首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The postnatal development (day of birth up to the end of the third month) of neurohypophyseal pituicytes and tanycytes of the median eminence (ME) and the medial basal hypothalamus (MBH) was studied immunohistochemically in the Mongolian gerbil (meriones unguiculatus) with antibodies directed against glial fibrillary acidic protein (GFAP; the major protein subunit of glial filaments). Weak GFAP-immunoreactivity (IR) was scattered in the neural lobe (NL), the ME and the lining of the ventral 3rd ventricle at the first postnatal days. By the end of the second postnatal week, the intensity of the IR had reached a level comparable to that of adult animals. Generally, in the whole neurohypophysis a cytoarchitectonic pattern, which essentially corresponded to adult conditions, was reached around the beginning of the second month. During the first week postnatum, solely perinuclear stainings, mostly unipolar pituicytes with short processes and isolated fibers were discernible in the NL. In the course of the second and third postnatal week, a growing number of the densely arranged pituicytes appeared in form of bi- and multipolar cells. Thickness and length of pituicyte processes, as well as their degree of branching, increased progressively in the first month. The number of GFAP-positive tanycytes in the ventral 3rd ventricle and in the ME most markedly augmented in the first week postnatum. In the MBH, long tanycyte processes emerged from the ventricular lining to cross the arcuate nucleus in large bows, delimiting groups of neurons. Ependymal and subependymal tanycytes in the ME gave rise to radial processes extending to the external zone. Moreover, in this zone several tanycyte-like cells, whose number increased considerably in the second postnatal week, contributed to the palisadal arrangement of glial processes. In the third month, the arcuate nucleus was still penetrated by many immunopositive tanycyte processes. It was characteristic of the adult staining pattern that the highly branched processes of tanycytes and tanycyte-like cells in the ME were thicker and more variable in size than the less densely arranged tanycyte processes of the MBH. The postnatal increase of GFAP-IR intensity was paralleled by a similar development of vasopressin-IR in the ME and NL, indicating that the maturation of neurohypophyseal glia is closely linked to the functional differentiation of the neurosecretory axons.  相似文献   

2.
Summary The development of the glial cells of the rat median eminence (ME), including the supraependymal cells, was investigated from embryonic day (ED) 14 through postnatal day (PD) 7, and pituicyte development from ED 12 through ED 17. The anlage of the ME and neurohypophysis shows a neuroepithelial-like structure at ED 12. From ED 13 to 15, the cells of both regions start to differentiate. At the ultrastructural level, only one cell type appears. At the beginning of ED 16, glioblasts of the oligodendrocyte and astrocyte series migrate laterally (from the region of the arcuate nucleus) into the ME. Also at this time the first distinctive structural features appear in the neurohypophysial anlage, the cells of which later develop into pituicytes. Starting at ED 18, tanycytes and astrocytic tanycytes arise in the ME from local glial cells, and somewhat later oligodendroblasts and astroblasts are formed from immigrant glioblasts. Due to their common features, the pituicytes, tanycytes and astrocytic tanycytes apparently represent different forms of the same parent cell type. Microglial and supraependymal cells are first seen at ED 12. Initially, they resemble the prenatal phagocytic connective tissue cells and mature in the fetus into typical electron-dense microglia and macrophage-like supraependymal cells. Both cell types are apparently of mesodermal origin. The microglial elements of the ME probably migrate from the mesenchyma through the basement into the nervous tissue. The intraventricular macrophages of the infundibular region may originate from microglia, epiplexal cells and subarachnoid macrophages.Dedicated to Prof. I. Törö, Budapest, on the occasion of his 80th birthday  相似文献   

