首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Summary A (13q21q) translocation was found in an infant with Down's syndrome. The 17-year-old mother and the grandmother carried the translocation 45,XX,t(13;21)(p12;q11). The great grandparents had normal karyotypes. Fluorescence marker studies suggested that the translocation originated in the great grandmother. The hypothesis was supported by satellite association studies which showed a significant excess of 13–21 and 13–15 associations in the great grandmother.  相似文献   

2.
Summary The parental origin of the extra chromosome 21 was studied in 20 patients with trisomy 21-associated transient myeloproliferative syndrome (TMS) using chromosomal heteromorphisms as markers; this was combined with a study of DNA polymorphisms in 5 patients. Of these, 10 were shown to result from duplication of a parental chromosome 21, viz., maternal in 8 and paternal in 2. A patient with Down syndrome-associated TMS had a paracentric inversion in two of his three chromosomes 21 [47,XY,-21, +inv(21)(q11.2q22.13)mat, +inv(21)(q11.2 q22.13)mat). These findings support our hypothesis of disomic homozygosity of a mutant gene on chromosome 21 in 21-trisomic cells as being a mechanism responsible for the occurrence of TMS. The finding also suggests that the putative TMS gene locus is at either 21q11.2 or 21q22.13, assuming that the gene is interrupted at either site because of the inversion. The study of 5 TMS patients using DNA polymorphic markers detected a cross-over site on the duplicated chromosomes 21 between 21q11.2 (or q21.2) and 21q21.3 in one patient, and a site between 21q21.3 and q22.3 in another patient, evidence that confined the gene locus to the 21cen-q21.3 segment. These findings suggest that the putative TMS gene is located at 21q11.2. The extra chromosome 21 in the latter two TMS patients probably resulted from maternal second meiotic non-disjunction, in view of the presence of recombinant heterozygous segments on their duplicated chromosomes 21.  相似文献   

3.
We report a patient with a 46,XX,+der(18)t(18;21)(q12.2;q11.2)mat,-21 karyotype, in whom the rarely seen adjacent-2 segregation (according to the predicted pachytene diagram model) as well as two cross-overs, resulted in maternal isodisomy 18pter-->18q12.2.  相似文献   

4.
Isochromosome not translocation in trisomy 21q21q   总被引:7,自引:2,他引:5  
Summary After primary trisomy, de novo 21q21q trisomy is the most frequent chromosomal aberration responsible for Down syndrome. This rearrangement is more commonly referred to as a Robertsonian translocation or centric fusion product than as an isochromosome, e.g., t(21q;21q) instead of i(21q); however, in practice, it has not so far proved possible to distinguish between these alternatives. The aim of this work was to establish which of the two alternatives is acceptable.  相似文献   

5.
Summary This paper reports the case of a one-day-old male child presenting the typical features of Patau's syndrome. The cytogenetic study by means of conventional techniques and GTG and QFQ banding techniques showed that the chromosomal pattern of the propositus was 46,XYq+,-21,+t(13q21q) 15ps+,22ps+, and that the nondisjunction that originated the translocation and trisomy had occurred in the mother.  相似文献   

6.
We report on a moderately mentally retarded 12-year-old boy of short stature showing the most complex chromosomal rearrangement (CCR) within a single chromosome ever described. A de novo derivative chromosome 21 was recognized in GTG-banding shortly after birth. However, the nature of the rearrangement remained obscure up to the application of the chromosome 21-specific centromere-near multicolor-FISH (subcenM-FISH) probe set and of six selected locus-specific probes along chromosome 21. An unbalanced 9-break-event was uncovered with breakpoints in 21p13, 21p13-->12, 21q11.2, 21q21.1, 21q22.11, 21q22.11, 21q22.12, 21q22.22 and 21q22.3. A deletion of 21q22.11 was detected by application of the BAC probe bk249H10. The karyotype can be described as 46,XY,der(21)(:p13-->p1213::q22.3-->q22.22:: q11.2-->p1213::q11.2-->q21.1::q22.11-->q21.1::q22.12--> q22.22::p13-->p13). The clinical signs can either be due to gene inactivation in connection with structural changes at the break and fusion regions, to the building of new fusion genes within the CCR and/or to the deletion of genes in 21q22.11.  相似文献   

