). Both reactions are markedly accelerated by glutamate and glycine (t1/22-8 and 4 min, respectively), which allow bimolecular association kinetics of the labeled drug with the receptors whereas equilibrium binding of [3H]MK-801 (Kd 2–4 nM) is hardly affected by glutamate and glycine. The data suggest that MK-801 acts as a steric blocker of the NMDA receptor channel. The competitive antagonist D-(−)-2-amino-5-phosphovaleric acid (AP-5) freezes the receptor in a state which precludes either binding of [3H]MK-801 to the receptor channel or its dissociation from it. These findings have therapeutic implications.  相似文献   

2.
Aromatic analogs of arcaine were shown to have inhibitory effects on the binding of the channel blocking drug [3H]MK-801 to the NMDA receptor complex. The most potent compound of the series was an N,N′-bis(propyl)guanidinium which inhibited [3H]MK-801 binding with an IC50 of 0.58 μM and an IC50 of 12.17 μM upon addition of 100 μM spermidine. The increase in IC50 upon addition of spermidine suggests competitive antagonism between the inhibitor and spermidine at the arcaine-sensitive polyamine site of the NMDA receptor complex.  相似文献   

3.
Abstract: Quantitative autoradiography of [3H]MK-801 binding was used to characterize regional differences in N -methyl- d -aspartate (NMDA) receptor pharmacology in rat CNS. Regionally distinct populations of NMDA receptors were distinguished on the basis of regulation of [3H]MK-801 binding by the NMDA antagonist 3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP). CPP inhibited [3H]MK-801 binding in outer cortex (OC) and medial cortex (MC) with apparent K i values of 0.32-0.48 μ M , whereas in the medial striatum (MS), lateral striatum (LS), CA1, and dentate gyrus (DG) of hippocampus, apparent K i values were 1.1-1.6 μ M . In medial thalamus (MT) and lateral thalamus (LT) the apparent K i values were 0.78 μ M . In the presence of added glutamate (3 μ M ), the relative differences in apparent K i values between regions maintained a similar relationship with the exception of the OC. Inhibition of [3H]MK-801 binding by the glycine site antagonist 7-chlorokynurenic acid (7-ClKyn) distinguished at least two populations of NMDA receptors that differed from populations defined by CPP displacement. 7-ClKyn inhibited [3H]MK-801 binding in OC, MC, MS, and LS with apparent K i values of 6.3-8.6 μ M , whereas in CA1, DG, LT, and MT, K i values were 11.4-13.6 μ M . In the presence of added glycine (1 μ M ), the relative differences in apparent K i values were maintained. Under conditions of differential receptor activation, regional differences in NMDA receptor pharmacology can be detected using [3H]MK-801 binding.  相似文献   

4.
Book Review     
1-Aminocyclopropane carboxylic acid (ACPC) competitively inhibited (IC50, 38 +/- 7 nM) [3H]glycine binding to rat forebrain membranes but did not affect [3H]strychnine binding to rat brainstem/spinal cord membranes. Like glycine, ACPC enhanced 3H-labelled (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate ([3H]MK-801) binding to N-methyl-D-aspartate receptor-coupled cation channels (EC50, 135 +/- 76 nM and 206 +/- 78 nM for ACPC and glycine, respectively) but was approximately 40% less efficacious in this regard. The maximum increase in [3H]MK-801 binding produced by a combination of ACPC and glycine was not different from that elicited by glycine, but both compounds potentiated glutamate-stimulated [3H]MK-801 binding. These findings indicate that ACPC is a potent and selective ligand at the glycine modulatory site associated with the N-methyl-D-aspartate receptor complex.  相似文献   

5.
Keresztes A  Tóth G  Fülöp F  Szucs M 《Peptides》2006,27(12):3315-3321
Previously, we have shown that substitution of Pro2 for cis-2-aminocyclopentanecarboxylic acid, ACPC in endomorphin-2 results in an analogue with greatly augmented proteolytic stability, high μ-opioid receptor affinity and selectivity. We now report the synthesis and biochemical characterization of [3H][(1S,2R)ACPC2]endomorphin-2 with a specific activity of 1.41 TBq/mmol (38.17 Ci/mmol). Specific binding of [3H][(1S,2R)ACPC2]endomorphin-2 was saturable and of high affinity with an equilibrium dissociation constant, Kd = 1.80 ± 0.21 nM and receptor density, Bmax = 345 ± 27 fmol × mg protein−1 at 25 °C in rat brain membranes. Similar affinity values were obtained in kinetic and displacement assays. Both Na+ and Gpp(NH)p decreased the affinity proving the agonist character of the radioligand. [3H][(1S,2R)ACPC2]endomorphin-2 retained the μ-specificity of the parent peptide. The new radioligand will be a useful tool to map the topographical requirements of μ-opioid peptide binding due to its high affinity, selectivity and enzymatic stability.  相似文献   

