首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The taxonomy of the Southern Hemisphere lampreys, Qeotria and Mordacia , is reviewed. Many invalid species have been created within these genera due to a lack of knowledge of the great morphological changes that take place during development. The sequence of changes in the dentition of Mordacia is described in detail.
Geotria is now considered to be monotypic, containing only Q. australis Gray, which is found in Australia, New Zealand, and South America. Caragola is regarded as a synonym of Mordacia , and thus the exclusively South American C. lapicida becomes M. lapicida (Gray). The other Mordacia species, M. mordax (Richardson) and M. praecox Potter, are found only in Australia. All these species are anadromous and parasitic, except M. praecox , which is nonparasitic and never leaves fresh-water.
A comparison of anatomical features indicates that living lampreys (Petromyzonidae) are best separated into three subfamilies: Petromyzoninae to contain all Northern Hemisphere genera, Geotriinae for Geotria , and Mordaciinae for Mordacia.
A record of the Australian rivers in which lampreys have been found, shows that both genera are sympatric in South Australia, western Victoria, and Tasmania, and that only Qeotria is found in Western Australia, and only Mordacia in south-eastern Australia.  相似文献   

2.
Abstract:The lichen genus Calycidium Stirt. (Calycidiaceae,Lecanorales , ‘Caliciales’ s. lat.) contains two species: C. cuneatum Stirt., distributed in Australia (Tasmania) and New Zealand, and C. polycarpum (Colenso) Wedin, comb. nov., distributed in Argentina, Australia (Tasmania), Chile and New Zealand. The morphology, chemistry, ecology and distribution of the two species is discussed, as is the taxonomic position of the genus. Calycidium is reported as new to Argentina.  相似文献   

3.
Variability at seven microsatellite loci was used to survey the genetic population structure of the shortfinned eel Anguilla australis . Samples were collected from six estuaries along the east coast of Australia and from three estuaries around New Zealand. Hierarchical analysis of molecular variance of the five loci with good fit to Hardy–Weinberg genotypic proportions detected highly significant differences among samples ( F ST= 0·016, P < 0·001). The fixation index between countries ( F CT= 0·012, P < 0·001) was more than double the index among samples within countries ( F SC= 0·005, P < 0·05). An unweighted pair-group method with arithmetic mean (UPGMA) tree also supported the separation of Australian and New Zealand populations, as did assignment tests, which correctly assigned 80 and 84% of the individuals to Australia and New Zealand, respectively. Isolation-by-distance appeared among samples overall ( r = 0·807, P < 0·001), but not among samples within countries ( r = 0·027, P > 0·05 in Australia; r = 0·762, P > 0·05 in New Zealand). These findings indicate that populations of A. australis in East Australia and in New Zealand may be reproductively isolated from one another. Genetic differentiation among populations of A. australis was two- to 10-fold higher than that among populations of other temperate eels in the North Atlantic Ocean, suggesting that two group of A. australis may reflect sub-species. Anguilla australis in the two countries have different genetic structures and thus require separate management. Genetic isolation between Australian and New Zealand populations indicates that juveniles recruit independently into these two regions from geographically or temporally isolated spawning areas.  相似文献   

4.
Electrophoretic data for 15 enzymes encoded by 18 loci were analysed in samples of larval lampreys from two southern hemisphere species (Geotria australis and Mordacia mordax). Low values for Nei genetic distance coefficients for all loci in populations of G. australis from Western Australia, Tasmania and New Zealand (0.0013 to 0.0058) suggest that adults may intermix over distances greater than 4000 km. The average heterozygosity for four populations of G. australis (0.086) was much greater than for two populations of the far less widely distributed M. mordax (0.021).  相似文献   

5.
Abstract

Blue penguins, Eudyptula minor, breeding on Penguin Island, Western Australia are considerably larger than other blue penguins in Australia. If genetic isolation is the cause, it may have implications for the conservation status of some blue penguin populations. We compared the sequences of two mitochondrial gene regions (cytochrome‐b and the control region) from Western Australian blue penguins with other populations of blue penguins from Australia and New Zealand. We found few differences between sequences from Western Australia, Phillip Island, Victoria and Otago, New Zealand, although all three differed considerably from other New Zealand blue penguins. Sequences for the control region from the Western Australian blue penguins and 30 more birds breeding at various Australasian sites provided further support for two major clades within Eudyptula; an Australian clade (including Otago) and a New Zealand clade.  相似文献   