3.
Summary Glial cells that contain the glial fibrillary acidic protein (GFAP; the major protein constituent of glial filaments) were stained immunohistochemically in thick frozen sections of the neurohypophysis of the Mongolian gerbil (Meriones unguiculatus). The resulting Golgi-like images provided informations on cytological features and distributional patterns of tanycytes and pituicytes. In the proximal median eminence, numerous bundled processes of tanycytes were revealed. They emerged from the ependymal and subependymal layer and mostly reached the brain surface. Several tanycytic processes extended into the anatomical neural stalk. In the whole neural lobe, a dense network of GFAP-immunoreactive pituicyte processes was visualized. Stained pituicytes were highly asymmetric and exhibited a great morphological variability. Immunopositive fibers which were encountered in the intermediate lobe might be derived from pituicytes. Electron-microscopically further evidence was obtained that GFAP-positive pituicytes correspond to filament-rich fibrous pituicytes at the ultrastructural level.  相似文献   

4.
P Redecker 《Histochemistry》1987,87(6):585-595
Glial cells that contain the glial fibrillary acidic protein (GFAP; the major protein constituent of glial filaments) were stained immunohistochemically in thick frozen sections of the neurohypophysis of the Mongolian gerbil (Meriones unguiculatus). The resulting Golgi-like images provided informations on cytological features and distributional patterns of tanycytes and pituicytes. In the proximal median eminence, numerous bundled processes of tanycytes were revealed. They emerged from the ependymal and sub-ependymal layer and mostly reached the brain surface. Several tanycytic processes extended into the anatomical neural stalk. In the whole neural lobe, a dense network of GFAP-immunoreactive pituicyte processes was visualized. Stained pituicytes were highly asymmetric and exhibited a great morphological variability. Immunopositive fibers which were encountered in the intermediate lobe might be derived from pituicytes. Electron-microscopically further evidence was obtained that GFAP-positive pituicytes correspond to filament-rich fibrous pituicytes at the ultrastructural level.  相似文献   

5.
P Redecker 《Histochemistry》1989,91(4):333-337
The post-embedding immuno gold staining (IGS) technique was used for the ultrastructural localization of glial fibrillary acidic protein (GFAP) in pituicytes and tanycytes of the neurohypophysis. IGS was applied to LR White embedded neurohypophyseal tissue of the Mongolian gerbil (Meriones unguiculatus), a species which contains abundant GFAP-positive pituicytes and tanycytes. GFAP-immunoreactivity could be demonstrated on pituicytic intermediate filaments (IF's) in situ. Thus, it was shown that pituicytes contain GFAP in its filamentous form, what had been a matter of speculation. At the ultrastructural level, gerbil tanycytes and tanycyte-like cells in the external zone of the median eminence were characterized by a great amount of densely packed IF's, which were labeled by both GFAP- or vimentin-antibodies. Sequential immunostaining of serial semithin sections with GFAP- and vimentin-antibodies revealed an invariable coexpression of the two IF proteins in somata and processes of these median eminence cells.  相似文献   

6.
Summary The post-embedding immuno gold staining (IGS) technique was used for the ultrastructural localization of glial fibrillary acidic protein (GFAP) in pituicytes and tanycytes of the neurohypophysis. IGS was applied to LR White embedded neurohypophyseal tissue of the Mongolian gerbil (Meriones unguiculatus), a species which contains abundant GFAP-positive pituicytes and tanycytes. GFAP-immunoreactivity could be demonstrated on pituicytic intermediate filaments (IF's) in situ. Thus, it was shown that pituicytes contain GFAP in its filamentous form, what had been a matter of speculation. At the ultrastructural level, gerbil tanycytes and tanycyte-like cells in the external zone of the median eminence were characterized by a great amount of densely packed IF's, which were labeled by both GFAP- or vimentin-antibodies. Sequential immunostaining of serial semithin sections with GFAP- and vimentin-antibodies revealed an invariable coexpression of the two IF proteins in somata and processes of these median eminence cells.  相似文献   

