首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
  1. Investigations were made on the modes of synthesis of differentspecies of RNA which appear during the greening (chloroplastregeneration) of the "glucose-bleached" cells of Chlorella protothecoidescontaining profoundly degenerated plastids.
  2. RNAs were extractedfrom the algal cells which had been labelledwith 32P for 1hr before harvesting at different stages of thegreening inthe light and in darkness, and subjected to columnchromatographywith methylated albumin-coated kieselguhr. Itwas found that,during the greening process, the elution profilesof RNAs, interms of the optical density at 260 mµ and32P-radioactivity,changed profoundly.
  3. Based on these and other results, it wasconcluded that duringan early phase of the chloroplast regenerationin the glucosebleachedalgal cells, there occurs an active formationof both ribosomalRNAs (rRNAs) and the RNAs corresponding tosoluble RNA (sRNA),the formation coming, however, later toa standstill when thesynthesis of chlorophyll has proceededto a certain level. Thequantity ratio of sRNA to rRNA was foundto be constant (30:70)at different stages of the greening (bothin the light and indarkness), with a few exceptions. The synthesisof the chloroplastribosomal RNA is markedly accelerated bylight, and its maximumrate is observed sometime later thanthat of the non-chloroplast("cytoplasmic") ribosomal RNA. Itwas suggested that there areat least two different sites ofsynthesis of ribosomal RNAs,one in the plastid and the otheroutside of it (most probablyin the nucleus).
1A part of this work was reported at the Symposium on Cell Differentiationsponsored by the Institute of Applied Microbiology, Universityof Tokyo, in November 1965. 2 Present address: Institute for Plant Virus Research, Ministryof Agriculture and Forestry, Aoba-cho, Chiba.  相似文献   

2.
The "glucose-bleached" and "etiolated" cells of Chlorella protothecoideshaving plastids of different degrees of degeneration were preparedby the methods previously reported, and the effects of actinomycin(C complex) upon the processes of greening of these cells wereinvestigated under various experimental conditions. As has beenshown previously, these cells formed normal chloroplasts onbeing incubated in the light with provision of nitrogen source(urea), but without glucose. The greening process of the glucose-bleachedcells has been found to differ from that of the etiolated cellsin the point that it involves a light-independent phase precedinga light-requiring phase. It was revealed that the greening ofglucose-bleached cells is inhibited by actinomycin much morestrongly than that of etiolated cells. On applying the antibioticat different times during the chloroplast development in glucose-bleachedcells, it was found that the inhibitory effect was remarkablyreduced with the progress of the developmental process. Thisindicated that the antibiotic attacked more strongly the light-independentphase than the light-requiring phase in question. Based on theseobservations it was inferred that, in the process of chloroplastdevelopment in glucose-bleached cells, DNA and RNA are playingimportant roles, especially during the early light-independentphase of chloroplast development. (Received September 18, 1964; )  相似文献   

3.
Measurements of quantum requirement of oxygen evolution in greeningand bleaching cultures of Chlorella proiothecoides reveal aconstant low-quantum requirement during greening and the firsthours of bleaching. Thereafter the values increase drastically. The light-induced "conformational change," measured as straylight-dependent absorbance change, is biphasic; the second partof die signal is due to the absorbance changes caused by theshrinking of the chloroplast. Its value was used as a measureof photophosphorylation, which follows, after a certain delay,the photosynthetic oxygen evolution during greening and bleachingofthe cells. 1 Present address: Institute of Applied Microbiology, Universityof Tokyo, 113 Tokyo, Japan. (Received January 27, 1976; )  相似文献   

4.
Regreening of glucose-bleached cells of Chlorella protothecoidesis stimulated by light. Spectral effectiveness in the processshowed maxima around 370, 440 and 480 nm, suggesting a flavoproteinas primary photoreceptor. Action spectra of ALA synthesis provedto be similar to those of chlorophyll formation, indicatingthat light stimulation of greening in this alga is regulatedat the first step of chlorophyll biosynthesis. 1 Present address: Institute of Applied Microbiology, Universityof Tokyo, Tokyo 113, Japan. (Received March 27, 1978; )  相似文献   