6.
Direct intracerebellar injections of N-methyl-D-aspartate (NMDA) or D-serine elicited dose-dependent increases in cerebellar cyclic GMP levels, in vivo in the mouse. The actions of D-serine were antagonized by the competitive NMDA receptor antagonist 3-(2-carboxypiperazin-4-yl) propyl-1-phosphonic acid and by the phencyclidine receptor agonist MK-801, observations supporting actions at the NMDA-coupled glycine receptor. In addition, the actions of D-serine were antagonized by a partial agonist (D-cycloserine) and an antagonist (HA-966) of the NMDA-coupled glycine receptor. These data are all consistent with D-serine acting at the NMDA-coupled glycine receptor and represent the first demonstration of glycine receptor potentiation of ongoing NMDA-mediated neuronal activity in the CNS, rather than potentiation of exogenous NMDA.  相似文献   

7.
Age-related alterations in major neurotransmitter receptors and voltage dependent calcium channels were analyzed by receptor autoradiography in the gerbil brain. [3H]Quinuclidinyl benzilate (QNB). [3H]cyclohexyladenosine (CHA), [3H]muscimol, [3H]MK-801, [3H]SCH 23390, [3H]naloxone, and [3H]PN200-110 were used to label muscarinic acetylcholine receptors, adenosine A1 receptors, γ-aminobutyric acidA (GABAA) receptors, (NMDA) receptors, dopamine D1 receptors, opioid receptors, and voltage dependent calcium channels, respectively. In middle-aged gerbils (16 months old), the hippocampus exhibited a significant elevation in [3H]QNB, [3H]MK-801, [3H]SCH 23390, [3H]naloxone, and [3H]PN200-110 binding, whereas [3H]CHA and [3H]muscimol binding showed a significant reduction in this area, compared with that of young animals (1 month). On the other hand, the cerebellum showed a significant alteration in [3H]QNB, [3H]CHA, and [3H]naloxone binding and the striatum also exhibited a significant alteration in [3H]SCH 23390 and [3H]CHA binding in middle-aged gerbils. The neocortex showed a significant elevation only in [3H]CHA binding in middle-aged animals. The nucleus accumbens and thalamus also showed a significant alteration only in [3H]muscimol binding. However, the hypothalamus and substantia nigra exhibited no significant alteration in these bindings in middle-aged gerbils. These results demonstrate the age-related alterations of various neurotransmitter receptors and voltage dependent calcium channels in most brain regions. Furthermore, they suggest that the hippocampus is most susceptible to aging processes and is altered at an early stage of senescence.  相似文献   

8.
Abstract: To clarify the regulatory mechanism of the N -methyl- d -aspartate (NMDA) receptor/channel by several protein kinases, we examined the effects of purified type II of protein kinase C (PKC-II), endogenous Ca2+/calmodulin-dependent protein kinase II (CaMK-II), and purified cyclic AMP-dependent protein kinase on NMDA receptor/ channel activity in the postsynaptic density (PSD) of rat brain. Purified PKC-II and endogenous CaMK-II catalyzed the phosphorylation of 80–200-kDa proteins in the PSD and l -glutamate-(or NMDA)-induced increase of (+)-5-[3H]methyl-10, 11-dihydro-5 H -dibenzo[a, d]cyclohepten-5, 10-imine maleate ([3H]MK-801; open channel blocker for NMDA receptor/channel) binding activity was significantly enhanced. However, the pretreatment of PKC-II-and CaMK-II-catalyzed phosphorylation did not change the binding activity of l -[3H]glutamate, cis -4-[3H](phospho-nomethyl)piperidine-2-carboxylate ([3H]CGS-19755; competitive NMDA receptor antagonist), [3H]glycine, α-[3H]-amino-3-hydroxy-5-methyl-isoxazole-4-propionate, or [3H]-kainate in the PSD. Pretreatment with PKC-II-and CaMK-II-catalyzed phosphorylation enhanced l -glutamate-induced increase of [3H]MK-801 binding additionally, although purified cyclic AMP-dependent protein kinase did not change l -glutamate-induced [3H]MK-801 binding. From these results, it is suggested that PKC-II and/or CaMK-II appears to induce the phosphorylation of the channel domain of the NMDA receptor/channel in the PSD and then cause an enhancement of Ca2+ influx through the channel.  相似文献   