7.
Summary The SFO of the chicken is divided in half by a large central blood sinus; ventrally it is covered by a thin layer of ependyma (including tanycytes, dendrites, and axons) which connects the two lateral halves and protrudes as a midsagittal crest into the lumen of the third ventricle. The ependyma consists predominantly of tanycytes with long basal processes which terminate upon perivascular spaces. These cells have an extensive Golgi apparatus and abundant lysosomes; their cellular apices containing polyribosomes and a few vesicles frequently protrude into the ventricle. In addition to astrocytes, oligodendrocytes, and microglial cells, there is another glial cell population that is distinguished by the presence of parallel stacks or spherical to ovoid conglomerates of rough ER and their unique location, i.e., limited to areas ventral and ventral-lateral to the large blood sinus. Two types of neurons are present: neurons in which there is a paucity of granulated vesicles and occasional vacuoles in both the cytoplasm and nuclei, the second type of neuron elaborates many granulated vesicles. Numerous puncta adhaerentia are observed between adjacent neuronal perikarya and between glial processes and neuronal perikarya.Diverse axon types are found within the chicken SFO. Axo-dendritic and axo-somatic axon terminals and presynaptic axon dilations contain assorted combinations of electron-lucent and granulated vesicles of different maximal diameters. Based on the morphology of these axons, cholinergic, peptidergic, and serotoninergic fibers are described. There are two additional groups of axons whose classification awaits further investigation.The chicken SFO differs from the mammalian SFO in several respects: it possesses an ependyma with secretory and/or absorptive tanycytes predominating; it is divided midsagittally by a central blood sinus; its lateral and dorsal limits are nebulous; a previously undescribed peculiar type of glial cell is found in a limited portion of the organ; supraependymal neurons are lacking.Dedicated to Prof. H. Grau at the occasion of his 80th birthdayWe gratefully acknowledge the technical help of Susan Woroch and secretarial assistance of Diana Hapes and Debbie Harrison  相似文献   

8.
In the barn owl, maps of interaural time difference (ITD) are created in the nucleus laminaris (NL) by interdigitating axons that act as delay lines. Adult delay line axons are myelinated, and this myelination is timely, coinciding with the attainment of adult head size, and stable ITD cues. The proximal portions of the axons become myelinated in late embryonic life, but the delay line portions of the axon in NL remain unmyelinated until the first postnatal week. Myelination of the delay lines peaks at the third week posthatch, and myelinating oligodendrocyte density approaches adult levels by one month, when the head reaches its adult width. Migration of oligodendrocyte progenitors into NL and the subsequent onset of myelination may be restricted by a glial barrier in late embryonic stages and the first posthatch week, since the loss of tenascin-C immunoreactivity in NL is correlated with oligodendrocyte progenitor migration into NL.  相似文献   

9.
Summary The differentiation of tanycytes was studied light and electron microscopically during the perinatal period in rats, the time when functional connections between hypothalamus and hypophysis are established. The 3rd ventricle is slit-like between 16 and 18 days of the prenatal period. Its wall is formed by intensively proliferating matrix cells with apical processes, ovoid perikarya and a basal process. The ventral region of the 3rd ventricle becomes funnel-shaped on the 20th day of the prenatal period. As the cells differentiate, the apical process becomes shorter and broader. Moreover, on day 20 of prenatal life cells without apical processes appear. Their number increases during the postnatal period. The concentration of endoplasmic reticulum, mitochondria, polysomes, lipid droplets, dense bodies (lysosomes), lamellated and multivesicular bodies increases. Initially the cells are similar but from the 3rd day of postnatal life differentiation occurs in different regions of the infundibular recess. After the 5th day, there are no marked changes in the structure and distribution of these cells.K. Chandrasekhar wishes to thank the Indian National Science Academy and USSR Academy of Sciences for the award of a fellowship during the tenure of which this work was completed  相似文献   