5.
  1. It has been demonstrated that when the cells of Chlorella protothecoidesare grown mixotrophically under illumination in a medium richin nitrogen source (urea) and poor in glucose, the normal greencells are obtained, while in a medium rich in glucose and poorin the nitrogen source, entirely chlorophyll-less cells withprofoundly degenerated plastids ("glucose-bleached" cells) areproduced, irrespective of whether in the light or in darkness.The "glucose-bleached" cells turn green with regeneration offully organized chloroplasts when incubated in a nitrogen-enrichedmedium in the light ("light-greening"), while in the dark theybecome pale green with formation of only partially organizedchloroplasts ("dark-greening"). When, on the other hand, thegreen cells are transferred into a medium enriched with glucose,they are bleached fairly rapidly with degeneration of chloro-plastsin the light as well as in darkness ("bleaching"). Using 35Sas a tracer, investigations were made on the changes of contentsof the algal cells in sulfolipid and other sulfur compoundsduring the processes of the greening and bleaching.
  2. By determiningthe radioactivities of chromatographically separatedsulfur-containingcompounds of the uniformly 35S-labeled green("G") and "glucose-bleached"("W") cells, it was found thatthe concentration of a speciesof sulfolipid (discovered byBENSON et al.) as well as thoseof glutathione, sulfotriosesand most of the other sulfur-containingcompounds were at least5 times higher in the "G" cells thanin the "W" cells, whilesulfoquinovosyl glycerol was presentin approximately equalamounts in the two types of cells.
  3. Phospholipidcontents and compositions in the two types of algalcells werefound to be practically identical.
  4. The sulfolipid contentof algal cells increased and decreasedalmost in parallel withthe processes of greening and bleaching,respectively.
  5. Studyingthe mode of incorporation of radiosulfate into varioussulfurcompounds of algal cells during the processes of "light-anddark-greening" and "bleaching" (lasting about 70 hr), itwasfound that active 35S-incorporation into sulfolipid occurredthroughout the process of "light-greening," while in the "dark-greening"and "bleaching" the active incorporation abruptly ceased afterthe initial 24 hr period of experiments. It was suggested thatthe biosynthesis of the sulfolipid is closely related to theformation of photosynthetic apparatus in chloroplast.
  6. Whenthe 35S-labeled green cells were bleached in a medium containingno radiosulfate, the 35S-sulfolipid and most of other 35S-sulfurcompounds decreased markedly but the 35S-sulfoquinovosyl glycerolincreased considerably. It was inferred that the deacylationof the sulfolipid, a surfactant lipid, with formation of watersoluble sulfoquinovosyl glycerol may be a cardinal event ofbleaching process, causing a disintegration of the intact architechtureof photosynthetic apparatus.
  7. Based on these observations itwas concluded that the sulfolipidis an integral component ofphotosynthetic structure.
1This work was partly reported at the Symposium on Biochemistryof Lipids, sponsored by the Agricultural Chemical Society ofJapan, Sapporo, July, 1964.  相似文献   

6.
  1. 1. Subcellular fractions of Chlorella protothecoides were separatedby fractional centrifugation of the algal cell homogenate inmixtures of cyclohexane and CCl4. The base composition, meltingprofiles and IRC-50 column chromatographic patterns of DNA preparationsfrom the chloroplast and non-chloroplast fractions were examined.It was shown that the algal chloroplast contains at least oneDNA species which is different from the nuclear DNA.
  2. 2. RNApreparations from the subcellular fractions were subjectedtoMAK column chromatography, sucrose density gradient centrifugationand analysis for base composition. It was demonstrated thatthe chloroplast contains ribosomal RNA and soluble RNA. Twocomponents of the chloroplast ribosomal RNA were found to havethe same patterns as those of the E. coli ribosomal RNA in MAKcolumn chromatography and zone centrifugation. The major componentof the chloroplast ribosomal RNA was distinctly different fromthat of the non-chloroplastic (cytoplasmic) ribosomal RNA inall properties examined.
1This work was partly reported at the Symposium on Mitochondriaand Chloroplasts as Self-duplicating Units sponsored by theBotanical Society of Japan in August, 1966, and at the Symposiumon Biogenesis of Subcellular Particles, the 7th Internatl. Congressof Biochemistry, Tokyo, 1967.  相似文献   

