首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Mucopolysaccharidosis type I (MPS I) arises from a deficiency in the α-L-iduronidase (IDUA) enzyme. Although the clinical spectrum in MPS I patients is continuous, it was possible to recognize 3 phenotypes reflecting the severity of symptoms, viz., the Hurler, Scheie and Hurler/Scheie syndromes. In this study, 10 unrelated Chinese MPS I families (nine Hurler and one Hurler/Scheie) were investigated, and 16 mutant alleles were identified. Three novel mutations in IDUA genes, one missense p.R363H (c.1088G > A) and two splice-site mutations (c.1190-1G > A and c.792+1G > T), were found. Notably, 45% (nine out of 20) and 30% (six out of 20) of the mutant alleles in the 10 families studied were c.1190-1G > A and c.792+1G > T, respectively. The novel missense mutation p.R363H was transiently expressed in CHO cells, and showed retention of 2.3% IDUA activity. Neither p.W402X nor p.Q70X associated with the Hurler phenotype, or even p.R89Q associated with the Scheie phenotype, was found in this group. Finally, it was noted that the Chinese MPS I patients proved to be characterized with a unique set of IDUA gene mutations, not only entirely different from those encountered among Europeans and Americans, but also apparently not even the same as those found in other Asian countries.  相似文献   

2.
The lysosomal storage disorder, mucopolysaccharidosis type I (MPS I), is caused by a deficiency of the enzyme alpha-L-iduronidase, which is involved in the breakdown of dermatan and heparan sulphates. There are three clinical phenotypes, ranging from the Hurler form characterised by skeletal abnormalities, hepatosplenomegaly and severe mental retardation, to the milder Scheie phenotype where there is aortic valve disease, corneal clouding, limited skeletal problems, but no mental retardation. In this study, 85 MPS I families (73 Hurler, 5 Hurler/Scheie, 7 Scheie) were screened for 9 known mutations (Q70X, A75T, 474-2a>g, L218P, A327P, W402X, P533R, R89Q, 678-7g>a). W402X was the most frequent mutation in our population (45.3%) and Q70X was the second most frequent (15.9%). In 30 families, either one or both of the mutations were not identified, which accounted for 25.9% of the total alleles. Therefore, all 14 exons of the alpha-L-iduronidase gene were screened in these patients and 23 different sequence changes were found, 17 of which were previously unknown. The novel sequence changes include 4 deletions (153delC, 628del5, 740delC, 747delG), 5 nonsense mutations (Q60X, Y167X, Q400X, R619X, R628X), 6 missense mutations (C205Y, G208V, H240R, A319V, P496R, S633L), a splice site mutation (IVS12+5g>a), and a rare polymorphism (A591T). The polymorphism and novel missense mutations were transiently expressed in COS-7 cells and all of them except the polymorphism showed complete loss of enzyme activity. In total, 165 of the 170 mutant alleles were identified in this study and despite the high frequency of W402X and Q70X, the identification of many novel mutations unique to individual families further highlights the genetic heterogeneity of MPS I.  相似文献   

3.
ABSTRACT: BACKGROUND: The evolution and genomic stop codon frequencies have not been rigorously studied with the exception of coding of non-canonical amino acids. Here we study the rate of evolution and frequency distribution of stop codons in bacterial genomes. RESULTS: We show that in bacteria stop codons evolve slower than synonymous sites, suggesting the action of weak negative selection. However, the frequency of stop codons relative to genomic nucleotide content indicated that this selection regime is not straightforward. The frequency of TAA and TGA stop codons is GC-content dependent, with TAA decreasing and TGA increasing with GC-content, while TAG frequency is independent of GC-content. Applying a formal, analytical model to these data we found that the relationship between stop codon frequencies and nucleotide content cannot be explained by mutational biases or selection on nucleotide content. However, with weak nucleotide content-dependent selection on TAG, -0.5 < Nes < 1.5, the model fits all of the data and recapitulates the relationship between TAG and nucleotide content. For biologically plausible rates of mutations we show that, in bacteria, TAG stop codon is universally associated with lower fitness, with TAA being the optimal for G-content < 16% while for G-content > 16% TGA has a higher fitness than TAG. CONCLUSIONS: Our data indicate that TAG codon is universally suboptimal in the bacterial lineage, such that TAA is likely to be the preferred stop codon for low GC content while the TGA is the preferred stop codon for high GC content. The optimization of stop codon usage may therefore be useful in genome engineering or gene expression optimization applications.ReviewersThis article was reviewed by Michail Gelfand, Arcady Mushegian and Shamil Sunyaev. For the full reviews, please go to the Reviewers' Comments section.  相似文献   