7.
A (13q21q) translocation was found in an infant with Down's syndrome. The 17-year-old mother and the grandmother carried the translocation 45,XX,t(13;21)(p12;q11). The great grandparents had normal karyotypes. Fluorescence marker studies suggested that the translocation originated in the great grandmother. The hypothesis was supported by satellite association studies which showed a significant excess of 13-21 and 13-15 associations in the great grandmother.  相似文献   

8.
Interchange trisomy 21 by t(1:21)(p22:q22)mat: Interchange trisomy 21 by t(1;21)(p22;q22)mat was identified in a sporadic patient with Down syndrome. With a 21q22 specific probe, we observed signals on both normal 21 chromosomes and on the der. We reviewed the 23 published reports of families with reciprocal translocations leading to viable offspring with interchange trisomy 21. The breakpoints in chromosome 21 were mainly located in 21q (19/24 instances, including the present report) and in 19/23 cases the other chromosome involved in the translocation was (pairs 1-12). The underlying 3:1 segregation occurred mainly in carrier mothers; only one patient presented a de novo imbalance and in another case the father was the carrier. In addition, there were 4 instances of concurrence with another unbalanced segregation (adjacent-1 or tertiary trisomy) and 3 families with recurrence of interchange trisomy 21. The mean age of 14 female carriers at birth of interchange trisomy 21 offspring (24.8 yr) was lower that the mean (28.3 yr) found in a larger sample of mothers of unbalanced offspring due to 3:1 segregation (mostly tertiary trisomics) and was not increased with respect to the general population average. Overall, these data agree with previous estimates regarding recurrence risk (9-15%) and abortion rate (about 28%) in female carriers ascertained through an interchange trisomic 21 child.  相似文献   

9.
Oga A  Kong G  Ishii Y  Izumi H  Park CY  Sasaki K 《Cytometry》2001,46(1):57-62
BACKGROUND: Little is known about the genetic changes associated with DNA ploidy in gastric cancer (GC). The aim of this study was to identify recurrent or specific chromosomal regions of DNA sequence copy number aberrations (DSCNAs) that might harbor genes associated with DNA aneuploidy in GC. METHODS: We analyzed DSCNAs with comparative genomic hybridization and DNA ploidy by laser scanning cytometry in 16 primary intestinal-type GCs. RESULTS: All GCs examined showed at least one DSCNA (loss or gain); eight were DNA diploid (DD) tumors and eight were DNA aneuploid (DA) tumors. The frequent (>30%) DSCNAs were loss of 5q14-21 and gains of 7p11-14, 8q, 20q, and Xq25-26. Recurrent amplifications (>10%) were detected at chromosomal regions 6p, 7p, and 13q. The overall number of DSCNAs was significantly greater in DA than in DD tumors (P = 0.006). Furthermore, the number of aberrations was clearly greater with 5q loss than without 5q loss (P = 0.002). Losses of 5q14-21, 9p21-pter, 16q, and 18q21-qter were preferentially detected in DA tumors. CONCLUSION: The present observations indicate that there is a close relationship between DSCNA and DNA ploidy in intestinal-type GC and that gene(s) at 5q14-21, 9p21-pter, 16q, and/or 18q21-qter may play important roles in acquisition of DNA aneuploidy.  相似文献   