9.
Abstract: The rat N -methyl- d -aspartate (NMDA) glutamate receptor subunit NR1-1a was transiently expressed in COS cells using the technique of electroporation, which was fivefold more efficient than the calcium phosphate precipitation method of transfection. The glycine site antagonist 5,7-[3H]dichlorokynurenic acid labeled a single high-affinity site ( K D = 29.6 ± 6 n M ; B max = 19.4 ± 1.6 pmol/mg of protein) in membranes derived from COS cells electroporated with NR1-1a. In contrast to previous reports using transiently transfected human embryonic kidney 293 cells, binding of the noncompetitive antagonist (+)-5-[3H]methyl-10,11-dihydro-5 H -dibenzo[ a,d ]-cyclohepten-5,10-imine ([3H]MK-801) was not detected in NR1-1a-transfected COS cells. Although immunofluorescent labeling of electroporated COS cells demonstrated that the NR1-1a protein appears to be associated with the cell membrane, neither NMDA nor glutamate effected an increase in intracellular calcium concentration in fura-2-loaded cells, suggesting that homomeric NR1-1a receptors do not act as functional ligand-gated ion channels. Therefore, COS cells appear to differ from Xenopus oocytes with respect to the transient expression of functional homomeric NR1 receptors. Although expression of NR1-1a is sufficient to reconstitute a glycine binding site with wild-type affinity for antagonists in COS cells, recombinant homomeric NR1-1a receptors do not display properties that are characteristic of native NMDA receptors, such as permeability to Ca2+ and channel occupancy by MK-801, when expressed in this mammalian cell line.  相似文献   

10.
The binding of [3H]proctolin to oviduct membranes has been analyzed to investigate the nature of proctolin binding sites in the oviduct. Proctolin binding was found to be time dependent, proportional to concentration of membrane protein, saturable, specific and reversible. Two apparent proctolin binding sites were recognized. The first had a Kd of 400 ± 82 nM and a Bmax of 23.7 ± 6.7 pmol/mg protein. The second had a Kd of 2.4 ± 0.2 μM and a Bmax of 96.3 ± 16.7 pmo/mg protein.

Binding was specific in thatcompetition experiments with a wide range of peptides showed that only Arg-Tyr-Leu-Pro-Ala was an effective competitor at μM concentrations. All other peptides examined weekly reduced proctolin binding at concentrations above 50 μM. Certain peptides were found to potentiate [3]pproctolin binding at low μM concentrations (1–10 μM) and to inhibit proctolin binding at higher concentrations. The significance of these findings is discussed.  相似文献   


11.
In order to better understand the function of aromatase, we carried out kinetic analyses to asses the ability of natural estrogens, estrone (E1), estradiol (E2), 16-OHE1, and estriol (E3), to inhibit aromatization. Human placental microsomes (50 μg protein) were incubated for 5 min at 37°C with [1β-3H]testosterone (1.24 × 103 dpm 3H/ng, 35–150 nM) or [1β-3H,4-14C]androstenedione (3.05 × 103 dpm 3H/ng, 3H/14C = 19.3, 7–65 nM) as substrate in the presence of NADPH, with and without natural estrogens as putative inhibitors. Aromatase activity was assessed by tritium released to water from the 1β-position of the substrates. Natural estrogens showed competitive product inhibition against androgen aromatization. The Ki of E1, E2, 16-OHE1, and E3 for testosterone aromatization was 1.5, 2.2, 95, and 162 μM, respectively, where the Km of aromatase was 61.8 ± 2.0 nM (n = 5) for testosterone. The Ki of E1, E2, 16-OHE1, and E3 for androstenedione aromatization was 10.6, 5.5, 252, and 1182 μM, respectively, where the Km of aromatase was 35.4 ± 4.1 nM (n = 4) for androstenedione. These results show that estrogens inhibit the process of andrigen aromatization and indicate that natural estrogens regulate their own synthesis by the product inhibition mechanism in vivo. Since natural estrogens bind to the active site of human placental aromatase P-450 complex as competitive inhibitors, natural estrogens might be further metabolized by aromatase. This suggests that human placental estrogen 2-hydroxylase activity is catalyzed by the active site of aromatase cytochrome P-450 and also agrees with the fact that the level of catecholestrogens in maternal plasma increases during pregnancy. The relative affinities and concentration of androgens and estrogens would control estrogen and catecholestrogen biosynthesis by aromatase.  相似文献   