4.
Role of premature stop codons in bacterial evolution   总被引:1,自引:0,他引:1  
When the stop codons TGA, TAA, and TAG are found in the second and third reading frames of a protein-encoding gene, they are considered premature stop codons (PSC). Deinococcus radiodurans disproportionately favored TGA more than the other two triplets as a PSC. The TGA triplet was also found more often in noncoding regions and as a stop codon, though the bias was less pronounced. We investigated this phenomenon in 72 bacterial species with widely differing chromosomal GC contents. Although TGA and TAG were compositionally similar, we found a great variation in use of TGA but a very limited range of use of TAG. The frequency of use of TGA in the gene sequences generally increased with the GC content of the chromosome, while the frequency of use of TAG, like that of TAA, was inversely proportional to the GC content of the chromosome. The patterns of use of TAA, TGA and TAG as real stop codons were less biased and less influenced by the GC content of the chromosome. Bacteria with higher chromosomal GC contents often contained fewer PSC trimers in their genes. Phylogenetically related bacteria often exhibited similar PSC ratios. In addition, metabolically versatile bacteria have significantly fewer PSC trimers in their genes. The bias toward TGA but against TAG as a PSC could not be explained either by the preferential usage of specific codons or by the GC contents of individual chromosomes. We proposed that the quantity and the quality of the PSC in the genome might be important in bacterial evolution.  相似文献   

5.
In bacteria stop codons are recognized by one of two class I release factors (RF1) recognizing TAG, RF2 recognizing TGA, and TAA being recognized by both. Variation across bacteria in the relative abundance of RF1 and RF2 is thus hypothesized to select for different TGA/TAG usage. This has been supported by correlations between TAG:TGA ratios and RF1:RF2 ratios across multiple bacterial species, potentially also explaining why TAG usage is approximately constant despite extensive variation in GC content. It is, however, possible that stop codon trends are determined by other forces and that RF ratios adapt to stop codon usage, rather than vice versa. Here, we determine which direction of the causal arrow is the more parsimonious. Our results support the notion that RF1/RF2 ratios become adapted to stop codon usage as the same trends, notably the anomalous TAG behavior, are seen in contexts where RF1:RF2 ratios cannot be, or are unlikely to be, causative, that is, at 3′untranslated sites never used for translation termination, in intragenomic analyses, and across archaeal species (that possess only one RF1). We conclude that specifics of RF biology are unlikely to fully explain TGA/TAG relative usage. We discuss why the causal relationships for the evolution of synonymous stop codon usage might be different from those affecting synonymous sense codon usage, noting that transitions between TGA and TAG require two-point mutations one of which is likely to be deleterious.  相似文献   

6.
Tandem stop codons are extra stop codons hypothesized to be present downstream of genes to act as a backup in case of read-through of the real stop codon. Although seemingly absent from Escherichia coli, recent studies have confirmed the presence of such codons in yeast. In this paper we will analyze the genomes of two ciliate species—Paramecium tetraurelia and Tetrahymena thermophila—that reassign the stop codons TAA and TAG to glutamine, for the presence of tandem stop codons. We show that there are more tandem stop codons downstream of both Paramecium and Tetrahymena genes than expected by chance given the base composition of the downstream regions. This excess of tandem stop codons is larger in Tetrahymena and Paramecium than in yeast. We propose that this might be caused by a higher frequency of stop codon read-through in these species than in yeast, possibly because of a leaky termination machinery resulting from stop codon reassignment.  相似文献   