10.
Ependymal cells appear to be totally differentiated during the first 3 weeks in the mouse brain. Early during postnatal development ependymal cells differentiate and undergo metabolic activation, which is accompanied by increased glucose uptake. We propose that ependymal cells induce an overexpression of the glucose transporter, GLUT1, during the first 2 weeks after delivery in order to maintain the early metabolic activation. During the first postnatal day, GLUT1 is strongly induced in the upper region of the third ventricle and in the ventral area of the rostral cerebral aqueduct. During the next 4 days, GLUT1 is expressed in all differentiated ependymal cells of the third ventricle and in hypothalamic tanycytes. At the end of the first week, ependymal cell differentiation and GLUT1 overexpression is concentrated in the latero-ventral area of the aqueduct. We propose that ependymal cell differentiation and GLUT1 overexpression is a synchronous process in the ventricular wall.  相似文献   

11.
Cytoskeletal intermediate filaments (IF) are composed of proteins able to form homo- and heterodimers, while their repertoire can change during cell differentiation. Data on the IF protein composition in tanycytes lining the mammalian third cerebral ventricle are still discrepant. The aim of this study was to investigate age-related changes in the IF protein composition in tanycytes of the third cerebral ventricle in Wistar rats at different ages (7-, 14-, and 30-day-old pups and 4–5-month-old adults; n = 26), using immunocytochemistry and confocal laser microscopy. In adult animals, tanycytes were shown to express IF proteins vimentin, GFAP, and nestin. In different types of tanycytes GFAP and nestin begin to be synthesized at different postnatal ages. For example, in α1 tanycytes GFAP is already present in 7-day-old animals, while in β1 tanycytes it appears only by day 30 of postnatal development. Meanwhile, vimentin is an essential IF component at all ages studied. A comparison of our data with the results obtained on other animal models suggests the existence of species-specific differences in the IF protein repertoire in tanycytes.  相似文献   

12.
13.
In the avian brainstem, nucleus magnocellularis (NM) projects bilaterally to nucleus laminaris (NL) in a pathway that facilitates sound localization. The distribution of glia during the development of this pathway has not previously been characterized. Radial glia, astrocytes, and oligodendrocytes facilitate many processes including axon pathfinding, synaptic development, and maturation. Here we determined the spatiotemporal expression patterns of glial cell types in embryonic development of the chick auditory brainstem using glial-specific antibodies and histological markers. We found that vimentin-positive processes are intercalated throughout the NL cell layer. Astrocytes are found in two domains: one in the ventral neuropil region and the other dorsolateral to NM. GFAP-positive processes are primarily distributed along the ventral margin of NL. Astrocytic processes penetrate the NL cell layer following the onset of synaptogenesis, but before pruning and maturation. The dynamic, nonoverlapping expression patterns of GFAP and vimentin suggest that distinct glial populations are found in dorsal versus ventral regions of NL. Myelination occurs after axons have reached their targets. FluoroMyelin and myelin basic protein (MBP) gradually increase along the mediolateral axis of NL starting at E10. Multiple GFAP-positive processes are directly apposed to NM-NL axons and MBP, which suggests a role in early myelinogenesis. Our results show considerable changes in glial development after initial NM-NL connections are made, suggesting that glia may facilitate maturation of the auditory circuit.  相似文献   

14.
Fetal (17-18 days of gestation) mediobasal hypothalamic tissue (MBH) was transplanted into the third ventricle of adult, male rats which had been treated neonatally with monosodium glutamate (MSG). MSG treatment caused a marked reduction of growth hormone-releasing factor-like-immunoreactive (GRF-i) perikarya in the arcuate nucleus and GRF-i fibers in the median eminence (ME), as compared to littermate controls. When normal fetal MBH was transplanted into the third ventricle of MSG recipients, numerous GRF-i perikarya were located within the graft four weeks following surgery. GRF-i fibers in the ME of MSG-treated rats were enhanced when MBH grafts were in close contact with the ME, but not when transplants were located dorsally or rostrally in the third ventricle without making contact with the recipient's ME. Fetal cerebral cortex, which was grafted as a control tissue, did not contain GRF-i neurons. These immunohistochemical results suggest that grafted fetal GRF-i perikarya may contact the recipient's ME to increase the content of GRF previously depleted by exposure to MSG.  相似文献   