6.
Abstract The amphibian fauna of New Zealand consists of three native species (Leiopelma spp.), and three Litoria species introduced from Australia in the last 140 years. We conducted a molecular phylogeographical study that aimed to identify the Australian origins of two species, Litoria aurea and Litoria raniformis. We used partial sequences of the mitochondrial cytochrome oxidase I (cox1) gene from 59 specimens sampled from across the range of both species to identify the probable source populations for the New Zealand introductions, and to describe the current genetic diversity among New Zealand Litoria populations. Our genetic data suggest that L. aurea was introduced into the North Island of New Zealand from two regions in Australia, once from the northern part of coastal New South Wales and once from the southern part of coastal New South Wales. Our data indicate that L. raniformis introductions originated from the Melbourne region of southern Victoria and once established in the South Island of New Zealand, the species subsequently spread throughout both islands. In addition, we found a distinct haplotype in L. raniformis from Tasmania that strongly suggests, contrary to earlier reports, that this species was not introduced into New Zealand from Tasmania. Finally, we identified two very distinctive mitochondrial lineages of L. raniformis within the mainland Australia distribution, which may be previously unrecognized species.  相似文献   

7.
The galaxioid fishes are the dominant, most speciose group of freshwater fishes (with >50 species) in the lands of the cool southern hemisphere, with representatives in western and eastern Australia, Tasmania, New Caledonia, Lord Howe Island, New Zealand, the Chatham, Auckland and Campbell Islands, Patagonian South America (Chile, Argentina), the Falkland Islands and South Africa. The group is most diverse in Australia and New Zealand. Lepidogalaxiidae is found only in Australia, Retropinnidae in Australia and New Zealand, and Galaxiidae across the entire range of the group. Many species are in serious conservation crisis for a diversity of reasons, including habitat deterioration and possibly fisheries exploitation, but there is enduring and pervasive information that shows that the group has been seriously impacted by the acclimatisation of salmonid fishes originating in the cool-temperate northern hemisphere, particularly brown and rainbow trout. With few exceptions, where these trout have been introduced there has been major decline in the galaxioids, especially Galaxiidae, as a result of a complexly interacting series of adverse impacts from these introduced fishes. In some places, centrarchids and cichlids may also have adverse impacts. In addition, there appear to have been adverse impacts from the translocation of galaxioids into communities where they do not naturally occur. In many instances it appears that displacement of the galaxioids has led to a situation where galaxioids and salmonids no longer co-occur, owing either to displacement or predation, leading to fish communities in which there is no explicit evidence for displacement. These effects are resulting in the galaxioid fishes being amongst the most seriously threatened fishes known.  相似文献   

8.
The phylogenetic relationships among populations of seaperch, Helicolenus spp., in the south-west Pacific were examined with mtDNA markers. Parts of the cytochrome b gene [459 base pair (bp)] and the control region (448 bp) were sequenced in 58 specimens from the south-west Pacific and four specimens of Helicolenus lengerichi from Chile. Only one clade was recognized in New Zealand coastal waters, despite a wide range of colour morphs. This clade also occurred in the mid Tasman Sea on the Norfolk Ridge and around Tasmania and Victoria. A second sympatric clade was identified around Tasmania and Victoria and to the west of New Zealand. A third allopatric clade was identified to the north of New Zealand and in deep water on the Chatham Rise and a fourth clade on the Foundation Seamounts and the Louisville Ridge. Helicolenus lengerichi from Chile formed a fifth clade. Assuming a molecular clock, the clades were estimated to have diverged c. 0·7–2·6 million years ago. Only two clades, around Tasmania and Victoria, were separated using morphology, colour (in live) and dorsal-fin soft ray counts and were confirmed as Helicolenus percoides and Helicolenus barathri . Two characters, orbit diameter and colour variation, previously used to identify two species in New Zealand waters were unreliable characters for species discrimination. Principle component analyses of 11 morphological measures from 67 individuals did not delineate the clades. A canonical discriminant analysis was able to separate four of the five clades, but mean discriminate probabilities were low (77·6%), except for the five Chilean specimens of H. lengerichi (100%).  相似文献   