7.
Aminoglycoside-mediated read-through of stop codons was recently demonstrated for a variety of diseases in vitro and in vivo. About 30 percent of human genetic diseases are the consequence of nonsense mutations. Nonsense mutations in obesity-associated genes like the melanocortin 4 receptor (MC4R), expressed in the hypothalamus, show the impact of premature stop codons on energy homeostasis. Therefore, the MC4R could be a potential pharmaceutical target for obesity treatment and targeting MC4R stop mutations could serve as proof of principle for nonsense mutations in genes expressed in the brain. We investigated four naturally occurring nonsense mutations in the MC4R (W16X, Y35X, E61X, Q307X) located at different positions in the receptor for aminoglycoside-mediated functional rescue in vitro. We determined localization and amount of full-length protein before and after aminoglycoside treatment by fluorescence microscopy, cell surface and total enzyme linked immunosorbent assay (ELISA). Signal transduction properties were analyzed by cyclic adenosine monophosphate (cAMP) assays after transient transfection of MC4R wild type and mutant receptors into COS-7 cells. Functional rescue of stop mutations in the MC4R is dependent on: (i) triplet sequence of the stop codon, (ii) surrounding sequence, (iii) location within the receptor, (iv) applied aminoglycoside and ligand. Functional rescue was possible for W16X, Y35X (N-terminus), less successful for Q307X (C-terminus) and barely feasible for E61X (first transmembrane domain). Restoration of full-length proteins by PTC124 could not be confirmed. Future pharmaceutical applications must consider the potency of aminoglycosides to restore receptor function as well as the ability to pass the blood-brain barrier.  相似文献   

8.
9.
Mucopolysaccharidosis type I (MPS I; McKusick 25280; Hurler syndrome, Hurler-Scheie syndrome and Scheie syndrome) is caused by a deficiency in the lysosomal hydrolase, alpha-L-iduronidase (EC 3.2.1.76). MPS I patients present within a clinical spectrum bounded by the extremes of Hurler and Scheie syndromes. The alpha-L-iduronidase missense mutations R89Q and R89W were investigated and altered an important arginine residue proposed to be a nucleophile activator in the catalytic mechanism of alpha-L-iduronidase. The R89Q alpha-L-iduronidase mutation was shown to result in a reduced level of alpha-L-iduronidase protein (< or =10% of normal control) compared to a normal control level of alpha-L-iduronidase protein that was detected for the R89W alpha-L-iduronidase mutation. When taking into account alpha-L-iduronidase specific activity, the R89W mutation had a greater effect on alpha-L-iduronidase activity than the R89Q mutation. However, overall the R89W mutation produced more residual alpha-L-iduronidase activity than the R89Q mutation. This was consistent with MPS I patients, with an R89W allele, having a less severe clinical presentation compared to MPS I patients with either a double or single allelic R89Q mutation. The effects of the R89Q and R89W mutations on enzyme activity supported the proposed role of R89 as a nucleophile activator in the catalytic mechanism of alpha-L-iduronidase.  相似文献   

10.
Type 2 deiodinase (D2) is a low Km iodothyronine deiodinase that metabolizes thyroxine (T4) to the active metabolite T3. We have recently shown that the cDNA for the human D2 coding region contains two in-frame selenocysteine (TGA) codons. The 3' TGA is seven codons 5' to a universal stop codon, TAA. The human D2 enzyme, transiently expressed in HEK-293 cells, can be in vivo labeled with 75Se as a doublet of approximately 31 kDa. This doublet is consistent with the possibility that the carboxy-terminal TGA codon can either encode selenocysteine or function as a stop codon. To test this hypothesis we mutagenized the second selenocysteine codon to a cysteine (TGC) or to an unambiguous stop codon (TAA). While the selenium incorporation pattern is different between the wild-type and mutant proteins, the deiodination properties of the enzyme are not affected by mutating the 3'TGA codon. Thus, we conclude that neither this residue nor the remaining seven carboxy-terminal amino acids are critical for the deiodination process.  相似文献   