15.
Astrocytic response following unilateral sciatic nerve axotomy was examined in the spinal gray matter of newborn rats. Using an antiserum to glial fibrillary acidic protein (GFAP), immunoreactive astrocytes were studied in the ventral, dorsal and transitional region between the dorsal and ventral gray matters (TDVG) at intervals of one day, one week, two weeks and one month postaxotomy. The axotomized side showed an obvious increase in the number of immunoreactive astrocytes at one week, two weeks and one month after surgery. The numerical density per area of the glial cells (N(a)) was determined in all groups on both the intact and axotomized sides, and it increased in all groups at the axotomized sides. The percentage of glial cell increase (Pgi) was also determined. At the ventral horn Pgi increased at day one and continued to increase in all groups, while the increase in TDVG and the dorsal horn occurred at later time points. The total motoneuron count in the ventral horn at the axotomized and intact sides was done at all time points, and the percentage of motoneuron reduction (Pmr) was calculated, the highest Pmr being noticed at one month (41%). A nonlinear regression for Pmr and Pgi showed that the rate of Pgi was approximately double that of Pmr. The rate of glial cell increase at each time point (one day, one week, two weeks and one month groups) was calculated, and the highest rate of glial cell increase in the ventral horn occurred one week after axotomy, while the highest rate in the dorsal horn and TDVG occurred at the second week. The conclusion of the study is that there may be an initial post-axotomic proliferative phase of the glial cells, which was followed by a differentiation phase. Also a gradient of an increase in the rate glial cell proliferation was noticed from the ventral horn toward the dorsal horn, maybe due to stimulation by a paracrine factor.  相似文献   

16.
The architectural pattern of the hypothalamo-neurohypophysial (HN) system of M. vittatus basically resembles that of other catfishes described earlier (Sathyanesan 1969 a, b). Some of the neurons of the nucleus preopticus of the hypophysectomised fish exhibit degeneration, whereas the viable ones were degranulated. The neurosecretory tract (NT) is in close association with the ependymal lining, both in the third ventricle and infundibular recess extending into the neurohypophysis. The pituicytes of the neurohypophysis are in close association with the NT which is of functional significance. In this species the NT entering the pituitary could be demonstrated with aldehyde fuchsin (AF), Palmgren's silver impregnation technique, alkaline and acid phosphatase and ascorbic acid tests. At least some among them may constitute separate tracts and their origin needs to be confirmed. As all those tracts pass through the infundibular base they come in direct contact among themselves as well as with the nucleus lateralis tuberis (NLT) neurons which lie on their pathway. In M. vittatus, in addition to the presence of neuro-adeno interface vasculature which is the median eminence (ME) equivalent of the teleosts, there is morphological evidence for the presence of a ME of tetrapodan type. The presence of strong alkaline and acid phosphatase and ascorbic acid activity in both the sites further supports the above view. However, additional ultrastructural evidence is needed to prove the functional status of the extra-hypophysial ME.  相似文献   

17.
Hypothalamic tanycytes are cells that line the walls of the 3rd ventricle. Their cell bodies contact the cerebrospinal fluid and give rise to an inwardly directed process. The more dorsally located (α1 and α2) tanycytes project to areas of the brain involved in the control of feeding and energy balance (the arcuate nucleus and ventromedial hypothalamic nucleus). Although their functions are poorly understood, they have some similarities to glial cells. Recent evidence shows that they express key molecules involved in purinergic signaling and at least some tanycytes may act as adult multipotent stem cells. Emerging evidence suggests that tanycytes signal through changes in intracellular Ca(2+) and that they can respond with large Ca(2+) signals to ATP and transmitters associated with wakefulness and the drive to feed. They are also glucosensitive and this response is dependent on release of ATP from tanycytes and the activation of P2Y1 receptors. Their ability to release ATP gives potential for their integration into the hypothalamic circuitry controlling energy balance and feeding, but many fundamental questions about their possible functions and roles remain unanswered.  相似文献   