12.
Abstract: Binding of 1-[1-(2-[3H]thienyl)cyclohexyl]piperidine ([3H]TCP) to mouse brain and spinal cord membranes was studied using compounds selective for the NMDA-coupled 1-(1-phenylcyclohexyl)piperidine (PCP) and/or σ recognition sites. In both tissues, [3H]TCP labeled two populations of binding sites. Density of the low-affinity sites was approximately the same in both tissues, but the population of the high-affinity [3H]TCP sites was three times bigger in the brain than in the spinal cord. Self- and cross-displacement studies showed that the high-affinity [3H]TCP binding sites could be identical with NMDA receptor-coupled PCP sites, whereas the low-affinity [3H]TCP sites may be associated with σ binding sites in both tissues. The NMDA-coupled PCP sites labeled in the presence of 6.25 n M [3H]TCP constituted a much higher percentage of the total binding in the brain (75%) than in the spinal cord (44%). Consistent with this, reintroduction of glycine and glutamate significantly increased, but DA antagonists significantly inhibited [3H]TCP binding in the brain but not in the spinal cord. Together, these data suggest that a large component of [3H]TCP-labeled binding sites in the spinal cord may be associated with σ but not the NMDA receptor-coupled PCP sites.  相似文献   

13.
Taurine Interactions with Chick Retinal Membranes   总被引:4,自引:4,他引:0  
Abstract: Binding of [3H]taurine to whole retinal membranes and to membranes obtained from retinal subcellular fractions was studied. [3H]Taurine bound to chick retinal membranes with high affinity and specificity. Two types of [3H]taurine binding associated to retinal membranes were observed, one with a KD= 0.68 μM and the other one with a KD,= 9.32 μM. Both types of binding were highly Na-dependent. The Na+-dependent taurine binding was antagonized by strychnine. Bound [3H]taurine was effectively displaced by β-alanine but not by GABA or glycine. Taurine binding was preferentially localized in membranes obtained from the crude synaptosomal fraction, although it is also present in substantial amounts in all retinal membranes. A Na+-independent [3H]taurine binding exhibiting properties which might represent interaction with postsynaptic receptor sites could not be demonstrated in the chick retina.  相似文献   

14.
Rabbit retinac preloaded with [3H]adenosine were superfused in vitro and the effect of neurotransmitter agonists and antagonists on the release of [3H]purines was studied. Glutamic acid, aspartic acid, kainic acid (KA), quisqualic acid (QUIS) and acid (NMDA) all stimulated the efflux of [3H] labelled and endogenous purines. Their effect was reduced in a Ca2+-free medium except when using a high concentration (100 μM) of KA, QUIS and NMDA. The effect of aspartic acid and of NMDA were blocked by 2-amino-7-phosphono-heptanoic acid (APH) and 2-amino-5-phosphono-valeric acid (APV). Carbachol also increased the release of adenosine-derived radioactivity and this effect was reduced by the removal of Ca2+ and by pretreatment with atropine. τ-Aminobutyric acid (GABA) and muscimol, induced a small increase in the release which was Ca2+-dependent and was blocked by bicuculline and picrotoxin. Dopamine elicited an increase in the release which was partially reduced in a Ca2+-free medium and was blocked by haloperidol. Glycine and 5-hydroxytryptamine (5-HT) also induced small but significant increases. The neurotransmitter antagonists had an effect of their own. Superfusion with APH and APV depressed the outflow of radioactivity whereas bicuculline, picrotoxin, strychnine and haloperidol enhanced it. The K+-evoked release of [3H]purines was reduced by haloperidol and by 5-HT. The observations indicate that stimulation of several important neurotransmitter receptors in the retina elicits the release of adenosine derivatives. The results with the antagonists also suggest that purines are continuously released as a result of a tonic activation of the respective membrane receptors.  相似文献   