11.
Heterologous expression of human glutathione transferase M2-2 (GST M2-2) using Escherichia coli was improved 140-fold by mutating the cDNA expressing the enzyme. Expression of GST M2-2 from this cDNA clone, pKHXhGM2, generated approximately 190 mg protein per liter of bacterial culture, corresponding to approximately 12% of the total amount of soluble protein. The high-level-expressing cDNA was generated by oligonucleotide-directed mutagenesis introducing alternative silent mutations into the third nucleotide of codons 2, 4-7, and 10-14 in the 5' end of the cDNA coding region. The choice of alternative codons was restricted to those naturally occurring in highly biased genes in E. coli. Furthermore, the wild-type TAG stop codon at the 3' end was replaced with the two stop codons TAA and TGA in tandem to increase translation termination efficiency. The resulting partially randomized cDNA library was assayed for high-level expression using immunoscreening. Sequence similarities between the constructed high-level-expressing GST M2-2 cDNA and a similarly designed cDNA encoding the closely related human GST M1-1 suggest that the codons in the region immediately following the start codon are influential in achieving high-level expression. Pyrimidines seem to be more favorable than purines in the third position of codons in optimizing the expression of these enzymes in E. coli.  相似文献   

12.
The genetic code is one of the most highly conserved characters in living organisms. Only a small number of genomes have evolved slight variations on the code, and these non-canonical codes are instrumental in understanding the selective pressures maintaining the code. Here, we describe a new case of a non-canonical genetic code from the oxymonad flagellate Streblomastix strix. We have sequenced four protein-coding genes from S.strix and found that the canonical stop codons TAA and TAG encode the amino acid glutamine. These codons are retained in S.strix mRNAs, and the legitimate termination codons of all genes examined were found to be TGA, supporting the prediction that this should be the only true stop codon in this genome. Only four other lineages of eukaryotes are known to have evolved non-canonical nuclear genetic codes, and our phylogenetic analyses of alpha-tubulin, beta-tubulin, elongation factor-1 alpha (EF-1 alpha), heat-shock protein 90 (HSP90), and small subunit rRNA all confirm that the variant code in S.strix evolved independently of any other known variant. The independent origin of each of these codes is particularly interesting because the code found in S.strix, where TAA and TAG encode glutamine, has evolved in three of the four other nuclear lineages with variant codes, but this code has never evolved in a prokaryote or a prokaryote-derived organelle. The distribution of non-canonical codes is probably the result of a combination of differences in translation termination, tRNAs, and tRNA synthetases, such that the eukaryotic machinery preferentially allows changes involving TAA and TAG.  相似文献   

13.
A series of new derivatives of the clinically used aminoglycoside antibiotic paromomycin were designed, synthesized, and their ability to read-through premature stop codon mutations was examined in both in vitro translation system and ex vivo mammalian cultured cells. One of these structures, a pseudo-trisaccharide derivative, showed notably higher stop codon read-through activity in cultured cells compared to those of paromomycin and gentamicin.  相似文献   

14.
15.
Cellular glutathione peroxidase is a key intracellular antioxidant enzyme that contains a selenocysteine residue at its active site. Selenium, a selenocysteine incorporation sequence in the 3'-untranslated region of the glutathione peroxidase mRNA, and other translational cofactors are necessary for "read-through" of a UGA stop codon that specifies selenocysteine incorporation. Aminoglycoside antibiotics facilitate read-through of premature stop codons in prokayotes and eukaryotes. We studied the effects of G418, an aminoglycoside, on cellular glutathione peroxidase expression and function in mammalian cells. Insertion of a selenocysteine incorporation element along with a UGA codon into a reporter construct allows for read-through only in the presence of selenium. G418 increased read-through in selenium-replete cells as well as in the absence of selenium. G418 treatment increased immunodetectable endogenous or recombinant glutathione peroxidase but reduced the specific activity of the enzyme. Tandem mass spectrometry experiments indicated that G418 caused a substitution of l-arginine for selenocysteine. These data show that G418 can affect the biosynthesis of this key antioxidant enzyme by promoting substitution at the UGA codon.  相似文献   