18.
Summary The fine structure of arcuate neurons of the arcuate nucleus, the ependymal tanycytes and the contact zone of the median eminence was examined following immobilization, an acute stress which significantly activated the hypothalamo-pituitary-adrenal (HPA) axis. Arcuate neurons of immobilized adult male hamsters displayed morphological indications of heightened activity; the number of lysosomes and dense core vesicles (80–120 nm) was increased. A markedly greater number of dense core vesicles was present in axon terminals of the contact zone of the mid-central median eminence and the ventral proximal stalk.Tanycytes of the median eminence exhibited an augmented number of electron dense bodies in both perikarya and end processes. These results indicate that the arcuate neurons, the axons of the contact zone, and the ependymal tanycytes of the hamster medial basal hypothalamus (MBH) may be involved in the response to immobilization.This work was supported by Program Project Grant #NS-11642  相似文献   

19.
Summary By use of the peroxidase-antiperoxidase-complex (PAP) immunohistological method, the preoptico-infundibular LHRH-tract was studied in adult female rats in which frontal hypothalamic deafferentation was performed at the third or tenth postnatal day. In the former group, this LHRH-tract appeared to be similar to that of the intact controls; the animals showed regular vaginal cycles and ova were present in their oviducts. In the latter group, however, marked reduction in the number of the LHRH-nerve fibers was observed behind the sites of the deafferentation in the mediobasal hypothalamus (MBH), whereas LHRH-immunoreactive perikarya and nerve fibers containing the immunoreactive material were seen rostral to the plane of severance. In these animals reduction of LHRH-fibers in the MBH was accompanied by an anovulatory syndrome characterized by constant vaginal cornification and polyfollicular ovaries. Comparing the glial scar formation induced by the cut, significant differences were detected between the two experimental groups. In the animals deafferented on the 3rd day of life, reduction of nerve cells was seen along the cut, but LHRH-fibers crossing the thin glial scar were detectable in large numbers. On the other hand, in the animals deafferented on the 10th postnatal day, extensive glial scar tissue appeared to interrupt the LHRH-fibers rostral to the cut.  相似文献   

20.
I M Kakabadze 《Tsitologiia》1985,27(10):1123-1128
The maturation of layers II-VI of neurons and perineuronal neuropil of the cat visual cortex (field 17) was studied from postnatal day 1 to day 21. The differentiation of large, small (associate) pyramid and stellate neurons was described. During the first postnatal week, the somata of layers II-VI of neurons undergo significant changes, the perikaryal cytoplasm increases in volume. Cell bodies of large pyramidal neurons mature by day 15. During the second postnatal week and almost till day 15, the rough endoplasmic reticulum of small pyramidal and stellate neurons undergoes proliferation; dendritic processes are branching. In stellate neurons the amount of cytoplasmic organelles increases dramatically only after the second postnatal week, and this is presumably induced by the opening of eyes on day 12. The second postnatal week is the period of greatest growth of dendritic, axonal and glial processes in perineural neuropil of layers V-VI. In the perineuronal neuropil of large pyramidal neurons (layers V-VI) there appear symmetric synapses with pyramidal cells, dendritic processes and dendritic spines. This occurs just at the time when kittens first open the eyes. From this time and during postnatal days 15-21, asymmetric synapses appear in the perineuronal neuropil of large pyramidal neurons. In the perineuronal neuropil of small pyramidal and stellate neurons. (layers II-IV), synapses reveal the mature appearance by day 15. After the opening of the eyes and up to postnatal day 21, dendritic growth and spine production occur in the perineuronal neuropil of small pyramidal and stellate neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号