9.
Peterson KR  Pfister DH 《Mycologia》2010,102(6):1398-1416
Cyttaria species (Leotiomycetes, Cyttariales) are obligate, biotrophic associates of Nothofagus (Hamamelididae, Nothofagaceae), the southern beech. As such Cyttaria species are restricted to the southern hemisphere, inhabiting southern South America (Argentina and Chile) and southeastern Australasia (southeastern Australia including Tasmania, and New Zealand). The relationship of Cyttaria to other Leotiomycetes and the relationships among species of Cyttaria were investigated with newly generated sequences of partial nucSSU, nucLSU and mitSSU rRNA, as well as TEF1 sequence data and morphological data. Results found Cyttaria to be defined as a strongly supported clade. There is evidence for a close relationship between Cyttaria and these members of the Helotiales: Cordierites, certain Encoelia spp., Ionomidotis and to a lesser extent Chlorociboria. Order Cyttariales is supported by molecular data, as well as by the unique endostromatic apothecia, lack of chitin and highly specific habit of Cyttaria species. Twelve Cyttaria species are hypothesized, including all 11 currently accepted species plus an undescribed species that accommodates specimens known in New Zealand by the misapplied name C. gunnii, as revealed by molecular data. Thus the name C. gunnii sensu stricto is reserved for specimens occurring on N. cunninghamii in Australia, including Tasmania. Morphological data now support the continued recognition of C. septentrionalis as a species separate from C. gunnii. Three major clades are identified within Cyttaria: one in South America hosted by subgenus Nothofagus, another in South America hosted by subgenera Nothofagus and Lophozonia, and a third in South America and Australasia hosted by subgenus Lophozonia, thus producing a non-monophyletic grade of South American species and a monophyletic clade of Australasian species, including monophyletic Australian and New Zealand clades. Cyttaria species do not sort into clades according to their associations with subgenera Lophozonia and Nothofagus.  相似文献   

10.
Amaurobioides are restricted to the spray zone of southern continents, where they live in small, isolated populations and hunt from silk retreats built in rock crevices. A Star BEAST species tree based on ITS1 nuclear and ND1 mitochondrial genes did not support the hypothesis that this unusual niche linked the evolutionary history of these spiders to geological events reshaping Gondwana into present‐day Australia and New Zealand. Instead, it showed that Amaurobioides reached Australia approximately 4.5 Mya and dispersed twice to New Zealand. Approximately 2.37 Mya, spiders from Tasmania colonized the Deep South of the South Island and, approximately 0.38 Mya, those from South Australia colonized more northern regions. Thus, the present study further limits the scope of the Moa's Ark hypothesis of vicariant New Zealand biogeography.  相似文献   

11.
Molecular phylogenetic analyses of 26 of the 28 species of Ourisia , including eight of ten subspecies and two purported natural hybrids, are presented and used to examine the biogeography of the genus, which is distributed in subalpine to alpine habitats of South America, New Zealand and Tasmania. Gondwanan vicariance, often cited as the cause of this classic austral biogeographical pattern, was rejected by parametric bootstrapping of our combined dataset. Alternatively, various lines of evidence are presented in favour of a South American origin of Ourisia and subsequent dispersal to Australasia. Specifically, the genus likely arose in the Andes of central Chile and spread to southern Chile and Argentina, to the north-central Andes, and finally to Tasmania and New Zealand. The ancestor of the New Zealand species probably first arrived on the South Island, where the New Zealand species of Ourisia are most diverse, and migrated to the North and Stewart Islands. Because the Tasmanian and New Zealand species are sister to one another, the direction of dispersal between these two areas is equivocal. These results agree with other molecular phylogenetic studies that show that past dispersal between southern hemisphere continents has played an important role in the evolutionary history of many high-elevation austral plants. Our data also show that within South America, many of the geographical barriers (with the exception of the Atacama Desert) that have played a role in the evolution of other plant groups have not affected Ourisia species. Within New Zealand, the phylogeny and biogeography of species of Ourisia coincide with the geological history of the country and patterns of other alpine plants. © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 87 , 479–513.  相似文献   