10.
We describe an 8-years old female with supernumerary chromosome der(21)t(4;21)(q25;q22) resulting in partial trisomy 4q25-qter and partial trisomy 21(pter-q22). The extra material was originated from a reciprocal balanced translocation carrier mother (4q;21q). Karyotyping was confirmed by FISH using whole chromosome painting probes for 4 and 21q and using 21q22.13-q22.2 specific probe to rule out trisomy of Down syndrome critical region. Phenotypic and cytogenetic findings were compared with previously published cases of partial trisomy 4q and 21q. Our patient had the major criteria of distal trisomy 4q namely severe psychomotor retardation, growth retardation, microcephaly, hearing impairment, specific facies (broad nasal root, hypertelorism, ptosis, narrow palpebral fissures, long eye lashes, long philtrum, carp like mouth and malformed ears) and thumbs and minor feet anomalies. In spite of detection of most of the 3 copies of chromosome 21, specific features of Down syndrome (DS) were lacked in this patient, except for notable bilateral symmetrical calcification of basal ganglia. This report represents further delineation of the phenotype-genotype correlation of trisomy 4q syndrome. It also supports that DS phenotype is closely linked to 21q22. Nevertheless, presence of basal ganglia calcification in this patient may point out to a more proximal region contributing in its development in DS, or that genes outside the critical region may influence or control manifestations of DS features.  相似文献   

11.
"Mirror image" duplication of chromosome 21 -- 46,XX,pter dic(21)ter rea(21q21q) -- was observed in a patient with the complete phenotype of trisomy 21 and a ses-sesquialtère de la SOD1.  相似文献   

12.
If the theory of evolution is now largely accepted, there are still many debates on the mechanisms of evolution, including human evolution. One of these mechanisms is heterochrony of development including progenesis and neoteny. We report on a patient who could be an example of human progenesis. This boy was born prematurely, after a cesarian section for preeclampsia. Family history was unremarkable. He walked unaided when he was 2.5 years old. At 5 years of age height was 95 cm (< 3rd centile), weight 18.6 kg (40th centile) and OFC 54 cm (98th centile is 53 cm). He had a macropenis. He attended elementary school. However, at 9 years of age he had to have special education. Puberty occurred when he was 8 years old. At 14 years of age height was 141 cm (3rd centile is 144 cm), weight 32.5 kg (3rd centile) and OFC 55.5 cm (75th centile). At physical examination he had hypertelorism, narrow forehead, short philtrum, retromicrognathia, large and low set ears, hyperlaxity, overcrowed teeth, dorsal kyphosis, and macropenis. Karyotype showed a deletion 13q21q31. The deletion was de novo and pure. In conclusion this case with sexual precocity and small final stature could be an example of progenesis, rising the question of the presence of a critical region for human evolution within chromosomal region 13q21q31.  相似文献   

13.
An abnormal chromosome 21 is reported in a child with a phenotype strongly reminiscent of trisomy 21 syndrome. It is shown to result from duplication of the segment 21q21 leads to 21q22.2. Comparison of the phenotype with that of other partial and total trisomics shows that the characteristic features of the trisomy 21 syndrome (mongolism), the mental retardation in particular - is due to trisomy 21q22.2 and perhaps 21q22.2.  相似文献   

14.
We analyzed a cohort of 61 follicular lymphomas (FL) with an abnormal G-banded karyotype by spectral karyotyping (SKY) to better define the chromosome instability associated with the t(14;18)(q32;q21) positive and negative subsets of FL and histologic grade. In more than 70% of the patients, SKY provided additional cytogenetic information and up to 40% of the structural abnormalities were revised. The six most frequent breakpoints in both SKY and G-banding analyses were 14q32, 18q21, 3q27, 1q11-q21, 6q11-q15 and 1p36 (15-77%). SKY detected nine additional sites (1p11-p13, 2p11-p13, 6q21, 8q24, 6q21, 9p13, 10q22-q24, 12q11-q13 and 17q11-q21) at an incidence of >10%. In addition to the known recurring translocations, t(14;18)(q32;q21) [70%], t(3;14)(q27;q32) [10%], t(1;14)(q21;q32) [5%] and t(8;14)(q24;q32) [2%] and their variants, 125 non-IG gene translocations were identified of which four were recurrent within this series. In contrast to G-banding analysis, SKY revealed a greater degree of karyotypic instability in the t(14;18) (q32;q21) negative subset compared to the t(14;18)(q32;q21) positive subset. Translocations of 3q27 and gains of chromosome 1 were significantly more frequent in the former subset. SKY also allowed a better definition of chromosomal imbalances, thus 37% of the deletions detected by G-banding were shown to be unbalanced translocations leading to gain of genetic material. The majority of recurring (>10%) imbalances were detected at a greater (2-3 fold) incidence by SKY and several regions were narrowed down, notably at gain 2p13-p21, 2q11-q21, 2q31-q37, 12q12-q15, 17q21-q25 and 18q21. Chromosomal abnormalities among the different histologic grades were consistent with an evolution from low to high grade disease and breaks at 6q11-q15 and 8q24 and gain of 7/7q and 8/8q associated significantly with histologic progression. This study also indicates that in addition to gains and losses, non-IG gene translocations involving 1p11-p13, 1p36, 1q11-q21, 8q24, 9p13, and 17q11-q21 play an important role in the histologic progression of FL with t(14;18)(q32;q21) and t(3q27).  相似文献   