7.
Effects of chloramphenicol, cycloheximide, puromycin and ethionineon the light-independent and subsequent light-dependent processesof chlorophyll formation in "glucose-bleached" cells of Chlorellaprotothecoides were studied. These substances, except puromycin,strongly suppressed different phases of chlorophyll formation.Ethionine most strongly suppressed the light-independent phaseand chloramphenicol an early, relatively short process in thelight-dependent phase of chlorophyll formation. Cycloheximideseverely suppressed all phases of chlorophyll formation. Possibleimplications of these results for the biosynthesis of chlorophyllin algal cells are discussed. 1 Present address: National Food Research Institute, Ministryof Agriculture and Forestry, Koto-ku, Tokyo 135, Japan. 2 Laboratory of Entomology, Faculty of Agriculture, TamagawaUniversity, Machida-shi, Tokyo, Japan (Received October 5, 1972; )  相似文献   

8.
The activities of enzymes involved in C4 photosynthesis andphotorespiration in colorless parts of variegated leaves ofStenotaphrum secundatum (Walt.) Kuntze were compared with thosein green leaves. Chlorophyll content of the colorless part wasonly about 0.3–3% of that of the green leaves. The activities of chloroplastic enzymes, pyruvate, Pi dikinase,NADP+-malic enzyme and NADP+-glyceraldehyde 3-phosphate dehydrogenasewere considerably lower in colorless tissue on a fresh weightor protein basis (the ratios of the activities in the green/colorlesstissues ranging from 5 to 20). A cytoplasmic enzyme, UDP-glucosepyrophosphorylase as well as aspartate and alanine aminotransferasesshowed comparable activities in the two types of tissue, whereasPEP carboxylase in the colorless tissue had only the one-thirdactivity of that in green tissue. Differences in activitieswere also observed for the glycolate pathway enzymes (the ratiosranging from 2 to 7 for glycolate oxidase, hydroxypyruvate reductaseand serine hydroxymethyltransferase, and 7 to 15 for catalase),while cytochrome c oxidase showed comparable activity in thetwo types of tissue. The results suggest that the deficiency of thylakoid developmentin the colorless tissue influences enzyme activities not onlyin plastids but also in other cellular compartments. 1Present address: Institute of Applied Microbiology, Universityof Tokyo, Tokyo 113, Japan. (Received March 26, 1986; Accepted June 17, 1986)  相似文献   

9.
Changes in photosynthetic carbon metabolism during the glucosebleaching of Chlorella protothecoides cells were investigatedusing NaH14CO3 as tracer. Several hours after incubating thegreen algal cells in the glucose medium in the dark, the ratesof 14C-incorporation into glucose polymers and sucrose decreasedand the incorporation into the lipid fraction (fatty acids)greatly increased. At this stage, the rate of photosynthetic14CO2 fixation and the chlorophyll content were practicallythe same as in the starting green cells. Afterwards, the photosyntheticcapacity and chlorophyll content continued to decrease throughoutthe experimental period. In contrast, when photosynthetic 14CO2fixation of green cells was carried out in the medium containingglucose, the rate of 14C-incorporation into glucose polymersincreased, though there was no change in the incorporationsinto sucrose and the lipid fraction. 1Part of this investigation was reported at the Conference "ComparativeBiochemistry and Biophysics of Photosynthesis" (Japan-U.S. CooperativeScience Program) held at Hakone, Japan in 1967. 2Present address: Faculty of Agriculture, Tamagawa University,Machida-shi, Tokyo, Japan. (Received June 10, 1974; )  相似文献   