15.
Substance P and glutamate are present in primary afferent C-fibers and play important roles in persistent inflammatory and neuropathic pain. In the present study, we have examined whether activation of different glutamate receptor subtypes modulates the release of substance P evoked by the C-fiber selective stimulant capsaicin (1 μM) from rat trigeminal nucleus slices. The selective NMDA glutamate receptor agonist L-CCG-IV (1–10 μM) enhanced capsaicin-evoked substance P release about 100%. This facilitatory effect was blocked by 0.3 μM MK-801, a selective NMDA receptor antagonist. The metabotropic glutamate receptor agonists L-AP4 (group III) and DHPG (group I) (30–100 μM) inhibited capsaicin-evoked substance P release by approximately 60%. These inhibitory effects were blocked by the selective metabotropic glutamate receptor antagonist (±)-MCPG (5 μM). On the other hand, AMPA and kainate (0.1–10 μM), did not significantly affect capsaicin-evoked substance P release. Thus, substance P release from non-myelinated primary afferents, and possibly nociception, may be under the functional antagonistic control of some metabotropic and ionotropic glutamate receptor subtypes.  相似文献   

16.
We evaluated the impact of environmental training on the functions of pre-synaptic glutamatergic NMDA and α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) and nicotinic receptors expressed by hippocampal noradrenergic nerve terminals. Synaptosomes isolated from the hippocampi of mice housed in enriched (EE) or standard (SE) environment were labeled with [3H]noradrenaline ([3H]NA) and tritium release was monitored during exposure in superfusion to NMDA, AMPA, epibatidine or high K+. NMDA -evoked [3H]NA release from EE hippocampal synaptosomes was significantly higher than that from SE synaptosomes, while the [3H]NA overflow elicited by 100 μM AMPA, 1 μM epibatidine or (9, 15, 25 mM) KCl was unchanged. In EE mice, the apparent affinity of NMDA or glycine was unmodified, while the efficacy was significantly augmented. Sensitivity to non-selective or subtype-selective NMDA receptor antagonists (MK-801, ifenprodil and Zn2+ ions) was not modified in EE. Finally, the analysis of NMDA receptor subunit mRNA expression in noradrenergic cell bodies of the locus coeruleus showed that NR1, NR2A, NR2B and NR2D subunits were unchanged, while NR2C decreased significantly in EE mice as compared to SE mice. Functional up-regulation of the pre-synaptic NMDA receptors modulating NA release might contribute to the improved learning and memory found in animals exposed to an EE.  相似文献   

17.
The peripheral benzodiazepine receptor (PBR) is a mitochondrial protein involved in regulating steroid synthesis and transport. We report here the effects of androgenic/anabolic steroids (AAS) on the binding of the PBR-specific ligand [3H] PK11195 to male rat brain cortical synaptoneurosomes. Two synthetic AAS, stanozolol and 17β-testosterone cypionate (17β-cyp), significantly inhibited 1 nM [3H] PK11195 binding at concentrations greater than 5 and 25 μM, respectively. Stanozolol was the most effective inhibitor, reducing [3H] PK11195 binding by up to 75%, compared to only 40% inhibition by 17β-cyp, at 50 μM AAS concentration. Two other AAS, 17-methyltestosterone and nortestosterone decanoate, were incapable of inhibiting [3H] PK11195 binding at concentrations up to 50 μM. On the basis of Scatchard/Rosenthal analysis, [3H] PK11195 binds to two classes of binding sites, and the inhibition of [3H] PK11195 binding by stanozolol appears to be allosteric, primarily reducing binding to the higher affinity [3H] PK11195 binding site. These results, in combination with earlier studies indicating the direct effects of AAS on the function of additional central nervous system receptor complexes, suggest that the behavioral and psychological effects of AAS result from the interactions of AAS with multiple regulatory systems in the brain.  相似文献   