16.
17.
Mucopolysaccharidosis type I (i.e., Hurler, Hurler-Scheie, and Scheie syndromes) and type II (i.e., Hunter syndrome) are lysosomal storage disorders resulting from alpha-L-iduronidase (IDUA) deficiency and iduronate-2-sulfatase (IDS) deficiency, respectively. The a priori probability that both disorders would occur in a single individual is approximately 1 in 5 billion. Nevertheless, such a proband was referred for whom clinical findings (i.e., a male with characteristic facies, dysostosis multiplex, and mental retardation) and biochemical tests indicated these concomitant diagnoses. In repeated studies, leukocyte 4 methylumbelliferyl-alpha-L-iduronidase activities in this kindred were as follows: <1.0 nmol/mg protein/h in the proband and proband's clinically normal sister; 45.3 in mother; and 45.7 in father (normal range 65.0-140). Leukocyte L-O-(alpha-iduronate-2-sulfate)-(1->4)-D-O-2,5-anhydro[1-3H]mannitol-6- sulfate activities were as follows: 0.0 U/mg protein/h in the proband; 5.7 in his sister; 4.9 in mother; and 15.0 in father (normal range 11.0-18.4). Multiple techniques, including automated sequencing of the entire IDS and IDUA coding regions, were employed to unravel the molecular genetic basis of these intriguing observations. The common IDS mutation R468W was identified in the proband, his mother, and his sister, thus explaining their biochemical phenotypes. Additionally, the proband, his sister, and his father were found to be heterozygous for a common IDUA mutation, W402X. Notably, a new IDUA mutation A300T was also identified in the proband, his sister, and his mother, accounting for reduced IDUA activity in these individuals; the asymptomatic sister, whose cells demonstrated normal glycosaminoglycan metabolism, is thus a compound heterozygote for W402X and the new allele. This A300T mutation is the first IDUA pseudodeficiency gene to be elucidated at the molecular level.  相似文献   

18.
Nonsense mutations generate in-frame stop codons in mRNA leading to a premature arrest of translation. Functional consequences of premature termination codons (PTCs) include the synthesis of truncated proteins with loss of protein function causing severe inherited or acquired diseases. A therapeutic approach has been recently developed that is based on the use of chemical agents with the ability to suppress PTCs (read-through) restoring the synthesis of a functional full-length protein. Research interest for compounds able to induce read-through requires an efficient high throughput large scale screening system. We present a rapid, sensitive and quantitative method based on a dual-fluorescence reporter expressed in the yeast Saccharomyces cerevisiae to monitor and quantitate read-through at PTCs. We have shown that our novel system works equally well in detecting read-through at all three PTCs UGA, UAG and UAA.  相似文献   

19.
20.
Familial hypercholesterolemia (FH) (OMIM 143890) is an autosomal dominantly inherited disease mainly caused by mutations of the gene encoding the low density lipoprotein receptor (LDLR) and Apolipoprotein (Apo) B. First the common mutation R3500Q in ApoB gene was determined using PCR/RFLP method. Then the LDLR gene was screened for mutations using Touch-down PCR, SSCP and sequencing techniques. Furthermore, the secondary structure of the LDLR protein was predicted with ANTHEPROT5.0. The R3500Q mutation was absent in these two families. A heterozygous p.W483X mutation of LDLR gene was identified in family A which caused a premature stop codon, while a homozygous mutation p.A627T was found in family B. The predicted secondary structures of the mutant LDLR were altered. We identified two known mutations (p.W483X, p.A627T) of the LDLR gene in two Chinese FH families respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号