10.
Green cells of Chlorella protothecoides when incubated in amedium containing acetate but no nitrogen source, have beenshown to be bleached as strongly as in glucose-induced bleaching.Using U-14C-acetate as tracer, the acetate metabolism of algalcells during the process of acetate-induced bleaching was investigated.Changes in algal cell activities for respiration and assimilationof added 14C-acetate were followed during bleaching processesin "acetate-adapted" and "non-adapted" green cells. As in glucose-inducedbleaching of algal cells, algal cell activity for incorporating14C into lipids showed the most characteristic change, suggestingthat lipogenesis is causally related to the occurrence of bleachingin algal cells. (Received March 5, 1969; )  相似文献   

11.
RuDP carboxylase was active mainly in chloroplasts and PEP carboxylaseactive principally outside of chloroplasts in Chlorella protothecoides. During the process of chloroplast degeneration in algal cellsinduced by addition of glucose, the activity of RuDP carboxylasesignificantly decreased, whereas the activities of PEP-carboxylaseand -carboxykinase markedly increased. During the process of chloroplast regeneration in "glucose-bleached"algal cells, which contained no detectable amounts of FractionI protein and showed only traces of RuDP carboxylase activity,a light-dependent development of RuDP carboxylase proceededalmost in parallel with the light-induced formation of chlorophyll.The activities of PEP-carboxylase and -carboxykinase, whichwere negligibly low in glucose-bleached cells, developed independentlyof light. Both chloramphenicol and cycloheximide severely inhibited thedevelopment of RuDP carboxylase activity. A relatively low concentrationof glucose also caused a significant suppression. Under theseconditions, chlorophyll formation was inhibited only slightlyby chloramphenicol and very strongly by cycloheximide and glucose. 1 Deceased, 11 June, 1972. (Received April 25, 1972; )  相似文献   

12.
When Chlorella protothecoides is grown mixotrophically in thelight in a medium rich in glucose and poor in nitrogen source(urea), one obtains the cells that are entirely devoid of chlorophylland containing only little RNA and protein. When these cells—referredto as "glucose-bleached" cells—are further grown in thelight with provision of nitrogen source, but without glucose,sequential syntheses of RNA, protein and chlorophyll take place.If the glucose-bleached cells are incubated in the dark underthe same nutritional condition, RNA, protein and chlorophyllare also successively formed in relatively small amounts. Thecells obtained under such a condition are, in many respects,similar to the cells that are obtained when the alga is grownin the dark in a medium poor in glucose and rich in the nitrogensource. These cells, which are called the "etiolated cells",are faintly green in color and contain larger amounts of RNAand protein compared with the chlorophyll-less glucose-bleachedcells. The glucose-bleached cells and the etiolated cells showapproximately the same content of DNA per cell. When the etiolatedcells are incubated in the light with provision of nitrogensource, but without glucose, they become green with active synthesisof chlorophyll and additional syntheses of RNA and protein. Based on these results and those to be reported later, it wasconcluded that the greening of the glucose-bleached cells involvesa light-independent phase followed by a light-requiring phasewhich entails the greening of cells and full organization ofchloroplasts, and that the latter process is essentially thesame as that taking place when the etiolated cells are incubatedin the light with provision of nitrogen source in the absenceof glucose. (Received September 5, 1964; )  相似文献   

13.
A product of the processing of precursor rRNA ("excess" RNA)has been indirectly found to be unmethylated in mammalian systems,but direct measurement was precluded because of its instability.The "excess" RNA of duckweeds is relatively stable allowingdirect estimation of its methylation by polyacrylamide gel electrophoresis.The "excess" RNA with an apparent molecular weight 0.5?106 wasunmethylated. A pulse labeled RNA with an apparent molecularweight of 1.2?106 (presumably from chloroplasts) was also unmethylated.Under similar conditions the presumed cytoplasmic rRNA precursors,and the mature cytoplasmic and chloroplast rRNAs were methylated. 1Present address: Department of Biological Sciences, S.U.N.Y.Binghamton, N.Y. 13901, U.S.A. (Received May 9, 1974; )  相似文献   