15.
We describe a female patient of 1 year and 5 months-old, referred for genetic evaluation due to neuropsychomotor delay, hearing impairment and dysmorphic features. The patient presents a partial chromosome 21 monosomy (q11.2→q21.3) in combination with a chromosome 3p terminal monosomy (p25.3→pter) due to an unbalanced de novo translocation. The translocation was confirmed by fluorescence in situ hybridization (FISH) and the breakpoints were mapped with high resolution array. After the combined analyses with these techniques the final karyotype was defined as 45,XX,der(3)t(3;21)(p25.3;q21.3)dn,-21.ish der(3)t(3;21)(RP11-329A2-,RP11-439F4-,RP11-95E11-,CTB-63H24 +).arr 3p26.3p25.3(35,333-10,888,738)) × 1,21q11.2q21.3(13,354,643-27,357,765) × 1. Analysis of microsatellite DNA markers pointed to a paternal origin for the chromosome rearrangement. This is the first case described with a partial proximal monosomy 21 combined with a 3p terminal monosomy due to a de novo unbalanced translocation.  相似文献   

16.
We have performed genetic linkage analysis in 13 large multiply affected families, to test the hypothesis that there is extensive heterogeneity of linkage for genetic subtypes of schizophrenia. Our strategy consisted of selecting 13 kindreds containing multiple affected cases in three or more generations, an absence of bipolar affective disorder, and a single progenitor source of schizophrenia with unilineal transmission into the branch of the kindred sampled. DNA samples from these families were genotyped with 365 microsatellite markers spaced at approximately 10-cM intervals across the whole genome. We observed LOD scores >3.0 at five distinct loci, either in the sample as a whole or within single families, strongly suggesting etiological heterogeneity. Heterogeneity LOD scores >3.0 in the sample as a whole were found at 1q33.2 (LOD score 3.2; P=.0003), 5q33.2 (LOD score 3.6; P=.0001), 8p22.1-22 (LOD score 3.6; P=.0001), and 11q21 (LOD score 3.1; P=.0004). LOD scores >3.0 within single pedigrees were found at 4q13-31 (LOD score 3.2; P=.0003) and at 11q23.3-24 (LOD score 3.2; P=.0003). A LOD score of 2.9 was also found at 20q12.1-11.23 within in a single family. The fact that other studies have also detected LOD scores >3.0 at 1q33.2, 5q33.2, 8p21-22 and 11q21 suggests that these regions do indeed harbor schizophrenia-susceptibility loci. We believe that the weight of evidence for linkage to the chromosome 1q22, 5q33.2, and 8p21-22 loci is now sufficient to justify intensive investigation of these regions by methods based on linkage disequilibrium. Such studies will soon allow the identification of mutations having a direct effect on susceptibility to schizophrenia.  相似文献   