18.
The activity of the muscarinic cholinergic system (acetylcholine, ACh; acetylcholinesterase, AChE; choline acetyltransferase, ChAT; muscarinic acetylcholine receptors) was studied in the carp brain. The ACh content (13.9 ± 1.1 nmol/g wet tissue) was estimated by gas chromatography after microwave irradiation focused to the head. The AChE and ChAT activities were 153 ± 13 nmol/min/mg protein and 817 ± 50 pmol/min/mg protein, respectively. The characteristics of [3H](−)quinuclidinyl benzilate ([3H](−)QNB) and [3H]pirenzepine ([3H]PZ) binding were also studied in brain membranes. Their specific binding was linearly dependent on the protein content and they appeared to bind with high affinity to a single, saturable binding site. A dissociation constant (Kd) of 47 ± 6.3 pM and a maximum number of binding sites (Bmax) of 627 ± 65 fmol/mg protein were obtained for [3H](−)QNB, with a Kd value of 3.85 ± 0.67 nM and a Bmax value of 95.3 ± 6.25 fmol/mg protein for [3H]PZ binding. The [3H]PZ binding amounted to only 15% of the [3H](−)QNB-labeled sites, as estimated from the ratio of the Bmax values of [3H](−)QNB and [3H]PZ, suggesting a low density of M1 subtype. Atropine sulfate, atropine methylnitrate and PZ inhibited the binding of both radioligands with Hill slopes (nH) close to unity. The nH value of AF-DX 116 was close to 1 against [3H](−)QNB binding, while it was 0.75 against [3H]PZ binding. The displacement curves of oxotremorine and carbachol were shallow for the binding of both radioligands. The rank order of potency of muscarinic ligands against [3H](−)QNB binding (Ki nM) was atropine sulfate (0.55) > atropine methylnitrate (1.61) > PZ (61.19) > oxotremorine (156.3) > AF-DX 116 (307) > carbachol (1301), while in the case of [3H]PZ binding it was atropine sulfate (0.24) > atropine methylnitrate (0.34) > PZ (10.38) > AF-DX 116 (55.87) > oxotremorine (62.79) > carbachol (1696). The results indicate the presence of a well-developed muscarinic cholinergic system with predominantly M2 receptors in the carp brain.  相似文献   

19.
Release of [3H]dopamine ([3H]DA) from rat striatal slices kept under hypoxic or/and glucose-free conditions was measured using a microvolume perfusion method. The corresponding changes in nucleotide content were determined by reverse-phase high-performance liquid chromatography (RPHPLC). The resting release of [3H]DA was not affected by hypoxia, but under glucose-free conditions massive [Ca2+]0-independent release of [3H]DA was observed. Hypoxia reduced the energy charge (E.C.) and the total purine content from 19.36 ± 4.15 to 6.98 ± 1.83 mol/mg protein. Glucose deprivation by itself, or in combination with hypoxia, markedly reduced the levels of adenosine 5′-triphosphate (ATP), adenosine diphosphate (ADP) and adenosine monophosphate (AMP). The E.C. under glucose-free conditions was significantly reduced from 0.73 ± 0.04 to 0.44 ± 0.20. When the tissue was exposed to hypoxic and glucose-free conditions for 18 min the level of ATP was reduced to 3.15 ± 0.11 mol/mg protein. However, when the exposure time was 30 min the ATP level was further reduced to 1.11 ± 0.37 nmol/mg protein. The resting release was enhanced in a [Ca2+]0-independent manner, but there was no release in response to stimulation, and tetrodotoxin did not affect the enhanced resting release, indicating that the release was not associated with axonal activity. Similarly, 50 μM ouabain, inhibitor of Na+/K+-activated ATPase, enhanced the release of [3H]DA at rest in a [Ca2+]0-independent manner. It seems very likely that the reduced ATP level under glucose-free conditions leads to an inhibition of the activity of Na+/K+-ATPase that results in reversal of the uptake processes and in [Ca2+]0-independent [3H]DA release from the axon terminals.  相似文献   

20.
Chronic dosing with the glycine partial NMDA agonist, 1-aminocyclopropanecarboxylic acid (ACPC) elicited an altered allosteric regulation of cortical NMDA receptor binding. The present study hypothesized that these allosteric receptor binding changes would be manifest as pharmacologically functional reductions in NMDA receptor activity following chronic ACPC dosing. NMDA inhibition of carbachol—induced phosphoinositide (PI) hydrolysis was used as a functional assay to assess NMDA receptor function in rat cerebral cortex. NMDA inhibition of stimulated PI turnover was similar in naive (46% ± 4.5%; mean ± SE; n = 34) and ACPC dosed rats (39% ± 2.3%; n = 34). While ACPC reversed NMDA's inhibitory effects in naive rats (80% ± 13%; n = 9), it was ineffective (P < 0.05) in ACPC pretreated rats (48% ± 9.8%; n = 9). In contrast, the NMDA antagonists, MK-801 (ion channel), 7-chlorokynurenic acid (glycine site) and AP-7 (glutamate site), effectively reversed NMDA's inhibitory effects in naive and ACPC treated rats. The potency of these antagonists were unaltered by prior ACPC dosing. Thus, chronic ACPC therapy does not alter the functioning of the NMDA ion channel or glutamate receptor sites, but elicits functional tolerance to ACPC's actions in the cortical NMDA complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号