14.
1. As previously demonstrated, entirely chlorophyll-less cellsof Chlorella protothecoides are obtained when the alga is grownin a medium rich in glucose and poor in nitrogen source (urea).These cells, which are referred to as "glucose-bleached" cells,have neither discernible chloroplast structures nor photosyntheticactivity. When the "glucose-bleached" cells are incubated, inthe light, in a nitrogen-enriched mineral medium without addedglucose, they turn green, after an induction period, with regenerationof chloroplasts and development of the capacity for performingnormal photosynthesis. In the present study, changes in respiratoryactivity of algal cells during the process of greening (chloroplastregeneration) were followed, and the effects of various inhibitorsof respiration and photosynthesis on the greening process wereexamined. 2. The glucose-bleached cells showed a very low activity ofrespiration, and the activity increased markedly during an earlyphase of chloroplast regeneration, showing, however, a decreaseduring the subsequent phase of greening. 3. Some antimetabolites which inhibited the cell respiration,were found to suppress also the greening of cells. 2,4-Dinitrophenoland azide, potent inhibitors of oxidative phosphorylation, acceleratedconsiderably both the respiration and greening of algal cells.CMU inhibited completely photosynthesis of the greening cells,but suppressed only slightly the greening process. 4. Based on these results it was concluded that the primaryrole of respiration in the chloroplast regeneration in the glucose-bleachedcells is to produce oxidized carbon compounds (and perhaps reducedforms of NAD and NADP) for various biosynthetic reactions. Itwas further suggested that ATP may be supplied for the chloroplastregeneration by a certain means different from the oxidativephosphorylation or photophosphorylation. The activities of photosyntheticphosphorylation and CO2-fixation developing in the greeningcells do not appear to play any essential role in the chloroplastregeneration. (Received December 27, 1965; )  相似文献   

15.
Crystalline cytochrome c-553 was obtained from Porphyra yezoensisUeda. The cytochrome in areduced form was modified to show anitrite-reducing activity after appropriate treatment with heat,hydrogen peroxide, or photooxidation using methylene blue asthe electron acceptor, but the reducing activity was far lowerthan that of the nitrite reductase isolated from this alga.The modified cytochrome c-553 was autooxidizable and showedan absorption spectrum resembling that of cytochrome c-553 inthe oxidized form except for slight shifts of the absorptionmaximumin the -band region toward shorter wavelengths. 1 Present address: Department of Biological Sciences, Universityof Tsukuba, Sakura-Mura, Ibaraki, 300-31 Japan. 2 Present address: Department of Fisheries, College of Agricultureand Veterinary Medicine, Nihon University, Shimouma, Setagaya-ku,Tokyo, 154 Japan. (Received June 10, 1975; )  相似文献   

16.
  1. Previous work has demonstrated that when cells of Chlorellaprotothecoides are grown mixotrophically under illuminationin a medium rich in nitrogen source (urea) and poor in glucose,normal green cells are obtained, while in a medium rich in glucoseand poor in the nitrogen source, strongly bleached cells containingapparently no discernible chloroplast structures — called"glucose-bleached" cells — are produced either in thelight or in darkness. When the green cells are incubated ina glucose-enriched mineral medium without added nitrogen source,they are fairly rapidly bleached with concomitant degenerationof chloroplast structures (" bleaching "). When, on the otherhand, the "glucose-bleached" cells are transferred in a nitrogen-enrichedmedium without added glucose under illumination, they turn greenwith regeneration of chloroplasts (" greening "). In the presentstudy changes in contents of carbohydrate and fatty acid inalgal cells were followed during these processes of "bleaching"and "greening.".
  2. During the process of "bleaching", the quantityof glucose existingin the insoluble carbohydrate fraction ofalgal cells increasedrapidly and markedly. A considerable increasewas also observedin the contents of cells in oleic, linoleicand palmitic acids.It was noted, however, that linolenic aciddecreased in quantityduring the most active phase of cell bleaching.
  3. During the process of "greening", the glucose in the insolublecarbohydrate fraction rapidly decreased, suggesting that itis utilized, as carbon and energy sources, for the chloroplastregeneration. Linolenic acid was found to be synthesized inparallel with formation of chlorophyll. A peculiar pattern ofchange in contents was observed with oleic and palmitic acids,which was interpreted as being related with the process of cellulardivision occurring incidentally during the process of greening.
(Received September 24, 1966; )  相似文献   