12.
Aim To discover the pattern of relationships of areas of endemism for Australian genera in the plant family Rhamnaceae tribe Pomaderreae for comparison with other taxa and interpretation of biogeographical history. Location Australian mainland, Tasmania and New Zealand. Methods A molecular phylogeny and geographic distribution of species within four clades of Pomaderreae are used as a basis for recognition of areas of endemism and analysis of area relationships using paralogy‐free subtrees. The taxon phylogeny is the strict consensus tree from a parsimony analysis of 54 taxa, in four clades, and sequence data for the internal transcribed spacer regions of ribosomal DNA (ITS1‐5.8S‐ITS2) and the plastid DNA region trnL‐F. Results The biogeographical analysis identified five subtrees, which, after parsimony analysis, resulted in a minimal tree with 100% consistency and seven resolved nodes. Three sets of area relationships were identified: the areas of Arnhem and Kimberley in tropical north Australia are related based on the phylogeny of taxa within Cryptandra; the moister South‐west of Western Australia, its sister area the coastal Geraldton Sandplains, the semi‐arid Interzone region and arid Western Desert are related, based on taxa within Cryptandra, Spyridium, Trymalium and Pomaderris; and the eastern regions of Queensland, McPherson‐Macleay, south‐eastern New South Wales (NSW), Victoria, southern Australia, Tasmania and New Zealand are related based on Cryptandra, Pomaderris and Spyridium. Tasmania and NSW are related based entirely on Cryptandra, but the position of New Zealand relative to the other south‐eastern Australian regions is unresolved. Main conclusions The method of paralogy‐free subtrees identified a general pattern of geographic area relationships based on Australian Pomaderreae. The widespread distribution of clades, the high level of endemicity and the age of fossils for the family, suggest that the Pomaderreae are an old group among the Australian flora. Their biogeographical history may date to the early Palaeogene with subsequent changes through to the Pleistocene.  相似文献   

13.
The light brown apple moth, Epiphyas postvittana (Walker) (Lepidoptera: Tortricidae), is a horticultural pest of Australia and New Zealand that has more recently invaded Hawaii, Europe, and California. A 2,216-bp region of the mitochondrial genome containing the cytochrome oxidase I and II genes was sequenced from 752 individuals. Haplotype network analyses revealed a major split between a predominantly Western Australian clade and all other samples, suggestive of either a deep genetic divergence or a cryptic species. Nucleotide and haplotype diversity were highest in the country of origin, Australia, and in New Zealand populations, with evidence of haplotype sharing between New Zealand and Tasmania. Nucleotide and haplotype diversity were higher in California than within the British Isles or Hawaii. From the total of 96 haplotypes, seven were found in California, of which four were private. Within California, there have been at least two introductions; based on genetic diversity we were unable to assign a likely source for a single moth found and eradicated in Los Angeles in 2007; however, our data suggest it is unlikely that Hawaii and the British Isles are sources of the major E. postvittana population found throughout the rest of the state since 2006.  相似文献   

14.
Bostrychia tenuissima King and Puttock is restricted to southern Australia and New Zealand. Previous studies in Australia have revealed two distinct patterns in the presence of osmotically active polyols. Southern populations only have D-sorbitol whereas northern populations have both D-sorbitol and D-dulcitol. These polyol patterns lead to speculation on the ecotypic differentiation of these two population types. Using single-stranded confirmation polymorphism to rapidly score plastid haplotypes, plus DNA sequencing, a 100% congruence was found between polyol patterns and plastid haplotype. Analysis of 33 B. tenuissima isolates shows that the plastid relationships closely follow biogeo-graphic regions, with south-eastern Australia (southern NSW and Victoria) and South Australia and Tasmania having one haplotype and central and northern NSW having two alternate haplotypes. There is an overlap at the haplotype boundary just south of Sydney, New South Wales.  相似文献   

15.
A new genus of orthocladiine Chironomidae, Botryocladius (type species B. grapeth sp.n. from eastern Australia) is described and illustrated in all life history stages. All thirteen included species are described as new, six from eastern Australia (B. grapeth, B. brindabella, B. mdfrc, B. collessi, B. tasmania, B. australoalpinus), two from Western Australia (B. bibulmun and B. freemani), one from ephemeral streams in Australia (B. petrophilus) and four from Patagonian Argentina and Chile (B. edwardsi, B. glacialis, B. mapuche and B. tronador). All Australian species are known from at least pupal exuviae, most from adult males and several from larvae. In contrast, only B. edwardsi amongst Neotropical species is known from the adult male; all others are described from pupal exuviae. The immature stages are lotic in Australian permanent and temporary streams and Patagonian glacial streams and rivers, and lentic in Neotropical glacial-fed and Australian subalpine lakes. Botryocladius appears to belong with a grouping centred on two formally undescribed taxa from Australia. The genus evidently demonstrates a vicariant distribution with at least two sister-group relationships between South American and Australian taxa, providing a minimum dating for the clade of 38 Ma., with apparent absence from New Zealand indicating a maximum date of 80 Ma.  相似文献   