17.
De novo translocation (2;18)(q21;q22) in a patient with severe epilepsy developmental delay and mild dysmorphism: We report on a patient presenting with severe epilepsy, hypotonia, developmental delay, blepharophimosis, low-set ears, camptodactyly and tapering fingers, and cutaneous syndactyly of toes II and III of the right foot. The MRI showed some loss of volume of the white matter and delayed myelination, no other specific anomalies were present. Chromosome analysis revealed a translocation involving chromosomes 2 and 18, which was characterized further by FISH using band-specific probes. The possibility of a submicroscopic deletion is discussed and the patient is compared with patients reported in the literature with either 2q21 or 18q22 deletion.  相似文献   

18.
Atopic dermatitis (AD) is a common, itchy skin disease of complex inheritance characterized by dermal and epidermal inflammation. The heritability is considerable and well documented. To date, four genome scans have examined the AD phenotype, showing replicated linkage at 3p26-22, 3q13-21 and 18q11-21. Our previous AD scan showed evidence of linkage to loci at 3p and 18q, and furthermore at 4p15-14. In order to further investigate the genetic basis of AD, we collected and analysed a new Danish family sample consisting of 130 AD sib pair families (555 individuals including 295 children with AD). AD was diagnosed after clinical examination, AD severity was scored and specific IgE was determined. A linkage scan of chromosome 3, 4 and 18 was performed using 91 microsatellite markers. Linkage analyses were performed of dichotomous phenotypes and semi-quantitative traits including the AD severity score. We analysed the novel AD sample alone and together with the previously examined sample. AD severity showed a maximum Z-score of 3.7 at 4q22.1 suggesting the localization of a novel gene for AD severity. A maximum MOD score of 4.6 was obtained at 3p24 for the AD phenotype, providing the first significant linkage of AD at this locus. A maximum MLS score of 3.3 was obtained at 3q21 for IgE-associated AD, and evidence of linkage was also obtained at 3p22.2-21.31, 3q13, 4q35, and 18q12. The results presented should provide a firm basis for gene-targeting studies of AD and related disorders.  相似文献   

19.
Follicular lymphoma (FL) cases with a t(14;18)(q32;q21) and minimal or no additional karyotypic alterations, such as copy number gains and losses and/or chromosomal rearrangements, may exhibit pathologic features and a clinical behavior similar to those with more complex karyotypes. This study sought to investigate whether the copy-neutral loss of heterozygosity (cnLOH) profiles of these minimally evolved t(14;18)(q32;q21)-positive follicular lymphoma (MEV-FL) cases are similar to or different from the majority of FL cases with more karyotypic alterations. Affymetrix SNP 6.0 array analysis was applied to the tumor genomes of 23 MEV-FL biopsy samples to assess for the presence of cnLOH. These cases carried either a single or no chromosomal abnormality in addition to t(14;18)(q32;q21) as determined by karyotyping. We found that, although these MEV-FL cases had simple karyotypes, they showed very similar cnLOH profiles as compared to cytogenetically complex cases. The most frequent regions affected by cnLOH were 1p (17%), 6p (17%), 12q (13%) and 16p (13%). Our study suggests that cnLOH alterations may serve as important contributors to the pathological and clinical manifestations of FL.  相似文献   

20.
Summary In one family a duplicated 21q was shown to be a true isochromosome, which segregates from mosaic mother to non-mosaic child with full Down syndrome phenotype. Densitometric analysis of Southern blots, using probe pPW228C for the distal long arm of chromosome 21, indicated that the 21q duplication contains two copies of the allele detected by the probe. Maternal mosaic karyotype of 45,XX,-21/46,XX/46, XX,-21,+21i(21q) also suggested transverse mitotic centromere division as the origin of the 21q isochromosomes. Morphologic analysis of chromosome heteromorphisms strengthened this interpretation because the free 21 missing in the cell line with 45 chromosomes was also missing in cells with the isochromosome. In a second family the cytogenetic data also suggested transmission of an i(21q) from mosaic mother to nonmosaic Down syndrome child but molecular evidence did not prove identity of alleles in the duplicated chromosome 21.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号