17.
Cytochrome c reducing substance (CRS), a redox substance discoveredin photoreactive lamellar fragments, was purified by Sephadexcolumn chromatography. Chromatographic behaviours of CRS ofAnabaena and spinach were essentially the same. Purified CRSof Anabaena showed an absorption spectrum having one absorptionmaximum around 260 mµ. The absorption peak disappearedon addition of excess amount of borohydride. Similar absorptionchange on borohydride addition was observed with spinach CRSpreparation. Purified preparations of Anabaena and spinach CRS supportedphotophosphorylation in spinach broken chloroplasts. The phosphorylationwas found to couple the electron flow from water to molecularoxygen. 1This work was supported by grant GM-11300 from the NationalInstitute of Health, U. S. A. 2Present address: Institute of Applied Microbiology, The Universityof Tokyo, Tokyo, Japan.  相似文献   

18.
Sedimentation behavior of sweet potato glucose 6-phosphate dehydrogenasewas studied using the sucrose density gradient centrifugation.The relative s value to s20, value of alcohol dehydrogenasewas determined to be about 6 in the absence of both NADP$ andglucose 6-phosphate. In the presence of NADP$, the enzyme wassedimented with a relative s value of about 9. The additionof glucose 6-phosphate did not affect the sedimentation behavior.When glucose 6-phosphate was added to the gradient medium containingNDAP$, the enzyme was sedimented with a relative s value ofabout 6 or 7, depending on the concentration of glucose 6-phosphate. 1 Present address: Institute of Applied Microbiology, Universityof Tokyo, Bunkyo-ku. Tokyo, Japan. (Received February 13, 1971; )  相似文献   

19.
20.
The relationship between poly(ADP-ribose) synthesis and cytodifferentiationwas studied in the well characterized Zinnia system, in whichisolated mesophyll cells of Zinnia elegans transdifferentiateinto tracheary elements (TE) in a suspension culture in thepresence of both auxin and cytokinin. The rate of poly(ADP-ribose)synthesis was measured in nuclei isolated from cells that hadbeen induced to undergo transdifferentiation, and activationof such synthesis was observed before the appearance of TE duringculture. In cultures without auxin or cytokinin, poly-(ADP-ribose)synthesis appeared to proceed much more slowly. Treatment of cells with a potent inhibitor of poly-(ADP-ribose)polymerase, namely, 6(5H)-phenanthridinone (PT), resulted inthe blockage of TE formation and a decrease in the frequencyof cell division. PT was very effective in interfering withtransdifferentiation, in particular, when supplied between the24th hour and the 36th hour of culture. Repair-type DNA synthesis,which has been proposed to participate in transdifferentiation,was suppressed by the treatment with PT. These results suggestthat poIy(ADP-ribose) synthesis and subsequent repair-type DNAsynthesis might play a critical role in the transdifferentiationof Zinnia cells. 3Present address: Botanical Gardens, Faculty of Science, Universityof Tokyo, Hakusan, Bunkyo-ku, Tokyo, 112 Japan. 4Present address: Department of Chemical and Biological Sciences,Faculty of Science, Japan Women's University, Mejirodai, Bunkyo-ku,Tokyo, 112 Japan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号