16.
The existence of three distinct strains of E. granulosus in Australia has been previously demonstrated on the basis of several criteria. In the present study, numerous isolates of E. granulosus from domestic and wild animal populations in different geographical areas of Australia were subjected to detailed biochemical analysis using isoelectric focusing of soluble proteins. Three different populations were recognised which corresponded to the three strains described previously, thus confirming their genetic distinction. One strain is common to all domestic intermediate hosts on the Australian mainland. Evidence is presented that humans and macropod marsupials are also susceptible to infection with this strain and that it is similar to E. granulosus occurring in sheep in New Zealand and the United Kingdom. The other two strains are confined to macropod marsupials on the Australian mainland and sheep in Tasmania respectively.  相似文献   

17.
The southern rock lobster, Jasus edwardsii, shows clear phenotypic differences between shallow water (red coloured) and deeper water (pale coloured) individuals. Translocations of individuals from deeper water to shallower waters are currently being trialled as a management strategy to facilitate a phenotypic change from lower value pale colouration, common in deeper waters, to the higher value red colouration found in shallow waters. Although panmixia across the J. edwardsii range has been long assumed, it is critical to assess the genetic variability of the species to ensure that the level of population connectivity is appropriately understood and translocations do not have unintended consequences. Eight microsatellite loci were used to investigate genetic differentiation between six sites (three shallow, three deep) across southern Tasmania, Australia, and one from New Zealand. Based on analyses the assumption of panmixia was rejected, revealing small levels of genetic differentiation across southern Tasmania, significant levels of differentiation between Tasmania and New Zealand, and high levels of asymmetric gene flow in an easterly direction from Tasmania into New Zealand. These results suggest that translocation among Tasmanian populations are not likely to be problematic, however, a re-consideration of panmictic stock structure for this species is necessary.  相似文献   

18.
Three species are discussed: Teloschistes hosseusianus Gyelnik, formerly known only from the type locality in Argentina is shown to have a wider distribution in South America. T. stellatus (Mey. & Flot.) Mull. Arg. known only from the type locality in Peru is reported from other localities in Peru and Chile. T. velifer F. Wils. previously known from Australia and New Zealand is reported from six localities in Chile. One of these is T. hollermayeri Ras. which is a synonym of T. velifer. A key is given to the 11 species of Teloschistes so far known from South America.  相似文献   

19.
Eight South American geographic populations of the thelytokous parasitoid Microctonus hyperodae Loan (Hymenoptera: Braconidae) were released in New Zealand in 1991 to assist in the suppression of the pasture pest Listronotus bonariensis (Kuschel) (Coleoptera: Curculionidae). With one exception, parasitoids from each South American geographic population were released in equal numbers at each New Zealand release site. It was postulated that the South American geographic population(s) best suited to the conditions encountered at each New Zealand release locality would eventually become prevalent there. A morphometric analysis of adult parasitoids of known South American origins, reported previously, allowed M. hyperodae derived from west of the Andes (i.e. two collection sites in Chile) to be distinguished from parasitoids derived from east of the Andes (i.e. three collection sites in Argentina and one each in Brazil and Uruguay). Parasitoids derived from a fourth site in Argentina (S. C. de Bariloche) could not be clearly discriminated from either the 'east of the Andes' or 'west of the Andes' categories. A morphometric analysis of M. hyperodae adults collected from five of the New Zealand release sites from 1992-1994 is presented in this contribution. The analysis indicated that parasitoids derived from east of the Andes were significantly more prevalent than expected. The possible reasons for the initial success in New Zealand of one or more east of the Andes populations include the greater fecundity of M. hyperodae collected in Uruguay and the likelihood that M. hyperodae from east of the Andes co-evolved more recently with the stock from which New Zealand's L. bonariensis was founded.  相似文献   

20.
A Southern hemisphere lineage of the blue mussel Mytilus galloprovincialis has been diverging in allopatry from Northern hemisphere conspecifics for 0.84–1.2 million years. Secondary contact between Southern and Northern hemisphere mussels in Chile, New Zealand and Australia provides an opportunity to better understand the extent and consequences of extensive range expansion. Non-native M. galloprovincialis and hybrids, as detected from RFLP assays of nuclear and mitochondrial DNA, are present in all three countries and significant cytonuclear disequilibria exist for native homozygotes in Chile and New Zealand, non-native homozygotes in Chile and non-native heterozygotes in New Zealand. Introductions into Australia are rare events given that no pure non-native mussels were detected. Immigration from one or both taxa into the hybrid zone may underlie disequilibria in New Zealand, whilst gender-directional crossing with limited ongoing hybridization contributes to disequilibria in Chile. Hybridization dynamics do not pose a threat to the Southern lineage in Chile and Australia, but in New Zealand, introgression, continued immigration and slight hybridization gender bias towards non-native maternal parents could lead to the regional extirpation of the native lineage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号